

State of the art predictions for on-/off-shell top-pair production and decays

Giuseppe Bevilacqua

NCSR "Demokritos"

Standard Model at the LHC 2024 Rome, 10 May 2024

$t\bar{t}$ and associated production channels at the LHC

$t\bar{t}$: theoretical status

• $t\bar{t}$ cross section @ LHC

NNLO Prod \times **Decay**

[Behring, Czakon, Mitov, Papanastasiou, Poncelet '19; Czakon, Mitov, Poncelet '21]

NNLO (+ NNLL)

[Czakon, Fiedler, Mitov '13; Czakon, Heymes, Mitov '16 '17; Czakon, Heymes, Mitov, Pagani, Tsinikos '17; Czakon, Ferroglia, Heymes, Mitov, Pecjak, Scott, Wang, Yang '18; Catani, Devoto, Grazzini, Kallweit, Mazzitelli '19 '20; Kidonakis, Guzzi, Tonero '23]

NNLO Prod \times **LO Decay** \oplus **PS**

[Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi '20 '21]

NLO off-shell

[G.B, Czakon, Van Hameren, Papadopoulos, Worek '11; Denner, Dittmaier, Kallweit, Pozzorini '11,'12; Cascioli, Kallweit, Maierhöfer, Pozzorini '14 Denner, Pellen '18]

<u>Theoretical uncertainties</u> (13 TeV)

NNLO QCD : \sim 5-6%

aN3LO QCD+EW : \sim 3%

[Phys.Rev.D 108 (2023) 5, 054012]

NLO off-shell \oplus PS

[Jezo, Lindert, Nason, Oleari, Pozzorini '16; Jezo, Lindert, Pozzorini '23]

Recent progress in associated $t\bar{t} + X$ modelling

• First NNLO results $\rightarrow t\bar{t}H, t\bar{t}W$

Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini '23 Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, Savoini '23

• NNLL resummation $\rightarrow t\bar{t}H, t\bar{t}Z, t\bar{t}W, t\bar{t}t\bar{t}$

[Kulesza, van Beekveld, Motyka, Stebel, Theeuwes, Moreno Valero; Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos, Yang] '17-'22

• Complete NLO $\rightarrow t\bar{t}\gamma, t\bar{t}\gamma\gamma, t\bar{t}W, t\bar{t}Z \dots$

Denner, Pelliccioli '21 Pagani, Shao, Tsinikos, Zaro '21 Denner, Lombardi, Pelliccioli '23 Stremmer, Worek '24

- Precise predictions for inclusive production rates
 - Impact of subleading perturbative contributions at integrated and differential level

G. Bevilacqua

See also talks by A. Kulesza and M. Grazzini

Recent progress in associated $t\overline{t} + X$ modelling

 Matrix element corrections (MEC) to top decays in MC@NLO based simulations

Frixione, Amoroso, Mrenna '23 Frederix, Gellersent, Nasufi '24

- Improving hard-recoil effects in radiation off top-quarks
- Improved resonance-aware matching for off-shell tt + tW simulations (POWHEG) Jezo, Lindert, Pozzorini '23
 - Improving description of singleresonant contributions
 - Extending bb41 generator to semi-leptonic channel

Recent progress in associated $t\bar{t} + X$ modelling

Fixed-order NLO

• Off-shell studies $\rightarrow t\bar{t}X (X = \gamma, j, W, Wj, Z, H, b\bar{b})$

[G.B., Hartanto, Kraus, Worek '15-'16] [G.B., Hartanto, Kraus, Weber, Worek '18-'20] [G.B., Bi, Hartanto, Kraus, Nasufi, Worek '20-'21] [G.B., Bi, Febres Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '22] [G.B., Bi, Hartanto, Kraus, Lupattelli, Worek '21-'23] [Hermann, Worek '21] [Hermann, Stremmer, Worek '22] [Bi, Kraus, Reinartz, Worek '23] [Denner, Pellen '17] [Denner, Lang, Pellen, Uccirati '17] [Denner, Pelliccioli '20-'21] [Denner, Lang, Pellen '23]

• On-shell studies (full NWA) $\rightarrow t\bar{t}jj, t\bar{t}\gamma\gamma, t\bar{t}t\bar{t}$

Recent progress in associated $t\bar{t} + X$ modelling

Fixed-order NLO

• Off-shell studies $\rightarrow t\bar{t}X (X = \gamma, j, W, Wj, Z, H, b\bar{b})$

[G.B., Hartanto, Kraus, Worek '15-'16] [G.B., Hartanto, Kraus, Weber, Worek '18-'20] [G.B., Bi, Hartanto, Kraus, Nasufi, Worek '20-'21] [G.B., Bi, Febres Cordero, Hartanto, Kraus, Nasufi, Reina, Worek '22] [G.B., Bi, Hartanto, Kraus, Lupattelli, Worek '21-'23] [Hermann, Worek '21] [Hermann, Stremmer, Worek '22] [Bi, Kraus, Reinartz, Worek '23] [Denner, Pellen '17] [Denner, Lang, Pellen, Uccirati '17] [Denner, Pelliccioli '20-'21] [Denner, Lang, Pellen '23]

• On-shell studies (full NWA) $\rightarrow t\bar{t}jj, t\bar{t}\gamma\gamma, t\bar{t}t\bar{t}$

G.B., Lupattelli, Stremmer, Worek '23 Stremmer, Worek '23 Dimitrakopoulos, Worek '24

Disclaimer

A limited selection of results will be discussed in the following. Main focus:

- Impact of full off-shell effects
- Complete NLO corrections
- Modelling of resonant structures

Offshell in a nutshell

• Simplest example: $pp \rightarrow b\bar{b}W^+W^-$

"Off-shell"

"<u>Off-shell</u>" = DR + SR + NR + interferences

Narrow Width Approximation

$$\Gamma_t/m_t \to 0 \quad \Rightarrow \quad \left| \begin{array}{c} \frac{1}{(p_t^2 - m_t^2)^2 + m_t^2 \Gamma_t^2} \stackrel{\Gamma_t \to 0}{\sim} \frac{\pi}{m_t \Gamma_t} \,\delta(p_t^2 - m^2) + \mathcal{O}(\frac{\Gamma_t}{m_t}) \end{array} \right|$$

Off-shell effects are suppressed by powers of $\Gamma_t/m_t = \mathcal{O}(1\%)$ for sufficiently inclusive observables \rightarrow not always true differentially

 \bigcirc

 $\Gamma_t/m_t \approx 0.008$ $\Gamma_W/m_W \approx 0.026$

$pp \rightarrow t\bar{t}\gamma$ (dilepton)

Narrow Width Approximation: $t\bar{t} + tW$

• Simplest example: $pp \rightarrow b\bar{b}W^+W^- \rightarrow NWA$

"Off-shell"

$$\Gamma_t/m_t \to 0$$

Overlapping $t\overline{t}/tW(b)$

 \hookrightarrow

Diagram Subtraction (DS) ↔ Diagram Removal (DR)

$t\overline{t} - tW$ interference effects

[ATLAS Collab., Phys. Rev. Lett. 121 (2018)]

- Semi-leptonic channel $pp \rightarrow \ell^+ \nu_\ell \, \ell^- \bar{\nu}_\ell \, b\bar{b}$
- Full off-shell vs $t\bar{t} + tW(b)$ at NLO+PS
- Full off-shell models well all regions
- $t\overline{t} + tW(b)|_{DR,DS}$ differ numerically \hookrightarrow systematic comparisons

Model	All bins	$m_{b\ell}^{\min max} > 160 \text{ GeV}$
Powheg-Box $t\bar{t} + tW$ (DR)	0.71	0.40
POWHEG-BOX $t\bar{t} + tW$ (DS)	0.77	0.56
MG5_aMC $t\bar{t} + tW$ (DR)	0.14	0.17
MG5_aMC $t\bar{t} + tW$ (DR2)	0.02	0.08
POWHEG-BOX $\ell^+ \nu \ell^- \nu b b$	0.92	0.95

$$m_{b\ell}^{\min} \equiv \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}$$

• Semi-leptonic channel $pp \rightarrow e^+ \nu_e \, jj \, b\bar{b}$

[Jezo, Lindert and Pozzorini, JHEP10 (2023) 008]

	bb41-sl	hvq+ST _{wtch} -DS	hvq+ST _{wtch} -DR
$t \to W b$ and $W \to q \bar{q}'$ decays	NLO+PS	LO+PS	LO+PS
tWb production	NLO+PS	LO+PS	LO+PS
$t\bar{t}$ - tW interference	NLO+PS		LO+PS
off-shell effects	NLO+PS	approx.	approx.
non-resonant contributions	NLO+PS		

Comparison against on-shell $t\bar{t} + tW$ generators \rightarrow integrated level

		inclusive phase space		$e^+\nu_e$	$e^+\nu_e bbjj$ fiducial phase s		ace
				R =	0.5	R =	0.2
		$\sigma[\mathrm{pb}]$	$\frac{\sigma}{\sigma_{bb41-s1}^{NLOPS}}$	$\sigma[\mathrm{pb}]$	$\frac{\sigma}{\sigma_{\rm bb41-s1}^{\rm NLOPS}}$	$\sigma[\mathrm{pb}]$	$\frac{\sigma}{\sigma_{\rm bb41-s1}^{\rm NLOPS}}$
bb41-sl	NLOPS	57.56(2)	1	16.30(1)	1	14.639(9)	1
bb41-sl	LHE	57.56(2)	1	16.33(1)	1.002	17.17(1)	1.173
hvq	NLOPS	54.340(9)	0.944	15.910(6)	0.976	14.244(6)	0.973
ST_{wtch} -DS	NLOPS	2.5194(3)	0.044	0.4877(2)	0.030	0.4232(2)	0.029
ST _{wtch} -DR	NLOPS	2.5524(3)	0.044	0.5249(2)	0.032	0.4683(2)	0.032
$hvq + ST_{wtch} - DS$	NLOPS	56.859(8)	0.988	16.398(6)	1.006	14.667(6)	1.002
$hvq + ST_{wtch} - DR$	NLOPS	56.892(8)	0.988	16.475(6)	1.011	14.780(6)	1.010

• Impact of tWcontribution: ~ 5 %

• Semi-leptonic channel $pp \rightarrow e^+ \nu_e \, jj \, b\bar{b}$

[Jezo, Lindert and Pozzorini, JHEP10 (2023) 008]

	bb41-sl	hvq+ST _{wtch} -DS	hvq+ST _{wtch} -DR
$t \to W b$ and $W \to q \bar{q}'$ decays	NLO+PS	LO+PS	LO+PS
tWb production	NLO+PS	LO+PS	LO+PS
$t\bar{t}$ - tW interference	NLO+PS		LO+PS
off-shell effects	NLO+PS	approx.	approx.
non-resonant contributions	NLO+PS		

Comparison against on-shell $t\bar{t} + tW$ generators \rightarrow integrated level

		inclusive phase space		$e^+\nu_e$	$e^+\nu_e bbjj$ fiduc		ial phase space	
				R =	0.5	R =	0.2	
		$\sigma[{ m pb}]$	$\frac{\sigma}{\sigma_{\tt bb41-s1}^{\rm NLOPS}}$	$\sigma[\mathrm{pb}]$	$\frac{\sigma}{\sigma_{\rm bb41-s1}^{\rm NLOPS}}$	$\sigma[\mathrm{pb}]$	$\frac{\sigma}{\sigma_{\rm bb41-s1}^{\rm NLOPS}}$	
bb41-sl	NLOPS	57.56(2)	1	16.30(1)	1	14.639(9)	1	
bb41-sl	LHE	57.56(2)	1	16.33(1)	1.002	17.17(1)	1.173	
hvq	NLOPS	54.340(9)	0.944	15.910(6)	0.976	14.244(6)	0.973	
ST _{wtch} -DS	NLOPS	2.5194(3)	0.044	0.4877(2)	0.030	0.4232(2)	0.029	
ST_{wtch} -DR	NLOPS	2.5524(3)	0.044	0.5249(2)	0.032	0.4683(2)	0.032	
$\mathtt{hvq} + \mathtt{ST}_{\mathtt{wtch}} \mathtt{-} \mathtt{DS}$	NLOPS	56.859(8)	0.988	16.398(6)	1.006	14.667(6)	1.002	
$hvq + ST_{wtch} - DR$	NLOPS	56.892(8)	0.988	16.475(6)	1.011	14.780(6)	1.010	

- Impact of tWcontribution: ~ 5 %
- Small $t\overline{t} tW$ interference

• Semi-leptonic channel $pp \rightarrow e^+ \nu_e \, jj \, b\bar{b}$

[Jezo, Lindert and Pozzorini, JHEP10 (2023) 008]

	bb41-sl	hvq+ST _{wtch} -DS	hvq+ST _{wtch} -DR
$t \to W b$ and $W \to q \bar{q}'$ decays	NLO+PS	LO+PS	LO+PS
tWb production	NLO+PS	LO+PS	LO+PS
$t\bar{t}$ - tW interference	NLO+PS		LO+PS
off-shell effects	NLO+PS	approx.	approx.
non-resonant contributions	NLO+PS		

Comparison against on-shell $t\bar{t} + tW$ generators \rightarrow integrated level

		inclusive phase space		$e^+\nu_e$	$e^+\nu_e bbjj$ fiducial phase space		ace
				R =	0.5	R =	0.2
		$\sigma[\mathrm{pb}]$	$\frac{\sigma}{\sigma_{\rm bb41-s1}^{\rm NLOPS}}$	$\sigma[\mathrm{pb}]$	$\frac{\sigma}{\sigma_{\rm bb41-s1}^{\rm NLOPS}}$	$\sigma[\mathrm{pb}]$	$\frac{\sigma}{\sigma_{\rm bb41-s1}^{\rm NLOPS}}$
bb41-sl	NLOPS	57.56(2)	1	16.30(1)	1	14.639(9)	1
bb41-sl	LHE	57.56(2)	1	16.33(1)	1.002	17.17(1)	1.173
hvq	NLOPS	54.340(9)	0.944	15.910(6)	0.976	14.244(6)	0.973
ST_{wtch} -DS	NLOPS	2.5194(3)	0.044	0.4877(2)	0.030	0.4232(2)	0.029
ST_{wtch} -DR	NLOPS	2.5524(3)	0.044	0.5249(2)	0.032	0.4683(2)	0.032
$hvq + ST_{wtch} - DS$	NLOPS	56.859(8)	0.988	16.398(6)	1.006	14.667(6)	1.002
$hvq + ST_{wtch} - DR$	NLOPS	56.892(8)	0.988	16.475(6)	1.011	14.780(6)	1.010

- Impact of tWcontribution: ~ 5 %
- Small $t\overline{t} tW$ interference
- $t\overline{t} + tW$ accurate at $\sim 1\%$

 $\hookrightarrow \text{ using MEC}$

• Semi-leptonic channel $pp \rightarrow e^+ \nu_e \, jj \, b\bar{b}$

[Jezo, Lindert and Pozzorini, JHEP10 (2023) 008]

Comparison against on-shell $t\bar{t} + tW$ generators \rightarrow differential level

- Inverse-width expansion
- \hookrightarrow removes "spurious" terms $\mathcal{O}(\alpha_s)$
- $\mathcal{O}(\alpha_s)$ effects numerically larger than tW:

 $\stackrel{\bullet}{\to} \left. \frac{\sigma_{\rm bb41-s1}}{\sigma_{\rm hvq+ST}} \right|_{\rm no \ 1/\Gamma_t \ expansion} = 1.074$

$$d\sigma_{\rm NWA}^{\rm NLO_{exp}} = \left(\prod_{r \in \mathscr{R}} \frac{\Gamma_{r,\rm NLO}}{\Gamma_{r,0}}\right) \left[d\sigma_{\rm NWA}^{\rm NLO} - \left(\sum_{r \in \mathscr{R}} \frac{\Gamma_{r,1}}{\Gamma_{r,0}}\right) d\sigma_{\rm NWA}^{(0)} \right]$$
$$d\sigma_{\rm off-shell}^{\rm NLO_{exp}} \equiv \left(\prod_{r \in \mathscr{R}} \frac{\Gamma_{r,\rm NLO}}{\Gamma_{r,0}}\right) \left[d\sigma_{\rm off-shell}^{\rm NLO} - \left(\sum_{r \in \mathscr{R}} \frac{\Gamma_{r,1}}{\Gamma_{r,0}}\right) d\sigma_{\rm off-shell}^{(0)} \right]$$

Full off-shell vs NWA (double res.)

• Di-lepton channel $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b}$

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

		,	,
Modelling	$\sigma^{\rm NLO}$ [fb]	$\delta_{\rm scale}$ [fb]	$rac{\sigma^{ m NLO}}{\sigma^{ m NLO}_{ m NWA_{full}}} - 1$
Off-shell	13.22(2)	$+2.65 (20\%) \\ -2.96 (22\%)$	+0.5%
$\mathrm{NWA}_{\mathrm{full}}$	13.16(1)	$+2.61 (20\%) \\ -2.93 (22\%)$	_
$\rm NWA_{\rm LOdec}$	13.22(1)	+3.77 (29%) -3.31 (25%)	+0.5%
NWA_{prod}	13.01(1)	$+2.58 (20\%) \\ -2.89 (22\%)$	-1.1%
$\mathrm{NWA}_{\mathrm{prod},\mathrm{exp}}$	12.25(1)	$+2.87 (23\%) \\ -2.86 (23\%)$	-6.9%
$\rm NWA_{\rm prod,LOdec}$	13.11(1)	+3.74 (29%) -3.28 (25%)	-0.4%

NWA predictions based on different accuracies in top decay modelling

Full off-shell vs NWA (double res.)

• Di-lepton channel $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b}$

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

			,
Modelling	$\sigma^{\rm NLO}$ [fb]	$\delta_{\rm scale}$ [fb]	$rac{\sigma^{ m NLO}}{\sigma^{ m NLO}_{ m NWA_{full}}} - 1$
Off-shell	13.22(2)	$+2.65 (20\%) \\ -2.96 (22\%)$	+0.5%
$\mathrm{NWA}_{\mathrm{full}}$	13.16(1)	$+2.61 (20\%) \\ -2.93 (22\%)$	_
NWA_{LOdec}	13.22(1)	+3.77 (29%) -3.31 (25%)	+0.5%
$\mathrm{NWA}_{\mathrm{prod}}$	13.01(1)	+2.58 (20%) -2.89 (22%)	-1.1%
$NW\!A_{prod,exp}$	12.25(1)	$+2.87 (23\%) \\ -2.86 (23\%)$	-6.9%
$\mathrm{NWA}_{\mathrm{prod},\mathrm{LOdec}}$	13.11(1)	+3.74 (29%) -3.28 (25%)	-0.4%

• Genuine off-shell effects:

+0.5 %

Full off-shell vs NWA (double res.)

• Di-lepton channel $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b}$

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

			,
Modelling	$\sigma^{ m NLO}$ [fb]	$\delta_{\rm scale}$ [fb]	$rac{\sigma^{ m NLO}}{\sigma^{ m NLO}_{ m NWA_{full}}} - 1$
Off-shell	13.22(2)	$+2.65 (20\%) \\ -2.96 (22\%)$	+0.5%
$\mathrm{NWA}_{\mathrm{full}}$	13.16(1)	$^{+2.61}_{-2.93}$ (20%)	-
$\mathrm{NWA}_{\mathrm{LOdec}}$	13.22(1)	+3.77 (29%) -3.31 (25%)	+0.5%
NWA_{prod}	13.01(1)	$+2.58 (20\%) \\ -2.89 (22\%)$	-1.1%
$\rm NWA_{\rm prod,exp}$	12.25(1)	$^{+2.87}_{-2.86}$ (23%)	-6.9%
$\mathrm{NWA}_{\mathrm{prod},\mathrm{LOdec}}$	13.11(1)	$+3.74~(29\%)\ -3.28~(25\%)$	-0.4%

 Impact of QCD corrections to decays: -7 %

Full off-shell vs NWA (double res.)

• Di-lepton channel $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b}$

[GB, Bi, Hartanto, Kraus, Lupattelli and Worek, Phys. Rev. D (107) 2023]

		× ×	/
Modelling	$\sigma^{\rm NLO}$ [fb]	$\delta_{\rm scale}$ [fb]	$rac{\sigma^{ m NLO}}{\sigma^{ m NLO}_{ m NWA_{full}}} - 1$
Off-shell	13.22(2)	$+2.65 (20\%) \\ -2.96 (22\%)$	+0.5%
$\mathrm{NWA}_{\mathrm{full}}$	13.16(1)	$^{+2.61}_{-2.93}$ (20%)	_
$\rm NWA_{\rm LOdec}$	13.22(1)	+3.77 (29%) -3.31 (25%)	+0.5%
NWA_{prod}	13.01(1)	+2.58 (20%) -2.89 (22%)	-1.1%
$NW\!A_{prod,exp}$	12.25(1)	$+2.87 (23\%) \\ -2.86 (23\%)$	-6.9%
$\rm NW\!A_{\rm prod,LOdec}$	13.11(1)	+3.74 (29%) -3.28 (25%)	-0.4%

• Di-lepton channel [GB, Bi, Hartanto, Kraus, Lupattelli and Worek, <u>Phys. Rev. D (107) 2023</u>] $pp \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b}$

, Off-shell effects at sub-percent level for most observables used for precision SM studies Threshold observables (interesting for searches) are naturally more sensitive

G. Bevilacqua

SM@LHC 2024

Off-shell $t\bar{t}Z$ @ complete NLO

- Subleading effects (NLO_{2,3,4}) of the order of 1% at integrated level
- NLO₂ impacts up to -10% differentially \rightarrow EW Sudakov logs at work

See also talks by S. Schumann and A. Kulesza

On-shell $t\bar{t} + n\gamma$ @ complete NLO

- Dominant NLO_1 correction essential for precise predictions \hookrightarrow residual scale uncertaities \sim 6%
- Subleading effects (NLO $_{2,3,4}$) at the level of 1%

On-shell $t\bar{t} + n\gamma$ @ complete NLO

- NLO₂ enhanced up to -10% in tails of dimensionful observables
- Neglecting γ brehmstralung and subleading corrections in decays (\equiv NLO_{prd}) is accurate at 2%

On-shell tījj @ NLO QCD

• What's the impact of different resonant contributions on fiducial cross section?

On-shell tījj @ NLO QCD

G. Bevilacqua

On-shell tītī @ NLO QCD

• Precision $t\bar{t} + X$ phenomenology sets a number of theoretical challenges

- Perturbative accuracy
 Decay modelling
 PS matching & modelling
- Many interesting developments in recent times
 - Accurate predictions for inclusive $t\bar{t}$ production rates (aN³LO)
 - First NNLO QCD results for $t\bar{t}H$ and $t\bar{t}W$
 - Soft-gluon resummation for several $t\overline{t} + X$ channels
 - Full off-shell calculations, in some cases with complete NLO corrections
 - Improvements in PS matching: resonance-aware, MEC ...
- Off-shell computations for multi-leg processes are CPU intensive
 - Most of them are NLO fixed-order results \rightarrow parton level
 - Upgrading to NLO+PS accuracy is *computational* rather than *conceptual* problem

Thank you for your attention

Backup slides

Single-resonant production (tW)

• Beyond LO: overlapping $t\bar{t} \leftrightarrow tW(b)$

$$\Gamma_t/m_t \to 0$$

- Diagram Subtraction \rightarrow DS : $|A_{tWb}|_{DS}^2 = |A_{2t} + A_{1t}|^2 C_{2t}$
- Diagram Removal $\rightarrow DR_1 : |A_{tWb}|^2_{DR_1} = |A_{1t}|^2$ $DR_2 : |A_{tWb}|^2_{DR_2} = |A_{1t}|^2 + 2Re(A_{1t}A^*_{2t})$

Technical aspects of off-shell calculations

Number of Feynman diagrams
93452
88164
49000
25876
11372
3328
336
channel] 271528

Example: $gg \to e^+ \nu_e \,\mu^- \,\bar{\nu}_\mu \,b\bar{b} \,b\bar{b}$

Partonic Subprocess	Number of Feynman diagrams	Number of CS Dipoles	Number of NS Subtractions
$gg \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b} g$	41364	90	18
$q\bar{q} \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} b\bar{b} g$	9576	50	10
$gq \rightarrow e^+ \nu_e \mu^- \bar{\nu}_\mu b \bar{b} b \bar{b} q$	9576	50	10
$g\bar{q} \to e^+ \nu_e \mu^- \bar{\nu}_\mu b\bar{b} b\bar{b} \bar{q}$	9576	50	10

On-shell tīγγ@NLOQCD

• Interplay of resonant contributions:

[Stremmer and Worek, JHEP08 (2023) 179]

G. Bevilacqua