ttW/ttZ/ttγ Measurements (ATLAS+CMS)

Jonathan Jamieson, University of Glasgow on behalf of the ATLAS and CMS collaborations

We are moving towards the era of precision rare processes

- Multiple rare ttX processes accessible at the LHC
- Unresolved tensions exist with SM predictions
- Window into top-quark EWK couplings
- Highly sensitive to EFT operators
- Important backgrounds for SM/BSM processes
- Increasingly precise measurements with growing LHC datasets

ATL-PHYS-PUB-2024-006

q

Important background to SM/BSM processes ($t\bar{t}t\bar{t}$, $t\bar{t}H$, SS dilepton)

Previous results show tension with SM but systematics limited

Very sensitive to higher order **QCD/EWK** corrections

ttw common strategy

- 2 lepton (same-sign) + 3 lepton (1 opposite-sign) channels
- Combined likelihood fit with targeted background-rich control regions
- Inclusive cross-section + W⁺/W⁻ cross-section ratio

- Neural network fit for 2-lepton signal extraction
- Dedicated data control regions to improve background estimates

(accepted by JHEP)

J. Jamieson - SM@LHC 2024 - Rome - 08/05/2024

- Significant reduction in non-prompt backgrounds
- First differential ttW cross-section measurement in ATLAS
- Comparison to NNLO prediction

ttW inclusive cross-section

<u>JHEP 07 (2023) 219</u>

- Neural network event classification in 2*l* same-sign channel
- Separate $t\bar{t}W$, $t\bar{t}Z+t\bar{t}H$, $t\bar{t}\gamma^*$, and non-prompt

- Split 3*l* channel by lepton charge sum,
 N_{jets}, and N_{b-jets}
- Fit $m(3\ell)$ for each subcategory in final fit

ttW inclusive cross-section

JHEP 07 (2023) 219 Significantly reduced uncertainties w.r.t previous measurement (~7.5% total uncertainty) • Dominant uncertainty: $t\bar{t}H$ normalisation Cross-sections are consistent with SM but tension remains $\sigma_{t\bar{t}W} = 868 \pm 40 \text{ (stat)} \pm 51 \text{ (syst) fb}$ 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) CMS -2Δ In L CMS EPJC 80 (2020) 428 Observed Measurement 7 6 JHEP 11 (2021) 029 JHEP 11 (2021) 29 Stat. unc 68% CL Total unc.

Source	Uncertainty [%]
Experimental uncertainties	
Integrated luminosity	1.9
b tagging efficiency	1.6
Trigger efficiency	1.2
Pileup reweighting	1.0
L1 inefficiency	0.7
Jet energy scale	0.6
Jet energy resolution	0.4
Lepton selection efficiency	0.4
Background uncertainties	
ttH normalization	2.6
Charge misidentification	1.6
Nonprompt leptons	1.3
VVV normalization	1.2
tTVV normalization	1.2
Conversions normalization	0.7
t $\bar{t}\gamma$ normalization	0.6
ZZ normalization	0.6
Other normalizations	0.5
ttZ normalization	0.3
WZ normalization	0.2
tZq normalization	0.2
tHq normalization	0.2
Modeling uncertainties	
tīW scale	1.8
tŦW color reconnection	1.0
ISR & FSR scale for t T W	0.8
$t\bar{t}\gamma$ scale	0.4
VVV scale	0.3
tīH scale	0.2
Conversions	0.2
Simulation statistical uncertainty	1.8
Total systematic uncertainty	5.8

<u>ttw common strategy</u>

- 2 lepton (same-sign) + 3 lepton (1 opposite-sign) channels
- Combined likelihood fit with targeted background-rich control regions
- Inclusive cross-section + W⁺/W⁻ cross-section ratio

arXiv:2401.05299

ttW inclusive cross-section

- Combined fit: 48 ($2\ell SS$) + 8 (3ℓ) signal regions and 10 background-enriched control regions

- Split channels by lepton charge sum, lepton flavour, N_{jets}, and N_{b-jets}
- Additional dedicated BDTs for lepton isolation and incorrect electron charge assignment
- Significant reduction in non-prompt lepton
 background from heavy flavour decays w.r.t CMS

Data / Prec

ttW inclusive cross-section

ATLAS

arXiv:2401.05299

- Inclusive XS compared to CMS and stat-of-the-art NNLO prediction: <u>Rev. Lett. 131, 231901 (2023)</u>
- Dominant uncertainty: ttW modelling (different treatment w.r.t CMS)
- Experimental results in good agreement

- Tension with SM prediction remains (~ 1.6σ)

 $\sigma_{t\bar{t}W}^{CMS} = 868 \pm 40 \text{ (stat)} \pm 51 \text{ (syst) fb}$

ATLAS - this result **ATLAS CMS** (JHEP 07 (2023) 219) √s = 13 TeV, 140 fb⁻¹ Stat. + Syst. Stat. only NLO+NNLL Sherpa - FxFx NNLO 500 400 600 800 700 900 1000 $\sigma(t\bar{t}W)$ [fb]

 $\sigma_{t\bar{t}W}^{ATLAS} = 880 \pm 50 \text{ (stat)} \pm 70 \text{ (syst) fb}$

 σ NNLO(QCD)+NLO(EWK) = 745 ± 50 (scale) ± 13 (2-loop approx.) ± 19 (PDF, α_s) fb

ttW differential cross-section

- First differential cross-section measurement in tt̄W final state in ATLAS!
- Combined fit: 2 ($2\ell SS$) + 6 (3ℓ) signal regions, using profile likelihood unfolding
- $\mbox{ Differential in } N_{jets}, H_T,$ and angular variables
- Measurements statistically limited
- Overall excess in differential observables
 consistent with inclusive cross-section

Relative charge asymmetry

JHEP 07 (2023) 219

arXiv:2401.05299

- Both experiments measure $\sigma(t\bar{t}W^+)$ and $\sigma(t\bar{t}W^-)$ separately
- Can extract relative charge asymmetry
- Measurements consistent with NNLO
 SM prediction
- CMS measures smaller central value

 $A_C^{\text{rel}}(\text{ATLAS}) = 0.33 \pm 0.05 \text{ (stat)} \pm 0.02 \text{ (syst)}$

 $A_C^{\text{rel}}(\text{CMS}) = 0.23 \pm 0.03 \text{ (stat)} \pm 0.03 \text{ (syst)}$

MS

Important background to SM/BSM
 processes (tttt, ttH, tZ, SS trilepton)

 Constrain EWK parameters and BSM models through tZ coupling

 Sensitive to spin correlation and EFT operators

ttZ common strategy

- Target 2/3/4 lepton channels
- Combined likelihood fit with targeted background-rich control regions
- $\mbox{ }$ EFT interpretation targeting tZ and 4-quark operators

ttZ, tWZ, tZq simultaneous
 cross-section measurement

(submitted to JHEP)

- Multiple differential observables
- EFT interpretation using differential variables
- Measure effect on tt spin correlation

tīZ inclusive cross-section

- Target 2,3, and 4 lepton (e, µ) channels, low statistics but high sensitivity
- Select events based on: N_{ℓ} , N_{i} , N_{b} , E_{T}^{miss}
- Separate signal from background using Neural networks
- Profile likelihood fit based on NN output (8 SR + 4 CR)
- Fit each channel separately and combined
- Good agreement with SM prediction
 (6.5% precision!)
- Dominant uncertainty: Background normalisation, jets

Eur. Phys. J. C 79 (2019) 249

ttZ differential cross-section

LAS

- Measure differential cross-sections unfolded to particle- and parton-level
- 17 observables across 3ℓ , 4ℓ and $3\ell + 4\ell$ channels
- Good agreement with NLO predictions across all variables
- Measurements are statistically limited
- Background normalisation and $t\overline{t}Z$ modelling also significant sources of uncertainty

ttZ Spin correlation

- Z-boson in production modifies expected spin correlation between top-quark pair
- First ever measurement of this effect at detector-level using template method:

 $O = \mathbf{f}_{\mathbf{SM}} \cdot O_{\mathbf{Spin-on}} + (1 - \mathbf{f}_{\mathbf{SM}}) \cdot O_{\mathbf{Spin-off}}$

- 9 angular observables (O) used as spin-sensitive variables
- $\ \$ For each observable extract scaling factor (f_{SM}) for spin-on and spin-off templates
- Spin-off hypothesis rejected at 1.8σ

Distribution	Channel	Expected values	Observed values
$\cos \varphi$	$3\ell + 4\ell$	$1^{+1.39}_{-1.38}$	$-0.09^{+1.34}_{-1.28}$
$\cos \theta_r^+ \cdot \cos \theta_r^-$	$3\ell + 4\ell$	$1^{+1.83}_{-1.82}$	$1.17^{+1.80}_{-1.76}$
$\cos \theta_k^+ \cdot \cos \theta_k^-$	$3\ell + 4\ell$	$1^{+1.78}_{-1.78}$	$1.39^{+1.72}_{-1.73}$
$\cos \theta_n^+ \cdot \cos \theta_n^-$	$3\ell + 4\ell$	$1^{+1.87}_{-1.86}$	$-1.05^{+2.06}_{-1.96}$
$\cos\theta_r^+ \cdot \cos\theta_k^- + \cos\theta_r^- \cdot \cos\theta_k^+$	$3\ell + 4\ell$	$1^{+1.93}_{-1.93}$	$0.36^{+1.99}_{-1.93}$
$\cos \theta_r^+$	$3\ell + 4\ell$	$1^{+1.81}_{-1.80}$	$1.56^{+1.86}_{-1.98}$
$\cos \theta_r^-$	$3\ell + 4\ell$	$1^{+1.82}_{-1.78}$	$1.81^{+1.63}_{-1.68}$
$\cos \theta_k^+$	$3\ell + 4\ell$	$1^{+1.69}_{-1.67}$	$2.00^{+1.65}_{-1.70}$
$\cos \theta_k^-$	$3\ell + 4\ell$	$1^{+1.68}_{-1.68}$	$2.31^{+1.68}_{-1.68}$

 $f_{SM}^{obs} = 1.20 \pm 0.63$ (stat) ± 0.25 (syst) $= 1.20 \pm 0.68$ (total)

ttZ common strategy

- Target 2/3/4 lepton channels
- Combined likelihood fit with targeted background-rich control regions
- $\mbox{ }$ EFT interpretation targeting tZ and 4-quark operators

- ► <u>CMS-PAS-TOP-23-004</u>
- Phys. Rev. D 108 (2023) 032008

- $t\bar{t}Z + t\bar{t}H$ EFT fits in boosted events
- ttZ, tWZ, tZq simultaneous
 cross-section measurement

- (submitted to JHEP)
- Multiple differential observables
- EFT interpretation using differential variables
- Measure effect on tt spin correlation

$t\bar{t}Z + t\bar{t}H$ Boosted cross-section

Phys. Rev. D 108 (2023) 032008

- One lepton (*e* or μ), One high-p_T jet (H/Z candidate), ≥ 2 b-tagged jets
- DNN to separate ttZ, ttH, and backgrounds
- Simultaneous profile likelihood fit to event yields in p_T and mass observables, and DNN output
- Extract 95% upper limits on differential cross-section for both $p_T(Z)$ and $p_T(H)$
- Measurements statistically limited

ttZ + ttH Boosted EFT measurements

Phys. Rev. D 108 (2023) 032008

- \blacktriangleright EFT effects grow strongly with p_T in both boosted topologies
- Combined fit to extract EFT limits on operators sensitive to tV, tH, and 4-quark couplings
- 95% CL limits in agreement with SM
- EFT limits consistent/competitive with most stringent existing limits

Bonus: Combined ttZ, tWZ, tZq XS

CMS-PAS-TOP-23-004

- First simultaneous measurement of ttZ + tWZ cross-section!
- Target 3 lepton channel with Z mass window
- DNN classifier to split events into $t\bar{t}Z + tWZ$, tZq, and backgrounds
- Add 4 lepton channel for inclusive measurement to enhance ttZ signal
- Combined XS in tension in SM (~ 2σ)

J. Jamieson - SM@LHC 2024 - Rome - 08/05/2024

- Direct probe of tγ electroweak coupling
- Main background for $tq\gamma$
- Sensitive to EFT operators $\begin{pmatrix} l^- \\ \overline{v} \\ \overline{v}$

ttγ **Production**

$t\bar{t}\gamma$ common strategy

- Combined likelihood fit with targeted background-rich control regions
- Fiducial $t\bar{t}\gamma$ cross section measurements at particle-level
- EFT interpretation targeting EWK dipole operators

Targets events from all production and decay processes
Combination with single-lepton

measurement

arXiv:2403.09452 (submitted to JHEP)

- Target $t\bar{t}\gamma$ production only for first time
- Measurements in single-lepton and dilepton channels
- ${\scriptstyle \textbf{F}}$ EFT combination with $t\overline{t}Z$

<u>ttγ common strategy</u>

- Combined likelihood fit with targeted background-rich control regions
- Fiducial measurement to capture contributions from production and decay processes
- EFT interpretation targeting EWK dipole operators

<u>JHEP</u>	05 ((2022)	091

arXiv:2403.09452 (submitted to JHEP)

- Targets events from all production and decay processes
 Combination with single-lepton measurement
- Target $t\bar{t}\gamma$ production only for first time
- Measurements in single-lepton and dilepton channels
- EFT combination with $t\bar{t}Z$

$t\bar{t}\gamma$ Inclusive cross-section

- Single-lepton and dilepton opposite-sign channels
- Target $t\bar{t}\gamma$ production-only processes to enhance $t\gamma$ coupling
- Single-lepton: **4-class NN** to separate: $t\bar{t}\gamma$ production, $t\bar{t}\gamma$ decay, fake-photon, and prompt-photon backgrounds
- Dilepton: Binary NN to separate signal from background
- Combined fit in single-lepton channel over 1 signal region and 3 control-regions from NN output and NN output in dilepton channel
- Dominant uncertainties: Signal modelling,
 background normalisation

$$\sigma_{\rm fid}(t\bar{t}\gamma \,{\rm production}) = 322 \pm 5 \,({\rm stat}) \pm 15 \,({\rm syst}) \,{\rm fb}$$

 $\sigma_{\rm SM}^{\rm NLO\ (2\to3)}(t\bar{t}\gamma \,\text{production}) = 299^{+29}_{-30}\,(\text{scale})^{+7}_{-4}\,(\text{PDF})\,\text{fb}$

MadGraph5_aMC@NLO (NLO production only)

$t\bar{t}\gamma$ Differential cross-section

- Differential cross-sections measured separately in both channels and combined
- Profile likelihood unfolding
- Measure XS in terms of kinematics and angular differences of leptons and jets in events
- Generally, good agreement with SM
- Reduced uncertainties in normalised fits due to systematic cancellations
- Statistically limited in most regions

$t\bar{t}\gamma$ EFT interpretation

- $\mbox{ }$ EFT interpretation using photon p_T
- $\mathchar`$ Limits on dipole operators C_{tB} and C_{tW}
- Rotate basis to extract C_{tZ} and $C_{t\gamma}$:

 $C_{tZ} = c_w \cdot C_{tW} - s_w \cdot C_{tB},$ $C_{t\gamma} = s_w \cdot C_{tW} + c_w \cdot C_{tB}.$

- EFT fit from simultaneous measurement of photon and Z p_T (arXiv: 2312.04450)
- $\mbox{-}$ Reduces independent limits on C_{tW}
- Combination resolves degenerate
 structure present in separate tt

 Z and tt
 γ
 results

_					
_	Wilson coefficient		95% CI (obs.) $t\bar{t}\gamma$	95% CI (obs.) $t\bar{t}\gamma + t\bar{t}Z$	Best-fit
$\Re[C_{tZ}]/\Lambda^{\epsilon}$ [IeV ^{-\epsilon}]	$\Re[C_{tW}]$	$O(\Lambda^{-4})$ (marg.)	[-1.2, 2.8]	[-1.2, 2.5]	1.73
		$O(\Lambda^{-4})$ (indep.)	[-0.74, 0.78]	[-0.56, 0.60]	0.01
	$\Im[C_{tW}]$	$O(\Lambda^{-4})$ (marg.)	[-1.7, 1.7]	[-1.8, 1.2]	-0.96
		$O(\Lambda^{-4})$ (indep.)	[-0.78, 0.76]	[-0.60, 0.58]	-0.01
	12.5 10.0 7.5 5.0 2.5 0.0	ATLAS $\sqrt{s} = 13 \text{ TeV}, 140 \text{ SMEFT } \Lambda = 1 \text{ TeV}$ $Re[C_{tZ}]$	$m[C_{tZ}]$	68% CI 95% CI Global n + Standan 68% CI 95% CI 68% CI 95% CI	(comb.) (comb.) mode rd Model $(t\bar{t}Z)$ $(t\bar{t}Z)$ $(t\bar{t}\gamma)$
	- - 	10 _5		5	 10
			Ū	৩ ড[<i>C₁</i> ァ]//	\² [TeV ⁻²]

Conclusion

- Wide array of $t\bar{t}X$ processes measured at both ATLAS and CMS!
 - More data and advanced analysis methods leading to more precise results!
- More stringent limits on new physics achieved through EFT combinations
 - Thus far bother experiments observe generally good agreement with SM
- Inclusive measurements now largely systematically limited
 - Differential results remain statistically limited Expect improvements in Run 3!

Backup

tt̄γ Differential/EFT interpretation

<u>JHEP 05 (2022) 091</u>

- Differential XS measured in terms of kinematics and angular differences of leptons and jets in events
- Use matrix inversion without regularisation to unfold
- Generally, good agreement with SM
- Predict smaller angles than measured, likely due to missing diagrams in LO prediction

- \blacktriangleright Probe EFT limits on operator affecting tZ vertex using photon p_T distribution
- Perform combined EFT fit with lepton+jets measurement (JHEP 12 (2021) 180)
- Most stringent bounds to-date on C_{tZ} and C_{tZ}^{I}

$$C_{tZ}$$
 (marg. 95%) = [-0.36,0.31]
 C_{tZ}^{I} (marg. 95%) = [-0.36,0.35]

