STATE-OF-THE-ART PREDICTIONS FOR TT+H/TT+W/(TT+Z)

ANNA KULESZA (UNIVERSITY OF MÜNSTER)

STANDARD MODEL AT THE LHC, 08.05.2024, ROME

ASSOCIATED TTBAR PRODUCTION

Top Quark Production Cross Section Measurements

Status: April 2024

Some of the heaviest signatures measured at the LHC!

ASSOCIATED TTBAR PRODUCTION

Status: April 2024

Top Quark Production Cross Section Measurements

ттн

see also talks by M. Schröder, M. Grazzini and T. Vitos

ASSOCIATED HIGGS PRODUCTION WITH TOP QUARKS

- Direct probe of the strength of the top-Yukawa coupling without making any assumptions regarding its nature
- Yukawa coupling proportional to mass -> top-Higgs is the strongest interaction of the Yukawa type between fundamental SM particles
- Far-reaching consequences: stability of our Universe
- HL-LHC: expected 3-4% precision for the top-quark Yukawa coupling determination

A BRIEF HISTORY OF TTH THEORY

- NLO QCD available > 20 years [Beenakker, Dittmaier, Krämer, Plumper, Spira, Zerwas '01-'02][Reina, Dawson'01][Reina, Dawson, Wackeroth'02][Dawson,Orr,Reina,Wackeroth'03] [Dawson, Jackson, Orr, Reina, Wackeroth'03]
- NLO matched with parton showers [Garzelli, Kardos, Papadopoulos, Trocsanyi'11] [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli'11] [Hartanto, Jäger, Reina, Wackeroth'15] [Maltoni, Pagani, Tsinikos'15] [Pagani, Vitos, Zaro'23]
- QCD and EW@NLO [Frixione, Hirschi, Pagani,Shao,Zaro'14-'15][Zhang, Ma, Zhang, Chen, Guo'14][Biedermann, Bräuer, Denner, Pellen, Schumann, Thompson'17]
- Off-shell effects at NLO QCD [Denner, Feger'15] [Stremmer, Worek'21] and EW [Denner, Lang, Pellen, Uccirati'16]
- NNLL+NLO resummation in direct QCD [AK, Motyka, Stebel, Theeuwes'15], [AK, Motyka, Stebel, Theeuwes'17] [AK, Motyka, Schwartländer, Stebel, Theeuwes'20] [Ju and Yang'19] and in SCET [Broggio, Ferroglia, Pecjak, Signer, Yang'15] [Broggio, Ferroglia, Pecjak, Yang'16] [Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos'19]

NNLO ADVANCES: TTH

- Off-diagonal partonic channels [Catani, Fabre, Grazzini, Kallweit'21]
- Coefficients of the two-loop infrared singularities [Chen, Ma, Wang, Yang, Ye'22]
- Soft Higgs approximation [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini'22]

- Full computation using the q_T subtraction
 framework, apart from the two-loop amplitude
- Two-loop contribution estimated using the soft Higgs approximation: in the limit p_H → 0, m_H ≪ m_t, Higgs emission is factorized out, in analogy to soft gluon emission
- Two-loop contributions provide ~1% of the NNLO cross section, introducing O(+/- 0.6%) systematic error on NNLO
- A% correction from NNLO QCD at 13 TeV + reduction of scale uncertainties

A. Kulesza, State-of-the-art predictions for ttX

NNLO ADVANCES: TTH

- **Off-diagonal partonic channels** [*Catani, Fabre, Grazzini, Kallweit*'21]
- Coefficients of the two-loop infrared singularities [Chen, Ma, Wang, Yang, Ye'22]
- Soft Higgs approximation [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini'22]
- Analytic results for two-loop master integrals with a light-quark loop in the leading colour approximation [Febres Cordero, Figueiredo, Kraus, Page, Reina '23]
- Semi-numerical calculation of the $gg \rightarrow ttH$ one-loop amplitude to to $O(\varepsilon^2)$ [Buccioni, Kreer, Liu, Tancredi '23]
- **Two-loop amplitudes in the high-energy (boosted) limit,** $|s_{ij}| \gg m_t^2$ [Wang, Xia, Yang, Ye'24]
- Numerical results for the N_f part of the two-loop $qqbar \rightarrow ttH$ virtual amplitude [Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson'24]

2-LOOP FOR TTH FRONTIER

- N_f part of the two-loop qq → ttH virtual amplitude [Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson'24]
 - Numerical reduction to master integrals for individual phasespace points, as well as master integral evaluation
 - Proof of concept for calculation of two-loop pentagon amplitudes with internal massive propagators and three massive particles in the final state

0.2

0.4

 B^2

TTH@NNLO+NNLL

[Balsach, AK, Motyka, Stebel]

The precision of the fixed-order predictions can be further improved by matching the NNLO cross section [Catani, Devoto, Grazzini, Kallweit, Mazzitelli, Savoini'22] with NNLL soft gluon resummation [AK, Motyka, Stebel, Theeuwes'17]

In addition to NNLO, logarithmic terms of the form $\alpha_s^n \left(\frac{\log^m (1-\hat{\rho})}{1-\hat{\rho}}\right)_+$; $\hat{\rho} = Q^2/\hat{s}$ are accounted for

 $d\sigma^{\mathrm{N(N)LO}+\mathrm{NNLL}} = d\sigma^{\mathrm{N(N)LO}} + d\sigma^{\mathrm{NNLL}} - d\sigma^{\mathrm{NNLL}}|_{\mathrm{N(N)LO}}$

TTH@NNLO+NNLL

Comparison with the NNLL+NNLO result based on SCET [Broggio, Ferroglia, Pecjak, Yang'16] within the framework of the ttH LHCHWG subgroup

- Two very different frameworks: perturbative "full" theory (QCD) vs effective theory (SCET)
- Analytical formulas agree at NNLL
- ➤ Different subsets of subleading terms are included beyond NNLL → small numerical differences
- Results for central scale choices agree within a few permille

[NNLL dQCD: Balsach, AK, Motyka, Stebel] [NNLL SCET: Broggio, Ferroglia, Pecjak] [NNLO: Devoto, Grazzini, Kallweit, Mazzitelli, Savoini]

TTH@NNLO+NNLL

- Combination of the (NNLO+)NNLL results obtained in direct QCD and in SCET
 - Central value taken as average of the central values in the two approaches
 - Uncertainties determined from the envelope over the dQCD and SCET scale variation error bands
 - In this way, the uncertainties do not only account for scale variation, but also for O(N³LL) intrinsic differences between the two formalisms

[NNLL dQCD: Balsach, AK, Motyka, Stebel] [NNLL SCET: Broggio, Ferroglia, Pecjak] [NNLO: Devoto, Grazzini, Kallweit, Mazzitelli, Savoini]

SM@LHC, Rome, 08.10.24

TTW

- Probe of top-quark couplings to EW bosons
- Sensitive to BSM contributions (SUSY, BSM Higgs, vector-like quarks, heavy top quark partners, extra dimensions, ..)
- Dominant backgrounds to searches and SM precision measurements (*ttH* included)
- Additional handle on the top charge asymmetry at the LHC [Maltoni, Mangano, Tsinikos, Zaro,'14]
- A lot of interest due to tension between theory and data, both in direct and indirect (ttH, 4t) measurements

ATLAS-CONF-2023-019

THEORY FOR TTW OVER THE YEARS

- NLO QCD production and decay [Campbell, Ellis'12]
- NLO interfaced to parton showers [Garzelli, Kardos, Papadopoulos, Trocsanyi'12][Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattalaer, Shao Stelzer, Torrieli, Zaro,'14] [Maltoni, Mangano, Tsinikos, Zaro'14] [Maltoni, Pagani, Tsinikos'15]
- EW corrections [Frixione, Hirschi, Pagani, Shao, Zaro'14-15][Dror, Farina, Salvioni, Serra'16][Frederix, Pagani, Zaro'18], with matching to parton showers [Frederix, Tsinikos'20] [Febres Cordero, Kraus, Reina'21] and jet merging [von Buddenbrock, Ruiz, Mellado'20][Frederix, Tsinikos'21]
- NNLL+NLO resummation [Li, Li, Li'14], [Broggio, Ferroglia, Ossola, Pecjak'16] [AK, Motyka, Schwartländer, Stebel, Theeuwes'18] [Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos'19] [AK, Motyka, Schwartländer, Stebel, Theeuwes'20]
- Off-shell effects at NLO QCD [Bevilacqua, Bi, Hartanto, Kraus, Worek'20][Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek'21] [Denner, Pelliccioli'20] [Bevilacqua, Bi, Febres Cordero, Hartanto, Kraus, Nasufi, Reina, Worek'22] and together with NLO EW [Denner, Pelliccioli'21]

TTW@NNLO

[Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, Savoini'23]

- Full computation in the q_T subtraction framework, apart from the two-loop amplitude
- Two approximations used to estimate the twoloop contributions:
 - soft W approximation (p_W small, $m_W \ll m_t$), two-loop ttbar as input
 - massification procedure (m_t << Q_{ttw}), twoloop W+4 parton as input
- Two-loop contributions provide 6-7% of the NNLO cross section, translating into O(+/- 2%) systematic error on NNLO
- 15% correction from NNLO QCD
- Additional 5% correction from NLO EW

TTW@NNLO

[Buonocore, Devoto, Grazzini, Kallweit, Mazzitelli, Rottoli, Savoini'23]

- Full computation in the q_T subtraction framework, apart from the two-loop amplitude
- Two approximations used to estimate the twoloop contributions:
 - soft W approximation (p_w small, m_w « m_t), two-loop ttbar as input
 - massification procedure (m_t << Q_{ttw}), twoloop W+4 parton as input
- Two-loop contributions provide 6-7% of the NNLO cross section, translating into O(+/- 2%) systematic error on NNLO
- 15% correction from NNLO QCD
- Additional 5% correction from NLO EW

A. Kulesza, State-of-the-art predictions for ttX

TOP DECAYS IN TTW

[Frederix, Gellersen, Nasufi'24]

Resolving incompatibility between matrix element corrections (MEC) in PYTHIA8 and 7 aMC@NLO-style matching enables to account, through MEC, for decay of tops at NLO in the **PYTHIA shower**

2-3% correction to the integrated fiducial cross

SM@LHC, Rome, 08.10.24

TTZ

- NLO QCD [Lazopoulos, Melnikov, Petriello'07] [Lazopoulos, McElmurry, Melnikov, Petriello'08] [Kardos, Trocsanyi, Papadopoulos'12] with decays at NLO [Roentsch, Schulze'14-'15]
- NLO interfaced to parton showers [Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattalaer, Shao Stelzer, Torrieli, Zaro,'14] [Maltoni, Pagani, Tsinikos'15] [Garzelli, Kardos, Papadopoulos, Trocsanyi'11-12][Ghezzi, Jaeger, Chavez, Reina, Wackeroth'15]
- EW corrections [Frixione, Hirschi, Pagani,Shao,Zaro'15][Frederix, Frixione, Hirschi, Pagani, Shao, Zaro'18]
- NNLL resummation [AK, Motyka, Schwartländer, Stebel, Theeuwes'18-'20]][Broggio, Ferroglia, Ossola, Pecjak, Samoshima'17]
- Off-shell effects at NLO QCD [Bevilacqua, Hartanto, Kraus, Weber, Worek'19][Bevilacqua, Bi, Hartanto, Kraus, Nasufi, Worek'22] and NLO EW [Denner, Lombardi, Pelliccioli'23]

TTZ ON SHELL

[AK, Motyka, Schwartländer, Stebel, Theeuwes'18-'20]

NLO(QCD+EW) +NNLL resummation

TTZ ON SHELL

[AK, Motyka, Schwartländer, Stebel, Theeuwes'20]

NLO(QCD+EW) +NNLL resummation, also for differential distributions

TTZ OFF-SHELL

[Denner, Lombardi, Pelliccioli'23]

First calculation of the off-shell production of a top-antitop pair in association with a Z boson in the multilepton decay channel accurate both at NLO QCD and NLO EW (full matrix elements)

At the inclusive level, subleading LO and NLO corrections amount to less than 1%

4 TOPS

see also talk by Tae Jeong Kim

4 TOPS THEORY

- First calculations of NLO QCD corrections in [Bevilacqua, Worek'12]
- Matched with parton shower and studied in aMC@NLO [Alwall et al. '14][Maltoni, Pagani, Tsinikos'15]
- Full set of EW corrections added in [Frederix, Pagani, Zaro'17]
- Spin correlations in LO top quark decays within the framework of Powheg Box

[Jezo, Krauss'21]

ATLAS, 2303.15061:

$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+6.6}_{-5.5} \text{ fb}$$

CMS, 2305.13439:
 $\sigma(t\bar{t}t\bar{t}) = 17.7^{+44}_{-4.0} \text{ fb}$

4 TOPS

On-shell production:

4 TOPS

QCD only \sqrt{s} (TeV) NLO NLO+NLL NLO+NLL' $K_{NLL'}$ $11.00(2)^{+25.2\%}_{-24.5\%}$ fb $11.46(2)^{+21.3\%}_{-17.7\%}$ fb $12.73(2)^{+4.1\%}_{-11.8\%}$ 1.16 13 \mathbf{fb} NLO(QCD+EW)+NLL NLO(QCD+EW)+NLL' $K_{NLL'}$ \sqrt{s} (TeV) NLO(QCD+EW) $12.10(2)^{+19.5\%}_{-16.3\%}$ fb +3.6%1311.64(2)13.37(2)1.1511.4%14 **Reduction** of the 7 scale error by more 12 than a factor of 2 $\sigma_{t\bar{t}t\bar{t}}$ (fb) 10 7 15 % correction to 8 the NLO (QCD+EW) 6 prediction due to LUXged plus PDF4LHC15 nnlo 100, $\sqrt{s} = 13$ TeV NLL' resummation \bar{N} -resummed, $m_t = 172.5$ GeV, $\mu_0 = 2m_t$, 7-point scale uncertainty 4 NIO*NIL NIO+NIL NIO CHILIN NILO Q

On-shell production: 7

[van Beekveld, AK, Moreno Valero'22]

A. Kulesza, State-of-the-art predictions for ttX

TOP DECAY@NLO; 4 TOPS

[Dimitrakopoulos, Worek'24]

NLO QCD corrections to 4t production and decay in the 4 lepton channel in the NWA

 $pp \to t\bar{t}t\bar{t} + X \to W^+W^-W^+W^-b\bar{b}b\bar{b} + X \to \ell^+\nu_\ell\,\ell^-\bar{\nu}_\ell\,\,\ell^+\nu_\ell\,\ell^-\bar{\nu}_\ell\,b\bar{b}b\bar{b} + X$

NLO corrections to top decay impact both the size of the cross section and their scale uncertainties

- Differentially, for the majority of observables, stable and moderate corrections, similar to the integrated ones
- Apart from observables sensitive to additional jet radiation

Integrated fiducial cross sections

SUMMARY

- Ongoing progress on increasing accuracy of the fixed-order predictions to NNLO -> two-loop virtual contributions; proof-of-concept calculations emerging
- ttH, ttW cross-sections (amplitudes) for on-shell production available at NNLO in the soft Higgs/soft W+massification approximations
- ttH: further improvement of theoretical precision achieved with NNLL resummation, very good agreement at NNLO+NNLL between two independent calculations; NNLL (+NLO) results for ttZ also available
- ttH, ttW, ttZ: off-shell effects calculated at NLO, including EW effects

NNLL FOR TTW

[AK, Motyka, Schwartländer, Stebel, Theeuwes'18-20']

 NNLL resummation provides only a moderate correction: only qq̄ initial channel at LO

	μ_0	NLO[fb]	NLO+NNLL[fb]	$K_{\rm NNLL}$
$t\bar{t}W$	Q	$512^{+12.5\%}_{-11.1\%}$	$541^{+8.9\%}_{-8.4\%}$	1.06
	H_T	$539^{+13.0\%}_{-11.3\%}$	$562^{+9.6\%}_{-8.5\%}$	1.04
	Q/2	$577^{+12.5\%}_{-11.1\%}$	$590^{+10.0\%}_{-8.5\%}$	1.02
	$H_T/2$	$609^{+13.0\%}_{-11.5\%}$	$616^{+11.2\%}_{-8.8\%}$	1.01
	M/2	$656^{+13.2\%}_{-11.7\%}$	$659^{+13.3\%}_{-9.8\%}$	1.00