

ttbb+tttt measurements at the LHC ATLAS and CMS results

Tae Jeong Kim (Hanyang University) on behalf of ATLAS and CMS collaborations May 8 in 2024 for SM@LHC at Rome, Italy

ttbb cross section measurement

- $t\bar{t}bb$ is the main background for the $t\bar{t}H(bb)$ signature
- a good test of the NLO QCD theory
- Measurements of $t\bar{t}$ + heavy flavor are challenging
 - Huge combinatorics from multiple b-jets
 - Identification of b-jets origin: top quark, gluon splitting, Higgs, other?
 - large theory uncertainty due to the presence of two very different scales (top quark mass, b quark mass)

tībb process

- Which b jets? Need to identify two b jets at the generator level
- How do we find those b jets at the reconstruction level?
- Additional b jets can mean
 - Two b jets with the highest p_T targeting b jets from Higgs
 - Two b jets with the closest angle between them targeting b jets from gluon splitting
 - Two b jets not from a top quark

- more accurate and sensitive to modeling of gluon splitting
- **DNN** at the reconstruction level

Signal extraction

- Binned maximum-likelihood fitting to extract $t\bar{t}b, t\bar{t}c, t\bar{t}l$
- and acceptance
- Iterative Bayesian unfolding technique in ROOUNFOLD Package

JHEP 04 (2019) 046

Unfolded back to particle level by correcting detector resolution, efficiency

Template of third and fourth highest btagged jets in lepton+jets channel

Inclusive cross section measurement

- $t\bar{t}H$ and $t\bar{t}V$ contributions are subtracted to facilitate the comparison with theory lepton
- *eµ* channel shows more precise measurement
- Observed generally lower prediction than the measurements

JHEP 04 (2019) 046

Visible Phase Space

Differential cross section Extra b jets using the highest p_T b jets

JHEP 04 (2019) 046

• $\geq 6j$, $\geq 4b$ phase space: measurements are generally consistent with predictions

Differential cross section Extra b jets using the closest b jets

JHEP 04 (2019) 046

• $\geq 6i$, $\geq 4b$ phase space: measurements are generally consistent with predictions

DNN for additional b jets To identify b jet not from top quark in 6j4b category

- Combinations of four highest p_T b-jets : 6 combinations (6 output nodes)
- The highest output of the pair per event is selected : correct assignment of b-jets $\sim 49\%$

arXiv:2309.14442 Accepted in JHEP

• Jet specific variables (jet p_T , jet η , b-tag, m_{bl} , Δ_{bl}) for CNN+LSTM and global event variables (sum of jet p_T , b-tagged multiplicity, lepton specific variables, etc...) for Dense layers : both are connected later

Unfolding

arXiv:2309.14442

- b-jet multiplicity as Ancillary variables
 - Divide signal and background regions lacksquare
- Unfolded to the particle level by removing detector effect and acceptance
- Maximum likelihood fitting is performed

$$\begin{split} L(\vec{\mu}, \vec{\alpha}) &= \left[\prod_{e,i} \operatorname{Poi} \left(D_{e,i} \middle| S_{e,i}(\vec{\mu}, \vec{\alpha}) + \sum_{p \in \mathrm{bkg.}} N_{e,i}^p(\vec{\alpha}) \right) \right] \mathcal{N}(\vec{\alpha}) \\ S_{e,i}(\vec{\mu}, \vec{\alpha}) &= \mu_{\mathrm{fid}} \sum_{j=1}^n \mu_j M_{ij}^e(\vec{\alpha}) \\ & \text{i} = \mathrm{detector-level \ bin, \ j = generator-level \ M_{ij} \ is \ expected \ event \ using \ the \ response \\ \mu_{fid} = \mathrm{signal-strength \ modify \ for \ the \ i} \end{split}$$

 μ_i = parameters for the fraction of signal in each i bin

Inclusive cross section measurements

- 4 different phase spaces \bullet
- lacksquarevalue is higher than the prediction

arXiv:2309.14442

CMS Top Quark Summary Figures Full Phase Space

Differential cross section Extra b jets using the closest b jets

smaller angle than data

arXiv:2309.14442

• $\geq 6j$, $\geq 4b$ phase space: HERWIG tends to produce two additional b jets with

Differential cross section Additional b jets not from top quark

smaller angle than data

arXiv:2309.14442

• $\geq 6i$, $\geq 4b$ phase space: HERWIG tends to produce two additional b jets with

Four top searches

- Four top production is a very rare SM process
 - 12.0 ± 2.4 fb (NLO) <u>JHEP 02 (2018) 031</u>
 - $13.4^{1.0}_{-1.8}$ fb (NLO+NLĽ) <u>arXiv:2212.03259</u> (see the talk by Anna Kulesza)
- Probe of top-Higgs Yukawa coupling
- This process is the heaviest final state observed at the LHC
- Sensitive to new physics and effective field theory operator

Four top final states

- Four top quarks have large object multiplicity
 - 4 b quarks (jets) and the decay products of 4 W bosons
- Three different channels
 - All hadronic (0L)
 - background
 - signature
- Heavy use of machine learning techniques to maximize signal to background ratio
 - Boosted Decision Trees (BDT)
 - Graph Neural Networks (GNNs)

• Single lepton and opposite sign dilepton (1L, OSDL) : Large branching ratio and $t\bar{t}$

• Same-sign dilepton and multilepton (SSDL, ML) : smaller branching ratio and clean

Observation

First observation from ATLAS and CMS

- Re-analysis of Run 2 data for SSDL and ML channels
 - better lepton identification method
 - improved b-tagging
- Major improvements
 - GNN (ATLAS) and multiclass BDTs (CMS)
 - Better estimation of $t\bar{t}X$ backgrounds
 - Better handling the uncertainty on 3 tops

ATLAS : EPJC 83 (2023) 496 <u>CMS : PLB 847 (2023) 138290</u>

Background modeling (ATLAS) $t\bar{t}W$ modeling

- N_{jets} distributions are corrected using data (ATLAS)
 - R(j) = N(j + 1)/N(j), j is the jet multiplicity
 - Staircase scaling: $R(j) = a_0$ for high jet multiplicities
 - Poisson scaling: $R(j) = a_1/(1 + n)$, n is num. of additional jets
- 4 dedicated control regions to determine a_0 , a_1 , $2NF_{4iets}$
- Use the difference $N_+ N_-$ to validate $t\bar{t}W$

<i>ttW</i> background	a_0	a_1	NF _{tīv}
Value	0.51 ± 0.10	$0.22^{+0.25}_{-0.22}$	1.27

Signal extraction (ATLAS)

- Signal extraction
 - 4 control regions for $t\bar{t}W$ and 4 control regions for non-prompt and conversions background
 - Combines SSDL and ML events for signal region
 - \geq 6 jets, \geq 2 b jets, HT (Σ jet and lepton) > 500 GeV
 - Graph Neural Network (GNN) to separate signal from background
- Sensitivity: 6.1 σ observed (4.7 σ expected)
- Measured cross section: $22.5^{+4.7}_{-4.3}(\text{stat})^{+4.6}_{-3.4}(\text{syst})$ fb

ATLAS : EPJC 83 (2023) 496

Background estimation (CMS)

- $t\bar{t}W$ modeling: NLO QCD MC
 - Additional large uncertainty on $t\bar{t}W$ + jets (mis-modeling) additional (b) jets)
 - Free-floating normalization in fit
 - Postfit normalization: 990 ± 98 fb (compatible with CMS) measurement) <u>JHEP 07 (2023) 219</u>
 - Constrained by 2 control regions and multi-class BDT \bullet
- Z control regions (3 and 4 lepton channels)
 - $|m_{ll} m_Z| < 15 \, \text{GeV}$
 - Allow for free-floating $t\bar{t}Z$ normalization in fit
 - Postfit normalization: 945 ± 81 fb (compatible with CMS) measurement) EPJC 80 (2020) 428
 - Control over WZ & ZZ with additional (b) jets

Signal extraction (CMS)

- Signal extraction
 - 3 signal regions SSDL, 3L and 4 L
 - BDT multi-classification : $t\bar{t}t\bar{t}$, $t\bar{t}X$, $t\bar{t}$
 - SSDL : split into 3 different lepton flavors
- Sensitivity
 - 5.6 σ observed (4.9 σ expected)
- Measured cross section
 - $17.7^{+3.7}_{-3.5}(\text{stat})^{+2.3}_{-1.9}(\text{syst})$ fb ~ 24%

<u>CMS : PLB 847 (2023) 138290</u>

Four top summary

Interpretation

Limits on top-quark Yukawa coupling

 α = mixing angle between CP even and CP odd components

ATLAS : EPJC 83 (2023) 496 <u>CMS:EPJC 80 (2020) 75</u>

- Limits on EFT operators (ATLAS)
 - *tttt* is sensitive to four heavy fermion operators
 - probe the BSM models

$$\sigma_{t\bar{t}t\bar{t}\bar{t}} = \sigma_{t\bar{t}t\bar{t}}^{SM} + \frac{1}{\Lambda^2} \sum_i C_i \sigma_i^{(1)} + \frac{1}{\Lambda^4} \sum_{i \le j} C_i C_j \sigma_{i,j}^{(2)}$$

Operators	Expected C_i/Λ^2 [TeV ⁻²]	Observed C_i/Λ^2 [Te
O_{OO}^1	[-2.5, 3.2]	[-4.0, 4.5]
$O_{Ot}^{\tilde{1}\tilde{z}}$	[-2.6, 2.1]	[-3.8, 3.4]
$O_{tt}^{\widetilde{1}}$	[-1.2, 1.4]	[-1.9, 2.1]
O_{Qt}^8	[-4.3, 5.1]	[-6.9, 7.6]

Limits on four heavy flavor interpretation

Conclusion

- cross sections
 - mis-modeling due to only NLO in QCD or new physics
- Twice more data in Run 3 and more data-driven techniques can give us more information
- tttt
 - Differential measurement may be crucial in this approach

• For *ttbb* cross section measurements, generally predictions under-estimate

• Should make use of EFT approach for possible new physics for the $t\bar{t}bb$ and