

ATLAS + CMS TOP
CROSS SECTIONSJoe BoudreauUniversity of PittsburghOn behalf of the ATLAS
and CMS collaborations.

WHY MEASURE $\bar{t}t$ & SINGLE TOP CROSS SECTIONS?

- Test QCD over a wide range of Q^2
- Constrain:
 - parton distribution functions in the proton (and heavy nuclei).
 - α_s and the top quark pole mass.
 - four-quark interactions at the $\overline{t}t$ and single top production vertices.
 - EFT parameters of the Wtb and $g\bar{t}t$ vertices in global fits.
 - supersymmetric models and other models of new physics.

7 AND 8 TEV *tt* CROSS SECTION

- Measurements using $e^{\pm}\mu^{\pm}$ using dilepton events from ATLAS, CMS at 8 TeV are the most precise.
- ATLAS/CMS combination achieves 25%(28%) reduction of uncertainty at 7 (8) TeV.
- Theory predictions depend on α_s and the PDF's

PDF set	$\sigma_{t\bar{t}} (\sqrt{s} = 7 \text{ TeV}) \text{ [pb]}$	$\sigma_{t\bar{t}} (\sqrt{s} = 8 \text{ TeV}) \text{ [pb]}$	<i>R</i> _{8/7}
CT14	$181.7 \stackrel{+10.6}{_{-10.3}}$	$258.9 {}^{+13.8}_{-14.3}$	$1.425 \substack{+0.007 \\ -0.008}$
MMHT14	$181.2^{+9.6}_{-10.3}$	$258.1 \stackrel{+12.8}{_{-14.1}}$	$1.424 \substack{+0.005 \\ -0.004}$
NNPDF3.1_a	$178.8 \stackrel{+7.8}{_{-8.8}}$	$255.3 \substack{+10.6 \\ -12.2}$	$1.428 \substack{+0.005 \\ -0.004}$

• Double-tag method:

 $N_1 = \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_b \left(1 - C_b\epsilon_b\right) + N_1^{bkg}$ $N_2 = \mathcal{L}\sigma_{t\bar{t}}\epsilon_{e\mu}C_b\epsilon_b^2 + N_2^{bkg}$

 $N_{1,2}$ event count, 1 or 2 b tags. \mathcal{L} luminosity $\epsilon_{e\mu}$ selection efficiency ϵ_b b-tag efficiency $N_{1,2}^{bkg}$ event count, bkg C_b : see JHEP 07 (2023) 213

 \rightarrow Extract $\sigma_{t\bar{t}}$ and ϵ_b .

- → ATLAS varying the nuisance parameters in Eur. Phys. J 74 (2014)3109
- → CMS profiling over nuisance parameters in JHEP 08 (2016) 029

SYSTEMATIC UNCERTAINTIES

Total uncertainties comparable beween ATLAS/CMS.

Both dominated by Luminosity uncertainty.

Uncertainty [%		unty [%]
Source	7 TeV	8 TeV
Trigger	1.3	1.2
Lepton (mis-)ID/isolation	1.5	1.5
Lepton energy scale	0.2	0.1
JES total	0.8	0.9
Jet energy resolution	0.1	0.1
<i>b</i> -jet ID	0.5	0.5
<i>b</i> -jet mis-ID	0.2	0.1
Pile-up	0.3	0.3
tW background	1.0	0.6
Drell–Yan background	1.4	1.3
Non- $e\mu t\bar{t}$	0.1	0.1
$t\bar{t}V$ background	0.1	0.1
Diboson background	0.2	0.6
W+jets/QCD background	0.1	0.2
$t\bar{t}$ scale choice	0.3	0.6
ME/PS matching	0.1	0.1
ME generator	0.4	0.5
Hadronisation (JES)	0.7	0.7
Top-quark $p_{\rm T}$ modelling	0.3	0.4
Colour reconnection	0.1	0.2
Underlying event	0.1	0.1
PDF	0.2	0.3
Integrated luminosity	2.2	2.6
Statistical	1.2	0.6
$t\bar{t}$ scale choice (extrapolation)	+0.1 -0.4	+0.2
ME/PS matching (extrapolation)	+0.1 -0.1	+0.3
Top-quark $p_{\rm T}$ (extrapolation)	+0.5 -0.3	+0.6 -0.3
PDF (extrapolation)	+0.1	+0.1 -0.1
Total uncertainty	+3.6 -3.5	+3.7 -3.5

ATLAS	Merged u	ncertainty [%]
Source	7 TeV	8 TeV
Trigger	0.2	0.2
Lepton (mis-)ID/isolation	0.9	0.8
Lepton energy scale	0.3	0.5
JES flavour composition/specific response	0.2	0.4
JES modelling	0.04	0.2
JES central/forward balance	0.03	0.1
JES pile-up	0.03	0.2
Other JES	0.03	0.2
Jet energy resolution	0.3	0.5
<i>b</i> -jet ID	0.4	0.4
<i>b</i> -jet mis-ID	0.02	0.02
tW background	0.8	0.8
Drell–Yan background	0.05	0.02
Diboson background	0.1	0.1
$t\bar{t}$ scale choice	0.3	0.3
$t\bar{t}$ generator modelling	1.4	1.2
PDF	1.0	1.1
Integrated luminosity	2.0	2.1
Statistical	1.7	0.7
Total uncertainty	3.5	3.2

COMBINED RESULTS

 $\sigma_{t\bar{t}} (\sqrt{s} = 7 \text{ TeV}) = 178.5 \pm 4.7 \text{ pb}$ $\sigma_{t\bar{t}} (\sqrt{s} = 8 \text{ TeV}) = 243.3^{+6.0}_{-5.9} \text{ pb},$

Correlation: $\rho = 41\%$

 $R_{8/7} = 1.363 \pm 0.015 \text{ (stat.)} \pm 0.028 \text{ (syst.)},$

PDF set	m_t^{pole}	$\alpha_{\rm s}(m_Z)$
	$(\alpha_{\rm s} = 0.118 \pm 0.001)$	$(m_t = 172.5 \pm 1.0 \text{ GeV})$
CT14	174.0 ^{+2.3} _{-2.3} GeV	$0.1161 \begin{array}{c} {}^{+0.0030}_{-0.0033}$
MMHT2014	174.0 ^{+2.1} _{-2.3} GeV	$0.1160 \begin{array}{c} ^{+0.0031}_{-0.0030}$
NNPDF3.1_a	173.4 ^{+1.8} _{-2.0} GeV	$0.1170 \begin{array}{c} ^{+0.0021}_{-0.0018}$

5, 20 fb^{-1}

7, 8 TeV

$t\bar{t}$ CROSS SECTION, 13 TEV, $e^{\pm}\mu^{\mp}$ EVENTS

• Event selection:

- Isolated electron, muon, and at least one b-tagged jet.
- The plot shows the number of b-tagged jets.
- Opposite sign eµ pairs in the second two bins of this distribution constitute the signal.
 - Backgrounds from single top, $Z \rightarrow \tau^+ \tau^-$, multijets
 - Background levels are 11% and 4% in these bins.
- Improvement of luminosity using Van der Meer scans
- ATLAS Run 2: $\Delta \mathcal{L}/\mathcal{L} = 0.83\%$
- CMS 2016: $\Delta L/L = 1.2\%$

ATLAS EXPERIMENT

Source of uncertainty	$\Delta\sigma_{t\bar{t}}^{\rm fid}/\sigma_{t\bar{t}}^{\rm fid}~[\%]$	$\Delta\sigma_{t\bar{t}}/\sigma_{t\bar{t}}~[\%]$
Data statistics	0.15	0.15
MC statistics	0.04	0.04
Matrix element	0.12	0.16
$h_{\rm damp}$ variation	0.01	0.01
Parton shower	0.08	0.22
$t\bar{t}$ + heavy flavour	0.34	0.34
Top $p_{\rm T}$ reweighting	0.19	0.58
Parton distribution functions	0.04	0.43
Initial-state radiation	0.11	0.37
Final-state radiation	0.29	0.35
Electron energy scale	0.10	0.10
Electron efficiency	0.37	0.37
Electron isolation (in situ)	0.51	0.51
Muon momentum scale	0.13	0.13
Muon reconstruction efficiency	0.35	0.35
Muon isolation (in situ)	0.33	0.33
Lepton trigger efficiency	0.05	0.05
Vertex association efficiency	0.03	0.03
Jet energy scale & resolution	0.10	0.10
b-tagging efficiency	0.07	0.07
$t\bar{t}/Wt$ interference	0.37	0.37
Wt cross-section	0.52	0.52
Diboson background	0.34	0.34
$t\bar{t}V$ and $t\bar{t}H$	0.03	0.03
Z + jets background	0.05	0.05
Misidentified leptons	0.32	0.32
Beam energy	0.23	0.23
Luminosity	0.93	0.93
Total uncertainty	1.6	1.8

13 TeV 140 fb⁻¹

RESULTS $e^{\pm}\mu^{\mp}$ **EVENTS**

- Fiducial cross section and inclusive cross sections at \sqrt{s} = 13 TeV
 - $\sigma_{\bar{t}t}^{fid} = 10.53 \pm 0.02 \text{(stat)} \pm 0.13 \text{(syst)} \pm 0.10 \text{(lumi)} \pm 0.02 \text{ (beam) } \mathbf{pb}$
 - $\sigma_{\bar{t}t} = 829 \pm 1$ (stat) ± 13 (syst) ± 8 (lumi) ± 2 (beam) pb
 - This is the most precise measurement at 13 TeV

- Normalized differential particlelevel cross sections in the variables p_T^{ℓ} , $|\eta^l|$, $m^{e\mu}$, $p_T^{e\mu}$, $|y^{e\mu}|$, $E^e + E^{\mu}$, $p_T^e + p_T^{\mu}$, and $|\Delta \phi^{e\mu}|$.
- Typical precision of 1%
- No single generator describes all distributions with prob > 1%.

DIFFERENTIAL DISTRIBUTIONS IN DILEPTON EVENTS WITH ADDITIONAL JETS

differential

More than 250 single and double differential cross sections are reported on at particle and parton level.

138 fb⁻¹

Tabulated data available in HEPData.

13 TeV

Observable is	Predicted at NLO to be
p_T of t and \overline{t} quarks	harder than
rapidity of t and \overline{t} quarks	more central than
mass of $t\bar{t}$ system	consistent with
rapidity of $t\overline{t}$ system	consistent with
p_T of $t\bar{t}$ system	inconsistent with
	the data

Cross section	<i>p</i> -values of χ^2 (in %)		
variables	POW+PYT (w. unc.)	FxFx+PYT	POW+HER
$p_{\mathrm{T}}(\mathrm{t})$	2 (10)	<1	51
$p_{\mathrm{T}}(\overline{\mathrm{t}})$	5 (16)	<1	41
y(t)	<1 (2)	<1	1
$y(\overline{t})$	<1 (<1)	<1	<1
$p_{\mathrm{T}}(\mathrm{t}\overline{\mathrm{t}})$	<1 (32)	<1	<1
$y(t\overline{t})$	51 (74)	7	73
$m(t\overline{t})$	56 (77)	30	70
$ \Delta\phi(t,\overline{t}) $	82 (97)	15	7
$ y(t) - y(\overline{t}) $	3 (22)	<1	6
$p_{\rm T}({\rm t})/m({\rm t}{\overline{ m t}})$	<1 (<1)	<1	3
$p_{\rm T}({\rm t}{\overline{ m t}})/m({ m t}{\overline{ m t}})$	3 (62)	<1	<1
$\log(\xi_1)$	9 (26)	3	15
$\log(\xi_2)$	24 (54)	<1	51

$t\bar{t}$ DIFFERENTIAL CROSS SECTIONS, LEPTON + JETS

- The lepton+jets channel allows full reconstruction of production and decay kinematics.
- Various approaches to "going differential" in $t\bar{t}$ production.
- Find the magic variable with sensitivity to parameter(s) of interest.
- Carry out multi-differential analyses.
- Slice the kinematics in multiple ways.
- CMS (Phys. Rev D 104 092013) and ATLAS (ATLAS-CONF-2023-068, plots on following slides) measure differential cross sections in tt events at 13 TeV.
- CMS: more that 250 figures showing differential distributions at the particle and parton level, compared to NLO and NNLO calculations. Also in HEPData.
- ATLAS compares kinematic quantities at particle level,
 - Focusing on jet variables,
 - In inclusive $t\bar{t}$ events
 - $t\bar{t}$ events with 1 extra jet
 - $t\bar{t}$ events with 2 extra jets
 - ...to NLO and NNLO [PRL 127 (2021) 062001] calculations.

NFX

ATLAS-CONF-2023-068

Normalized differential distributions, jets from W boson decay on the hadronic side, $t\bar{t}$ inclusive events compared to NLO simulation

- Example: transverse momentum up to 1.5 TeV, leading jet from W decay.
- Varies over five orders of magnitude.
- Only SHERPA gives a good description above 500 GeV

• Example: rapidity difference Δy between leading and subleading jet from W decay

Normalized differential distributions, jets from W boson decay on the hadronic side, $t\bar{t}$ inclusive events compared to NLO and NNLO simulation

• NNLO gives a more precise prediction and better agreement with the data..

• However shows discrepancy with the Δy distribution.

Normalized differential distributions, extra gluon jet, $t\bar{t} + l$ jet events compared to NLO simulation

- Varies over six orders of magnitude.
- POWHEG+PYTHIA8 gives poor description above 500 GeV

- Example: mass of the (top + jet) system
- Varies over five orders of magnitude

• Example: difference in azimuth $\Delta \phi$ between lepton from W and radiated jet.

Normalized differential distributions, extra gluon jet, $t\bar{t} + l$ jet events compared to NLO and NNLO simulation

- NNLO gives a more precise prediction and better agreement with the data..
- And one learns that gluon radiation tends to arise far from the lepton from W decay

TLAS-CONF-2023-068	$ar{t}t$ Diff cross sections ℓ +jets	13 TeV	140 fb ⁻¹

13.6 TeV

29 fb⁻¹

- Run 3 $\sigma(t\bar{t})$ at \sqrt{s} =13.6 TeV is the highest energy measurement of top quark pair production cross section.
- Theory expectation: increase of 12% in the cross section between 13 and 13.6 TeV.

 $\sigma(t\bar{t}) = 850 \pm 3(\text{stat}) \pm 18(\text{syst}) \pm 20(\text{lumi}) \text{ pb.}$ (ATLAS) $\sigma(t\bar{t}) = 881 \pm 23(\text{stat, syst}) \pm 20(\text{lumi}) \text{ pb.}$ (CMS, 1.21 fb⁻¹)

Cf. Theory: $\sigma(t\bar{t}) = 924^{+32}_{-40}$ pb

Phys. 1

	Category	Un	certainty	[%]
		$\sigma_{t\bar{t}}$	$\sigma^{\rm fid.}_{Z ightarrow \ell \ell}$	$R_{t\bar{t}/Z}$
tī	$t\bar{t}$ parton shower/hadronisation	0.9	< 0.2	0.9
	$t\bar{t}$ scale variations	0.4	< 0.2	0.4
	tī normalisation	-	< 0.2	-
	Top quark p_{T} reweighting	0.6	< 0.2	0.6
Z	Z scale variations	< 0.2	0.4	0.3
Bkg.	Single top modelling	0.6	< 0.2	0.6
	Diboson modelling	< 0.2	< 0.2	0.2
	tīV modelling	< 0.2	< 0.2	< 0.2
	Fake and non-prompt leptons	0.6	< 0.2	0.6
Lept.	Electron reconstruction	1.2	1.0	0.4
	Muon reconstruction	1.4	1.4	0.3
	Lepton trigger	0.4	0.4	0.4
Jets/tagging	Jet reconstruction	0.4	-	0.4
	Flavour tagging	0.4	-	0.3
	PDFs	0.5	< 0.2	0.5
	Pileup	0.7	0.8	< 0.2
	Luminosity	2.3	2.2	0.3
	Systematic uncertainty	3.2	2.8	1.8
	Statistical uncertainty	0.3	0.02	0.3
	Total uncertainty	3.2	2.8	1.9

The very precise $e^{\pm}\mu^{\mp}$ channel is used, the usual doublecounting technique applied.

Also the ratio $\sigma(t\bar{t})/\sigma(Z)$ is measured, in which systematic uncertainties due to luminosity measurement cancel.

 $R_{t\bar{t}/Z} = 1.145 \pm 0.03 (\text{stat}) \pm 0.021 (\text{syst}) \pm 0.002 (\text{lumi})$

Cf. Theory: $R_{t\bar{t}/Z} = 1.238^{+0.063}_{-0.071}$

RUN 2: $\sqrt{s} = 5.02$ TEV

- 302 pb⁻¹ of data at \sqrt{s} = 5 TeV was collected during Run 2.
- $q\bar{q}$ initiated events are 25% of the cross section (Cf. 11% at $\sqrt{s} = 13$ TeV)
- Expected cross section (NNLO+NNLL) $\sigma_{t\bar{t}} = 69.5^{+2.9}_{-3.1} \text{ pb}$
- This is a *low statistics* measurement; using only $e^{\pm}\mu^{\mp}$ events CMS selected: \rightarrow

New cross section measurement at 5 TeV from CMS: * uses lepton+jets (CMS-PAS-TOP-23-005) * combines with $e^{\pm}\mu^{\mp}$ (JHEP 04 (2022) 144)

Lepton+jets (CMS-PAS-TOP-23-005)

 $\sigma(t\bar{t}) = 61.4 \pm 1.6(\text{stat})^{+2.7}_{-2.6}(\text{syst}) \pm 1.2(\text{lumi}) \text{ pb}$

Combined with $e^{\pm}\mu^{\mp}$ from JHEP 04 (2022) 144

 $\sigma(t\bar{t}) = 61.2^{+1.6}_{-1.5}(\text{stat})^{+2.6}_{-2.3}(\text{syst}) \pm 1.2(\text{lumi}) \text{ pb}$

JHEP 04 (2022) 144

rocess	Event yield
W	8 ± 2
Nonprompt leptons	2 ± 1
OY	10 ± 4
VV	4 ± 1
Fotal background	24 ± 4
Ŧ	187 ± 9
Data	194

SUMMARY $\sigma(t\bar{t})$ VS. \sqrt{s}

ATLAS and CMS both provide measurements at 5, 7, 8, 13, and 13.6 TeV.

LHC Top working group combinations are published at 7 and 8 TeV

All measurements in agreement with the standard model. (The ATLAS measurement at 13.6 TeV is low by 1.5 sigma; CMS measurement at 5.02 by about 1.8 sigma).

Also noteworthy: measurement of $\sigma(t\bar{t})$ in p-Pb collisions at \sqrt{s} =8.16 TeV (both experiments).

ELECTROWEAK PRODUCTION OF SINGLE TOP QUARKS

- The production and decay is via the Wtb vertex
- Sensitive to V_{tb}

At 13 TeV:

- Cross section for *t*-channel production is 25% that of $t\bar{t}$
- for *tW* production is 10% that of $t\bar{t}$
- for s-channel production, 1.2% that of $t\bar{t}$
- Signals are noisier than for $t\bar{t}$, imposing data-driven estimation of W+jets, $t\bar{t}$ backgrounds

- t-channel production from up and down quarks leads to more top than antitop in this channel.
- This depends on the u/d quark fractions in the proton
- Wtb vertex mediates both the production and decay process
- Four quark interactions or extra Higgs couplings can also be lurking
- They are parameterized in EFT coefficients $C_{Qq}^{3,1}$ and $C_{\phi Q}^{3}$

t-CHANNEL CROSS SECTION @ 13 TEV

Data / Pred.

2 signal regions by lepton charge.

- 2 control regions defined by inverting the $E_T^{miss} > 30$ cut for:
- **Electrons in Barrel** •
- **Electrons in Endcap** • Event counts in these regions considered in fit.

2 control regions defined by inverting angular cut between jet and muon for:

Muons • $\Delta \phi(\mu, p_T^{miss})$ considered in fit.

$$\sigma(tq) = 137 \pm 8 \text{ pb}$$

 $\sigma(\bar{t}q) = 84^{+6}_{-5} \text{ pb}$

$$R_t = 1.636^{+0.036}_{-0.034}$$

$$\frac{x^{10^{2}}}{y^{2}}$$

(improved precision of 30%, relative to Run 1 ATLAS+CMS in JHEP 05 (2019) 088)

INTERPRETATION

Constrain PDF's (u/d ratio in proton)

Constrain CKM matrix elements V_{ts}, V_{td}, V_{tb}

t-channel XS

Limits on EFT coefficients $-0.37 < C_{Qq}^{3,1} < 0.06$ $-0.87 < C_{\phi Q}^{3} < 1.42$

arXiv:2403.02126

Summary, ATLAS & CMS measurement of t-channel production

LHC top working group summary plots

140

13

SINGLE TOP PRODUCTION, tW CHANNEL

JHEP 07 (2023) 046

- tW channel is not observed at the Tevatron
- Both strong and weak processes are involved.
- $\bar{t}t$ production interferes with the signal; two schemes may be employed to remove the effect:
 - Diagram removal (DR)
 - Diagram subtraction (DS)
- Alternately, study the $\overline{b}b\overline{\nu}\nu\ell^+\ell^-$ final state with all interference effects accounted for.

(Diagrams which are/ interfere with with $\bar{t}t$ production)

tw associated production at $\sqrt{s} = 13$ TeV

 $\sigma(tW) = 79.2 \pm 0.9(\text{stat})^{7.7}_{-8.0}(\text{syst}) \pm 1.2(\text{lumi}) \text{ pb}$ Cf. Theory $\sigma(tW) = 71.7 \pm 1.8(\text{scale}) \pm 3.4 (\alpha_{\text{S}}, \text{PDF}) \text{ pb} [aNNLO+aN^3LL]$

P-values for differential distributions:

Variable	PH DR + P8	PH DS + P8	PH DR + H7
Leading lepton $p_{\rm T}$	0.02	0.01	0.03
Jet $p_{\rm T}$	0.14	0.27	0.01
$\Delta arphi(\mathrm{e}^{\pm},\mu^{\mp})/\pi$	0.26	0.29	0.32
$p_z(\mathrm{e}^{\pm},\mu^{\mp},\mathrm{j})$	0.70	0.77	0.82
$m_{\rm T}({ m e}^{\pm},\mu^{\mp},{ m j},ec{p}_{ m T}^{ m miss})$	0.54	0.60	0.59
$m(e^{\pm},\mu^{\mp},j)$	0.03	0.02	0.28

HEP 07 (2023) 046	tw xs	13 TeV	138 fb ⁻¹
			24

Cl

 $\sigma(tW) = 84.1 \pm 2.1(\text{stat})^{+9.8}_{-10.2}(\text{syst}) \pm 3.3(\text{lumi}) \text{ pb}$ Cf. Theory $\sigma(tW) = 87.9^{+2.0}_{-1.9}(\text{scale}) \pm 2.4 \ (\alpha_{\text{S}}, \text{PDF}) \text{ pb} [aNNLO+aN^3LL]$

P-values for differential distributions:

Variable	PH DR + P8	PH DS + P8	PH DR + H7
Leading lepton $p_{\rm T}$	0.96	0.98	0.96
Jet $p_{\rm T}$	0.96	0.97	0.97
$\Delta arphi({ m e}^{\pm},\mu^{\mp})/\pi$	0.94	0.94	0.93
$p_z(\mathbf{e}^{\pm}, \mu^{\mp}, j)$	0.96	0.96	0.96
$m_{\rm T}({ m e}^{\pm},\mu^{\mp},j,ec{p}_{ m T}^{ m miss})$	0.78	0.75	0.79
$m(\mathbf{e}^{\pm},\mu^{\mp},j)$	0.95	0.93	0.95

MS-PAS-TOP-23-008	tW XS	13.6 TeV	34.7 fb ⁻¹	
			25	

S-CHANNEL ELECTROWEAK PRODUCTION

- Low expected cross section at LHC ($\sigma^{SM} = 10.32^{+0.40}_{-0.36}$ pb @ 13 TeV)
 - Anomalies could indicate W', b' or H⁺ production or modified couplings
- But favorable conditions at the Tevatron led to observation in 2014 [Phys. Rev. Lett. **112** (2014) 231803]
- Previously measured at $\sqrt{s}=7$ TeV(CMS), 8 TeV (CMS, ATLAS)
- At 13 TeV, ATLAS measures the cross section using the lepton+jets final state
 - Main backgrounds are $\bar{t}t$ and W+jets
 - A Matrix Element based discriminant is used to separate signal (based on calculable probability densities)
 - Normalization of the W+jets background and $t\bar{t}$ background is determined from control regions.

CROSS SECTION MEASUREMENT:

Discriminent is based on likelihood for process $H_{proc} \in \{\text{signal}, \overline{t}t, W+\text{jets}\},\$ conditional on final state particle kinematic quantities X, those being p_T and η

$$\mathcal{P}(X \mid H_{\text{proc}}) = \int d\Phi \frac{1}{\sigma_{H_{\text{proc}}}} \frac{d\sigma_{H_{\text{proc}}}}{d\Phi} T_{H_{\text{proc}}}(X \mid \Phi) .$$

Parton-level cross sections
$$d\sigma/d\Theta$$
 from analytic calculation.
Transfer functions T from simulation
Computed for signal, top and W+jets backgrounds.
The likelihood ratio is used as the discriminant, $P(S|X)$

 $\sigma = 8.2^{+3.5}_{-2.9} \, {\rm pb}$

Cf. NLO Prediction

 $\sigma = 10.32^{+0.40}_{-0.36} \, \mathrm{pb}$

SUMMARY OF SINGLE TOP QUARK PRODUCTION CROSS SECTIONS

LHC top working group summary plots

and ATL-PHYS-PUB-2024-006

New point from ATLAS@ 5 TeV, arXiv:2310.01518

CONCLUSIONS

- Cross section measurements of $t\bar{t}$ and single top t, tW, and s-channel production have been carried out at 5, 7, 8, 13, and 13.6 GeV in pp collisions and also p-Pb collisions at 8 TeV.
- These measurements are in agreement with the standard model.
 - Uncertainties of less than 2% have been obtained, thanks to improvements in lumi measurement.
 - Dominant uncertainty is still luminosity, whose error has reached sub-percent level.
 - Differential measurements indicate softer p_T distributions than NNLO predictions
- The most common interpretation of these results is in terms of $\alpha_s(M_Z)$, the top quark pole mass m_T^{pole} , and PDF parameters (for strong production of $t\bar{t}$).
- Single top production measures $|f_{LV}V_{tb}|$ (for electroweak production of single top), with further interpretation in terms of EFT coefficients, CKM matrix elements, fourquark interactions.
- Top production cross sections in p Pb collisions are described in ATLAS-CONF-2023-063 and in Phys. Rev. Lett. 119 (2017) 242001

TABLE OF CONTENTS

Experiment	Reference	Description	Energy [TeV]	$\int \mathcal{L} dt [\mathbf{f}\mathbf{b}^{-1}]$	Slide #
ATLAS, CMS, TOP WG	JHEP 07 (2023) 213	$ar{t}t$ XS, ATLAS CMS combination	7, 8	5, 20	3-5
ATLAS	JHEP 07 (2023) 141	$ar{t}t$ XS, dileption, differential	13	140	6-7
CMS	arXiv:2402.08486	$ar{t}t$ XS, dileption, differential	13	138	8
ATLAS	ATLAS-CONF-2023-068	$ar{t}t$ Diff cross sections ℓ +jets	13	140	10-13
ATLAS	Phys. Lett. B 848 (2024) 138376	$(\bar{t}t \text{ XS}) / (\text{Z XS})$	13.6	29	14
CMS	CMS-PAS-TOP-23-005	$ar{t}t$ XS	5.02	0.302	15
ATLAS,CMS	ATLAS-CONF-2023-063; Phys. Rev. Lett. 119 (2017) 242001	$ar{t}t$ XS, PB collisions	8.16	165×10 ⁻⁶ 174×10 ⁻⁶ P+Pb	15
ATLAS	arXiv:2403.02126	t-channel XS	13	140	19-20
ATLAS	arXiv:2310.01518	t-channel XS	5.02	0.255	28
CMS	JHEP 07 (2023) 046	tW XS	13	138	22,24
CMS	CMS-PAS-TOP-23-008	tW XS	13.6	34.7	23,25
ATLAS	JHEP 06 (2023)191	s-channel	13	139	26

BACKUP

DIGRESSION ON LUMINOSITY MEASUREMENT

- ATLAS uses LUCID II detector,
 - charge-integrating Cerenkov light detector 17m from IP
 - active material is the quartz fibers and the quartz photomultiplier windows.
 - Gain monitored with ²⁰⁷Bi sources for stability of relative luminosity measurement
 - The Run 2 Luminosity error is 0.83%. Cf. 1.9% (8 TeV)

- CMS uses HF
 - Hadronic Forward
 Calorimeter
 - Steel w/ quartz fibers.
- And Pixel detector, Pixel
 Luminosity Telescope, and Fast
 Beam Conditions Monitor.
- Run 2 Luminosity of 1.2% precision achieved (Cf. 1.9% at 8 TeV)

Eur Phys. J. C. 81 (2021) 800

• However stability issues, and beam-beam interactions may increase this to over 2%.

DTs

Pixe

PLT & BCM1F Absolute luminosity determined through *Vandermeer scans* at low lumi.

Differential and double-differential cross sections in lepton+jets mode.

Parton level comparisons include POWHEG (NLO) and MATRIX (NNLO) w / significantly smaller

Phys. Rev D 104 09201

WHAT CAN BE DONE WITH THIS WEALTH OF INFORMATION?

Lepton+jets mode, 35.9 fb⁻¹ of data at 13 TeV. Eur. Phys. J. C. 80 (2020) 658

Double and triple-differential cross sections are analyzed.

From the triple-differential cross section in the variables $M(t\bar{t}), y(t\bar{t})$, and N_{jets} CMS determines

- $\alpha_s(M_Z) = 0.1135^{+0.0021}_{-0.0017}$
- $m_t^{pole} = 170.5 \pm 0.8 \text{ GeV}$

High precision extractions

In CMS's Phys. Rev. D 104 (2021) 092013 (previous page), such interpretations are left to the theoretical community.

MULTIJET BACKGROUND DETERMINATION

Multijet backgrounds estimated using

- "jet-electron" MC-based method for electrons.
- "anti—muon" data-based method for muons.
- Fits to E_T^{miss} (electron) or m_T^W (muon) used to set normalization.
- ← Shown for all four regions for electrons
 Shown for signal region only for muons →
- Most bkg is removed by cuts.

