

Precise predictions for

Giovanni Stagnitto (Milano Bicocca University & INFN)

SM@LHC 2777 ab Urbe condita

666661

11111

111111

Progress towards new parton-level event generators capable of utilising modern hardware [Bothmann et al. '23]

V+jets ($V = \gamma/Z, W^{\pm}$) events:

ideal probe for testing QCD and EW interactions major source of backgrounds for new physics searches

V+jet fixed-order: NNLO QCD + NLO EW

V+jets MC samples: multi-jet merging at LO/NLO QCD

Outlook of this talk

- 1. Two recent phenomenological results related to γ +jet(s):
- Realistic photon isolation in photon-plus-jet events at NNLO [Chen, Gehrmann, Glover, Höfer, Huss, Schürmann '22]
- Isolated photon plus two jets at NNLO [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]
- 2. Progress towards NNLO+PS for V+jet
- 3. Progress towards N³LO fixed-order for V+jet

Personal selection of recent results that are representative for on-going progress. Apologies for any relevant omission of references

- 1. Two recent phenomenological results related to γ +jet(s):
- Realistic photon isolation in photon-plus-jet events at NNLO [Chen, Gehrmann, Glover, Höfer, Huss, Schürmann '22]
- Isolated photon plus two jets at NNLO [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]
- 2. Progress towards NNLO+PS for V+jet
- 3. Progress towards N³LO fixed-order for V+jet

Personal selection of recent results that are representative for on-going progress. Apologies for any relevant omission of references

Outlook of this talk

Realistic photon isolation in photon-plus-jet events at NNLO [Chen, Gehrmann, Glover, Höfer, Huss, Schürmann '22]

Fixed-cone vs. dynamic-cone isolation has long been a systematic difference between theory and experiment

Hybrid-cone partially alleviate this inconsistency (correct *R*-dependence)

Inclusion of photon fragmentation [with $D_{p \to \gamma}(z)$] in theory predictions solve the mismatch: theory predictions with fixed-cone!

How to define an isolated photon?

Fixed cone isolation can choose simple linear dependence:

 $E_{\mathrm{T}}^{\mathrm{had.}}(R) < E_{\mathrm{T}}^{\mathrm{max}} = \epsilon E_{\mathrm{T}}^{\gamma} + E_{\mathrm{T}}^{\mathrm{thresh.}}$

✓ used in experiments × sensitivity to fragmentation

Dynamic cone isolation [Frixione '98]

smoothly get rid of collinear radiation:

$$E_{\mathrm{T}}^{\mathsf{had.}}(r) < \epsilon E_{\mathrm{T}}^{\gamma} \left(\frac{1 - \cos r}{1 - \cos R}\right)^n \quad \forall$$

eliminates fragmentation part

× no direct analogue in experiment

Hybrid cone isolation [Siegert '17] 1. *narrow* dynamic cone $R_d < R$ (0.1) 2. wider fixed cone R (0.4) eliminates fragmentation part reduces mismatch to experiment

✓ *correct R* dependence

@ A. Huss

Fixed-cone with R = 0.4, $\epsilon = 0.0042$: $E_T^{\text{thrs.}} = 10 \,\text{GeV}$ (default), $E_T^{\text{thrs.}} = 50 \,\text{GeV}$ (loose) Hybrid-cone with $R_d = 0.1$, R = 0.4 and $\epsilon = 0.0042$

Hybrid vs. Fixed: 5% effect in the small- $p_T^{\gamma/\text{jet}}$ region Fragmentation component larger with looser isolation

Isolated photons at the LHC probe high-*z* ($z \ge 0.93$), where $D_{p \rightarrow \gamma}(z)$ is poorly constrained

New observable $z_{rec} = p_T^{\gamma}/p_T^{jet}$ (= z at LO) to extract $D_{p \rightarrow \gamma}(z)$ at the LHC

Isolated photon plus two jets at NNLO [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]

Interesting process: access angular correlations between the photon and jets. Hierarchy between $E_{\perp}(\gamma)$, $p_T(j_1)$ and $p_T(j_2)$: relative size of direct

and fragmentation contributions e.g. direct-enriched: $E_{\perp}(\gamma) > p_T(j_1)$

Good perturbative convergence Improved agreement with ATLAS data

No fragmentation included, but expected to be small with hybrid-cone and in the direct-enriched region

In the tail, missing EW corrections, expected to be large and negative

First calculation for a $2 \rightarrow 3$ process with exact full colour 2-loop amplitude Comparison of full NNLO, NNLO with two-loop finite-remainder at leading colour ("NNLO $\mathscr{H}_{1c}^{(2)}$ ") and NNLO no two-loop finite-remainder ("NNLO $\mathscr{H}_{0}^{(2)}$ ")

N.B. process-dependent statement! Knowledge of full colour is generally important

While the inclusion of finite-remainder is important (5-10% effect), the leading colour approximation seems to be good at cross section level

Similar observations in $pp \rightarrow \gamma \gamma \gamma$ [Abreu, De Laurentis, Ita, Klinkert, Page, Sotnikov '23]: differences between $\mathscr{H}^{(2)}$ and $\mathscr{H}^{(2)}_{lc}$ expected to be small at cross section level

Outlook of this talk

- 1. Two recent phenomenological results related to γ +jet(s):
- Realistic photon isolation in photon-plus-jet events at NNLO [Chen, Gehrmann, Glover, Höfer, Huss, Schürmann '22]
- Isolated photon plus two jets at NNLO [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]

2. Progress towards NNLO+PS for V+jet

3. Progress towards N³LO fixed-order for V+jet

Personal selection of recent results that are representative for on-going progress. Apologies for any relevant omission of references

Impressive results in the recent years, but so far limited to processes with colour-singlets or heavy quarks in the final state

		H Z	Z W	t t WW ZZ	b Y WZ	Б Н	→ bb
			ZH H VH H	$I \rightarrow b\bar{b}$ $I \rightarrow gg$ $\gamma ZZ V$	Ε Vγ	H H	WW
	ZH WW		$H \rightarrow b$	b			
20)18 20)19 20	020 2	021 20)22 20)23 2	2024

Impressive results in the recent years, but so far limited to processes with colour-singlets or heavy quarks in the final state

		H Z	W	tt Zy WW ZZ	γγ WZ	bb H	→ bb̄
			ZH 1 WH 1	$\begin{array}{l} H \to b\bar{b} \\ H \to gg \\ \gamma\gamma ZZ \end{array}$	Ρ Γ Wγ	H H	WW
	ZH WW	7	$H \rightarrow $	b <u></u>			
20)18 2	2019 2	2020	2021 2	2022 2	023	2024

GENEVA in a nutshell (for colour-singlet production)

As \mathcal{T}_N s regulate IR divergences, large logarithms appear: resummation is required! \mathcal{T}_0 resummed up to NNLL', \mathcal{T}_1 up to NLL

Division into 0/1/2-jet events dictated by resolution variable(s) \mathcal{T}_N Originally developed for N-jettiness \mathcal{T}_N , but later extended to colour-singlet q_T [Alioli, Bauer et al. '21] and leading-jet p_T [Gavardi, Lim et al. '23]

Example: 0/1-jet separation, dictated by \mathcal{T}_0^{cut}

$$\frac{\mathrm{d}\sigma_{\geq 1}^{\mathrm{MC}}}{\mathrm{d}\Phi_{1}}(\mathcal{T}_{0} > \mathcal{T}_{0}^{\mathrm{cut}}) = \frac{\mathrm{d}\sigma^{\mathrm{NNLL'}}}{\mathrm{d}\Phi_{0}\mathrm{d}\mathcal{T}_{0}} \mathcal{P}(\Phi_{1})\theta\left(\mathcal{T}_{0} > + \frac{\mathrm{d}\sigma_{\geq 1}^{\mathrm{nons}}}{\mathrm{d}\Phi_{1}}(\mathcal{T}_{0} > \mathcal{T}_{0}^{\mathrm{cut}}),\right)$$

$$\int \frac{\mathrm{d}\Phi_1}{\mathrm{d}\Phi_0 \mathrm{d}\mathcal{T}_0} \, \mathcal{P}(\Phi_1) = 1$$

GENEVA in a nutshell (for colour-singlet production)

<u>Below the cut</u>, one adopts the

 $\mathcal{T}_0^{\mathrm{cut}})$

<u>Above the cut</u>, one adopts the differential resummed cross section, with additive matching to fixed-order result (by requiring $\mathcal{T}_0 > \mathcal{T}_0^{\text{cut}}$)

Normalised "splitting" function $\mathscr{P}(\Phi_1)$ to make the resummed cross section differential in the higher multiplicity phase space

How to extend GENEVA to vector boson plus jet production?

First step: resummation of one-jettiness \mathcal{T}_1 , performed up to N³LL [Alioli, Bell, Billis, Broggio, Dehnadi, Lim, Marinelli, Nagar, Napoletano, Rahn '23]

$$\mathcal{T}_1 = \sum_k \miniggl\{rac{2q_a \cdot k}{Q_a}, rac{2q_b \cdot k}{Q_b}, rac{2q_J \cdot k}{Q_J}iggr\}$$
 $Q_i = 2
ho_i E_i$

<u>Freedom in precise definition of \mathcal{T}_1 :</u> dependence on reference frame; dependence on definition of jet axis (e.g. obtained recursively with exclusive clustering or a priori with inclusive clustering)

frames	ρ a,b	ρյ
Lab	1	1
Color Singlet (CS)	$e^{\pm Y_{m V}}$	$(e^{Y_V}p_J^- + e^{-Y_V}p_J^+)/E_J$
nderlying Born (UB)	$e^{\pm Y_{VJ}}$	$(e^{Y_{VJ}}p_J^- + e^{-Y_{VJ}}p_J^+)/E_J$
		@ G. Billis

Resummation of one-jettiness \mathcal{T}_1 in SCET: analytical ingredients

Beam function: known up to N³LO for any \mathcal{T}_N [Ebert, Mistlberger, Vita '20]

Hard function: extracted from two-loop amplitudes [Gehrmann, Tancredi et al. '12, '22]

Jet function (universal): known up to N³LO [Brüser, Liu, Stahlhofen '18] [Banerjee, Dhani, Ravindran '18]

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\mathcal{T}_1} = H_{\kappa}(\mu) \int \mathrm{d}t_a \mathrm{d}t_b \mathrm{d}s_J B_a(t_a,\mu) B_b(t_b,\mu) J_c(s_J,\mu)$

 $imes S_{\kappa}(\mathcal{T}_1 - t_a/Q_a - t_b/Q_b - s_J/Q_J, \mu)$

Soft function: known for \mathcal{T}_1 up to NNLO [Campbell, Ellis, Mondini, Williams '17], but novel NNLO evaluations for any \mathcal{T}_N [Bell, Dehnadi, Mohrmann, Rahn '23] [Agarwal, Melnikov, Pedron '24]

Matching the resummation to fixed order: size of nonsingular

Fixed-order approaches singular as $\tau_1 \rightarrow 0$ (as expected) Power corrections seem to behave better in the CS frame

$$\frac{\mathrm{d}\sigma^{\mathrm{N}^{3}\mathrm{LL}+\mathrm{NLO}_{2}}}{\mathrm{d}\Phi_{1}\mathrm{d}\mathcal{T}_{1}} = \frac{\mathrm{d}\sigma^{\mathrm{N}^{3}\mathrm{LL}}}{\mathrm{d}\Phi_{1}\mathrm{d}\mathcal{T}_{1}} + \frac{\mathrm{d}\sigma^{\mathrm{Nons.}}}{\mathrm{d}\Phi_{1}\mathrm{d}\mathcal{T}_{1}} ,$$
$$\frac{\mathrm{d}\sigma^{\mathrm{Nons.}}}{\mathrm{d}\Phi_{1}\mathrm{d}\mathcal{T}_{1}} = \left(\frac{\mathrm{d}\sigma^{\mathrm{NLO}_{2}}}{\mathrm{d}\Phi_{1}\mathrm{d}\mathcal{T}_{1}} - \frac{\mathrm{d}\sigma^{\mathrm{N}^{3}\mathrm{LL}}}{\mathrm{d}\Phi_{1}\mathrm{d}\mathcal{T}_{1}}\right|_{\mathcal{O}(\alpha_{s}^{2})}$$

Nonsingular = Fixed order - Singular

In order to have a finite Born for Z+jet, one adopts a cut on q_T (or on \mathcal{T}_0 , see backup)

$$\tau_1 = \mathcal{T}_1/m_T$$

$$m_T \equiv \sqrt{M_{\ell^+\ell^-}^2 + q_T^2}$$

Results for resummed and matched result

 $NLL' \rightarrow NNLL \rightarrow NNLL'$ sizeable NNLL' \rightarrow N³LL minor effect

Large effect from NLO₂ fixed-order (not surprising)

When decreasing q_T , larger differences between curves. Joint resummation would be required in that case.

Next steps towards NNLO+PS: \mathcal{T}_1 -preserving mapping, splitting functions $\mathcal{P}_{2\to 3}(\Phi_2)$, interface to PS, better understanding of different definitions of \mathcal{T}_1 ...

Jettiness-like variables in MiNNLO_{PS}

MiNNLO_{PS} is another powerful method to achieve NNLO+PS accuracy based on Sudakov factors to resum logarithmic dependence on resolution parameters and to a multiplicative-like matching to reach NNLO accuracy

Originally developed using q_T -like observables, it has been recently extended to use jettiness-like variables [Ebert, Rottoli, Wiesemann, Zanderighi, Zanoli '24]

Formalism for \mathcal{T}_0 and \mathcal{T}_1 , phenomenological results for \mathcal{T}_0

Implementation of different resolution variables in different frameworks important to assess systematic uncertainties

Transverse-momentum like observables for processes with final-state jets?

e.g. k_T^{ness} , based on exclusive k_T -clustering algorithm [Buonocore, Grazzini, Haag, Rottoli, C. Savoini '22,'23]

> More stable than \mathcal{T}_1 under had. and MPI effects

All ingredients at NLO, extension to NNLO in progress

Resummation up to NNLL' would also allow for usage in **NNLO+PS** frameworks

Outlook of this talk

- 1. Two recent phenomenological results related to γ +jet(s):
- Realistic photon isolation in photon-plus-jet events at NNLO [Chen, Gehrmann, Glover, Höfer, Huss, Schürmann '22]
- Isolated photon plus two jets at NNLO [Badger, Czakon, Hartanto, Moodie, Peraro, Poncelet, Zoia '23]
- 2. Progress towards NNLO+PS for V+jet
- 3. Progress towards N³LO fixed-order for V+jet

Personal selection of recent results that are representative for on-going progress. Apologies for any relevant omission of references

The two pillars of fixed-order calculations

Higgs and DY) pushed to (fully differential) N³LO \rightarrow see talk by P. Torrielli

SUBTRACTION

Amplitudes

V+3 partons at three-loop (and two-loop to higher orders in ϵ) [Gehrmann, Jakubcik, Mella, Syrrakos, Tancredi '22,'23] (Planar) amplitudes in terms of GHPLs with simple alphabet:

{x, y, 1 - x - y, 1 - x, 1 - y, x + y}, $x = \frac{s_{12}}{m^2}$, $y = \frac{s_{13}}{m^2}$ Fast to evaluate

> V+4 partons at two-loop Abreu, Chicherin, Febres Cordero, Ita, Klinkert, Page, Sotnikov, Tschernow, Zoia '21,'23] Amplitudes in terms of "(one-mass) pentagon functions" Lot of recent progress to evaluate them efficiently

Subtraction

<u>Non-local (slicing) schemes : used for differential N³LO colour-singlet</u> For V+jet, one could use N-jettiness subtraction with \mathcal{T}_1 Beam, hard and jet functions are known (see above) Missing ingredient: N³LO soft function for \mathcal{T}_1 , currently beyond reach Calculation of N³LO soft function for \mathcal{T}_0 in progress [Baranowski, Delto, Melnikov, Pikelner, Wang]

Local schemes : still in their infancy Analytical ingredients for N³LO antenna subtraction in e^+e^- collisions [Chen, Jakubcik, Marcoli, GS '22,'23] Ideas for the N³LO extension of the local analytic subtraction method [Magnea, Milloy, Signorile-Signorile, Torrielli '24]

$$d\sigma_{N^{3}LO}^{V} = d\sigma_{N^{3}LO}^{V} \bigg|_{q_{T} < q_{T}^{cut}} + d\sigma_{N^{3}LO}^{V} \bigg|_{q_{T} > q_{T}^{cut}}$$
$$= \mathscr{H}_{N^{3}LO}^{V} \otimes d\sigma_{LO}^{V} + \left[d\sigma_{NNLO}^{V+jet} - d\sigma_{N^{3}LO}^{V,CT} \right]_{N^{3}LO}$$

Mixed $O(\alpha, \alpha)$ effects?

First step: bosonic (neglecting closed fermion loops) contribution to the two-loop mixed QCD-EW amplitudes for Z+jet [Bargiela, Caola, Chawdhry, Liu '23]

Appropriate IR subtraction schemes for mixed QCD-QED real-emission would be required

- Full $\mathcal{O}(\alpha, \alpha)$ corrections known for Drell-Yan [Bonciani et al. '21] [Buccioni et al. '22] \rightarrow see talk by A. Vicini
- Still not known for V+jet. Estimation of size in [Lindert et al. '17]: on multiplicative combination of NNLO QCD and NLO EW, uncertainty of 10-20% for W/Z_{\pm} and 40% for γ_{\pm} jet

Axial-vector contributions?

- Known exactly at one-loop
- Non-singlet: vector = axial-vector
- Pure-singlet: missing two-loop axial-vector contributions computed recently (with large m_t) [Gehrmann, Peraro, Tancredi '22]
- Phenomenological impact to be assessed: expected to be very small (per-mille correction) for sufficiently inclusive observable, but may be sizeable in e.g. angular correlations between leptons and jet
- Related calculation is the three-loop quark form factor, entering NC DY @ N3LO: exact top quark mass dependence in [Chen, Czakon, Niggetiedt '21] Effect of exact axial-vector on total cross section is negligible [Duhr, Mistlberger '21]

Conclusions

of the community towards better SM predictions:

- push predictions for multi-leg final states to NNLO
- consider more exclusive final states e.g. with identified photons/hadrons (or flavoured jets \rightarrow see talks by H. B. Hartanto and A. Mitov)
- improve generators (including accuracy of PS and matching to fixed-order)
- go to N³LO (likely with non-local subtraction methods in a first phase)
- start thinking about formally sub-dominant effects that may become relevant

Work to improve the theoretical description of V_{\pm} well inserted in the overall effort

I am grateful to S. Alioli, X. Chen, P. Jakubcik, A. Huss and L. Rottoli for discussions

BACKUP

$$\frac{\mathrm{d}\sigma_0^{\mathrm{MC}}}{\mathrm{d}\Phi_0}(\mathcal{T}_0^{\mathrm{cut}}) = \frac{\mathrm{d}\sigma^{\mathrm{NNLL'}}}{\mathrm{d}\Phi_0}(\mathcal{T}_0^{\mathrm{cut}}) + \frac{\mathrm{d}\sigma_0^{\mathrm{nons}}}{\mathrm{d}\Phi_0}(\mathcal{T}_0^{\mathrm{cut}})$$

$$\frac{\mathrm{d}\sigma_{\geq 1}^{\mathrm{MC}}}{\mathrm{d}\Phi_{1}}(\mathcal{T}_{0} > \mathcal{T}_{0}^{\mathrm{cut}}) = \frac{\mathrm{d}\sigma^{\mathrm{NNLL'}}}{\mathrm{d}\Phi_{0}\mathrm{d}\mathcal{T}_{0}} \mathcal{P}(\Phi_{1})\theta\left(\mathcal{T}_{0} > \mathcal{T}_{0}^{\mathrm{cut}}\right) + \frac{\mathrm{d}\sigma_{\geq 1}^{\mathrm{nons}}}{\mathrm{d}\Phi_{1}}(\mathcal{T}_{0} > \mathcal{T}_{0}^{\mathrm{cut}}),$$

 $rac{\mathrm{d}\sigma^{\mathtt{M}}_{\geq}}{\mathrm{d}\Phi}$

$$\int \frac{\mathrm{d}\Phi_1}{\mathrm{d}\Phi_0 \mathrm{d}\mathcal{T}_0} \, \mathcal{P}(\Phi_1) = 1$$

 $\mathcal{T}_0(\Phi_1^\mathcal{T}(\Phi_2))$

 $^{\mathrm{t}})\,,$

 $\binom{\operatorname{cut}}{\operatorname{o}}$

$$\begin{split} \frac{\overset{\text{MC}}{\geq 1}}{\overset{\text{MC}}{\Phi_{1}}}(\mathcal{T}_{0} > \mathcal{T}_{0}^{\text{cut}}) &= \frac{\mathrm{d}\sigma^{\text{NNLL'}}}{\mathrm{d}\Phi_{0}\mathrm{d}\mathcal{T}_{0}} \,\mathcal{P}(\Phi_{1}) \,\,\theta\left(\mathcal{T}_{0} > \mathcal{T}_{0}^{\text{cut}}\right) \\ &- \left[\frac{\mathrm{d}\sigma^{\text{NNLL'}}}{\mathrm{d}\Phi_{0}\mathrm{d}\mathcal{T}_{0}} \mathcal{P}(\Phi_{1})\right] \frac{\theta\left(\mathcal{T}_{0} > \mathcal{T}_{0}^{\text{cut}}\right)}{\mathrm{NLO}_{1}} \\ &+ \left(B_{1} + V_{1}\right) \left(\Phi_{1}\right) \theta\left(\mathcal{T}_{0}(\Phi_{1}) > \mathcal{T}_{0}^{\text{cut}}\right) \\ &+ \int \frac{\mathrm{d}\Phi_{2}}{\mathrm{d}\Phi_{1}^{\mathcal{T}}} B_{2}(\Phi_{2}) \,\theta\left(\mathcal{T}_{0}(\Phi_{2}) > \mathcal{T}_{0}^{\text{cut}}\right) \end{split}$$

$$)=\mathcal{T}_{0}(\Phi_{2})$$

 au_1

32

 $\mu_B(\mathcal{T}_1/\mu_{\rm FO},\mathcal{T}_1/\mathcal{T}_0) = \sqrt{\mu_{\rm FO}\mu_S(\mathcal{T}_1/\mu_{\rm FO})}$ $\mu_J(\mathcal{T}_1/\mu_{\rm FO},\mathcal{T}_1/\mathcal{T}_0) = \sqrt{\mu_{\rm FO}\mu_S(\mathcal{T}_1/\mu_{\rm FO},\mathcal{T}_1/\mathcal{T}_0)},$

$$\begin{aligned} \frac{\mathcal{T}_1(\Phi_N)}{\mathcal{T}_0(\Phi_N)} &\leq \frac{N-1}{N} = \begin{cases} 1/2 \,, & N=2\\ 2/3 \,, & N=3 \end{cases} \\ \mu_S(\mathcal{T}_1 \ll \mu_{\rm FO}) \sim \mathcal{T}_1 \,, \\ \mu_S(\mathcal{T}_1 \sim \mu_{\rm FO}) \sim \mu_{\rm FO} \,, \end{cases} \\ \mu_S(\mathcal{T}_1 \sim \mu_{\rm FO}) \sim \mu_{\rm FO} \,, \end{aligned}$$

$$\mu_{ ext{FO}}, \mathcal{T}_1/\mathcal{T}_0ig),$$

$$\mu_H = \mu_{\rm FO} = m_T \equiv \sqrt{m_{\ell^+\ell^-}^2 + q}$$

