Charm, y and ϕ_s at LHCb

Anna Lupato

on behalf of the LHCb Collaboration

Standard Model @ LHC 2024

Roma Consiglio nazionale delle ricerche May 7-10,2024

• The CKM matrix describes the quark charged current weak interactions

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta s} & |V_{tb}| \end{pmatrix}$$

• The unitarity of this matrix leads to

$$V_{ub}^* V_{ud} + V_{cb}^* V_{cd} + V_{tb}^* V_{td} = 0$$

- It can be visualized as a triangle in the complex plane
- The key test of the SM is the check of the unitarity of the CKM matrix
- A single complex phase in the CKM matrix is the only measured source of CP violation (CPV)
 - Not enough to explain the matter-antimatter asymmetry in the universe.
- B and D meson decays are a great laboratory to probe CP violation and to test the unitarity of CKM matrix

CPV in the Charm Sector

- Charm sector is an unique laboratory to study CPV in up-type quark decays
- CPV in charm is highly suppressed in the SM
 - beauty loop are suppressed by smallness of CKM elements

$$\frac{CPV}{CPV} \propto \mathrm{Im}\left(\frac{V_{cb}V_{bu}^*}{V_{cs}V_{su}^*}\right) \approx -6 \times 10^{-4}$$

- strange-down loops suppressed by GIM cancellation broken by *b* quark
- CPV in charm small O(10⁻⁴) \rightarrow sensitive to NP
- Theory predictions complicated by QCD effects, large and difficult to compute
- First observation of CPV in decay in $D^0 \rightarrow h^+h^-$ @LHCb(5.3 σ) [PRL122(2019)211803]
- First evidence for direct CP violation in specific D⁰ decays: [Phys. Rev. Lett. 131 (2023) 091802]
 - 3.8 σ in D⁰ \rightarrow $\pi^{-}\pi^{+}$
 - 1.4 σ in D⁰ \rightarrow K⁻k⁺

- $D^0 \rightarrow K^+\pi^-$ decays allows to simultaneously measure the mixing and all types of CPV.
- The SM prediction for the D⁰ mixing amplitude governed by two contributions:
 - Short distance: suppressed by CKM *b* coupling and **GIM** mechanism
 - Long distances: low energy QCD through on-shell resonances \rightarrow theoretical prediction of x and y very challenging
- Full run 2 LHCb analysis
- Time dependent analysis of $D^0 \rightarrow K^+\pi^-$ decays
- Reconstruct D^0 from $D^{*+} \rightarrow D^0 \pi^-$ decays •
- Distinguish two processes •
 - Wrong sign (WS)
 - Right sign (RS)

 π^+, K^+, \dots

$$D^{*+} \rightarrow D^{0} \pi_{s}^{+}$$
 $mix D^{0} CF WS$
 $D^{0} CF K^{+} \pi^{-}$
similar amplitudes

$$D^{*+} \rightarrow D^{0} \pi^{+}_{s} \xrightarrow{D^{0}} D^{0} \xrightarrow{RS} K^{-}\pi^{+}$$

[LHCb-PAPER-2024-008, in preparation]

Anna Lupato

normalization ch. dominated by CF

4

In order to reduce the dependence on the mixing and CPV quantities a time dependent fit of WS/RS yield is performed:

$$R^{+}_{K\pi}(t) \equiv \frac{\Gamma(D^{0}(t) \to K^{+}\pi^{-})}{\Gamma(\overline{D}^{0}(t) \to K^{+}\pi^{-})} \qquad \qquad R^{-}_{K\pi}(t) \equiv \frac{\Gamma(\overline{D}^{0}(t) \to K^{-}\pi^{+})}{\Gamma(D^{0}(t) \to K^{-}\pi^{+})}$$

• Since $x_{1,2}$ and $y_{1,2} \ll 1$ this ratio can be expanded as:

$$R_{K\pi}^{\pm}(t) = R_{K\pi}(1 \pm A_{K\pi}) + \sqrt{R_{K\pi}(1 \pm A_{K\pi})} (c_{K\pi} \pm \Delta c_{K\pi}) t/\tau_{D^0} + (c'_{K\pi} \pm \Delta c'_{K\pi}) (t/\tau_{D^0})^2$$

$$\begin{split} R_{K\pi} &= \frac{1}{2} \left(\left| \frac{A_{\bar{f}}}{\bar{A}_{\bar{f}}} \right|^2 + \left| \frac{\bar{A}_f}{A_f} \right|^2 \right), \\ A_{K\pi} &= \frac{\left| A_{\bar{f}} / \bar{A}_{\bar{f}} \right|^2 - \left| \bar{A}_f / A_f \right|^2}{\left| A_{\bar{f}} / \bar{A}_{\bar{f}} \right|^2 + \left| \bar{A}_f / A_f \right|^2} \approx a_{\text{DCS}}^d, \\ CPV \text{ in decay} \\ c_{K\pi} &\approx y_{12} \cos \phi_f^{\Gamma} \cos \Delta_f + x_{12} \cos \phi_f^M \sin \Delta_f, \\ \Delta c_{K\pi} &\approx x_{12} \sin \phi_f^M \cos \Delta_f - y_{12} \sin \phi_f^{\Gamma} \sin \Delta_f, \\ \Delta c_{K\pi} &\approx \frac{1}{4} \left(x_{12}^2 + y_{12}^2 \right), \\ \Delta c'_{K\pi} &\approx \frac{1}{2} x_{12} y_{12} \sin(\phi_f^M - \phi_f^{\Gamma}). \\ \Delta c'_{K\pi} &\approx \frac{1}{2} x_{12} y_{12} \sin(\phi_f^M - \phi_f^{\Gamma}). \\ \phi_2^M &\sim \arg(M_{12}), \phi_2^{\Gamma} \sim \arg(\Gamma_{12}) \quad y_{12} \equiv |\Gamma_{12}| / \Gamma \end{split}$$

- CP violation measurements
- A_{kπ}: rigorous null test of SM since c→uds doesn't receive any contribution from QCD nor chromomagnetic dipole operators
- Δ_f : improve the knowledge on $SU(3)_F$ breaking and rescattering effects at energy scale of the charm mass

SM @ LHC

Strategy

[LHCb-PAPER-2024-008]

- Sample is divided between
 - D⁰ final state (Κ⁻π⁺, K⁺π⁻),
 - 18 D^o decay-time intervals
 - 3 data-taking period (2015-16, 2017 and 2018)
- Extracted values:
 - average D⁰ decay time
 - WS-to-RS ratio, R, fitting D* mass to disentangle signal from combinatorial and ghost backgrounds
 - ghost backgrounds: misassociation of correctly-identified hits in VELO with hits in T-Stations from different particles)
- Correction them from the known systematic effects
 - bias to the ratio
 - bias to asymmetry
 - bias to D⁰ decay-time
- Experimental challenges:
 - Backgrounds
 - Nuisance asymmetry
- Time dependence is fitted \rightarrow extract mixing and CPV parameters

Biases

[LHCb-PAPER-2024-008]

- Bias of the decay time:
 - Poor D^{*} vertex resolution (1cm) → request to D^{*} to originate from primary vertex
 - \rightarrow contamination from secondary D^{\ast}
 - bias towards higher values
 - deformed D* shape

- Bias of charge asymmetry:
 - Originate by the differences in reconstruction efficiency between WS and RS, may mimic CPV

$$\widetilde{R'}^{\pm} = R'^{\pm} \frac{\int [1 \pm A_P(D^*)] \epsilon(\pi_s^{\pm}) \epsilon(K^{\pm} \pi^{\mp}) \rho \ d\vec{p}_{D^0} d\vec{p}_{\pi_s}}{\int [1 \mp A_P(D^*)] \epsilon(\pi_s^{\mp}) \epsilon(K^{\pm} \pi^{\mp}) \rho \ d\vec{p}_{D^0} \ d\vec{p}_{\pi_s}} \simeq R'^{\pm} \frac{1 \pm [A_D(\pi_s) + A_P(D^*)]}{1 \mp [A_D(\pi_s) + A_P(D^*)]}$$

- Determinated with $D^0 \rightarrow K^+K^-$ control mode
- To extract the raw asymmetry $D^{*\!-} \text{ and } D^{*\!+}$ are fitted simultaneously

$$\begin{array}{ll} A_{D}(\pi_{s}) + A_{P}(D^{*}) = A^{raw}(KK) - a_{KK}^{d} - \Delta Y \langle t \rangle \\ & & \\ &$$

Strategy

[LHCb-PAPER-2024-008]

- Sample is divided between
 - D⁰ final state (Κ⁻π⁺, K⁺π⁻),
 - 18 D^o decay-time intervals
 - 3 data-taking period (2015-16, 2017 and 2018)
- Extracted values:
 - average D⁰ decay time
 - WS-to-RS ratio, R, fitting D* mass to disentangle signal from combinatorial and ghost backgrounds
 - ghost backgrounds: misassociation of correctly-identified hits in VELO with hits in T-Stations from different particles)
- Correction them from the known systematic effects
 - bias to the ratio
 - bias to asymmetry
 - bias to D⁰ decay-time
- Experimental challenges:
 - Backgrounds
 - Nuisance asymmetry
- Time dependence is fitted \rightarrow extract mixing and CPV parameters

Results

• Bias of ratio:

[LHCb-PAPER-2024-008]

- due to the contamination of doubly misidentified D⁰ decays
- removal of common candidates from the sample of WS decays
- \rightarrow $D^{\scriptscriptstyle 0}$ candidates used to reconstruct both WS $D^{*_{+}} and$ RS $D^{*_{-}}$
 - RS D^{*} kept but this removes a small fraction of WS biasing the ratio
- A binned fit is performed simultaneously to D^{*} mass distribution of WS, RS and common ghost

The main systematic sources are D^* mass fit model and ghost bkg pdf 20% improvement on Φ_2^{M}

Parameters

$R_{K\pi}$	$(342.7 \pm 1.9) \times 10^{-5}$
$c_{K\pi}$	$(52.8 \pm 3.3) \times 10^{-4}$
$c'_{K\pi}$	$(12.0 \pm 3.5) \times 10^{-6}$
$A_{K\pi}$	$(-6.6 \pm 5.7) \times 10^{-3}$
$\Delta c_{K\pi}$	$(2.0 \pm 3.4) \times 10^{-4}$
$\Delta c'_{K\pi}$	$(-0.7 \pm 3.6) \times 10^{-6}$

- Run 1 and run 2 results compatibles 0 •
- Total uncertainty improved by 1.6 with respect Run 1 •
- No evidence CPV neither in decays, mixing nor interference •

-10

-20

2

SM @ LHC

Anna Lupato

6

 D^0 decay time / τ_{D^0}

CKM y angle

- γ is the phase difference between b–c and b–u quark transition
 - measurable in purely tree level o indirectly
 - negligible theoretical uncertainty $\sim 10^{-7}$ [Zupan & Brod 1308.5663]
 - current experimental uncertainty is $< 4^{\circ}$

- LHCb combination:
 - simultaneous fit of γ and D^0 mixing parameters

$$\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$
 [JHEP 12(2021)141]

y angle

- It is typically measured in B decays such as $B^{\pm} \rightarrow Dh^{\pm}$ (where $D = D^{0}$, $\overline{D^{0}}$ and h = K, π)
- Measurement technique depends on D-decay mode

 $|A(B^+)|^2 \propto A_D^2 + r_B^2 A_{\overline{D}}^2 + 2A_D A_{\overline{D}} r_B \cos(\delta_B + \gamma)$

 B^{\pm}

 $|A(B^{-})|^2 \propto A_D^2 + r_B^2 A_{\overline{D}}^2 + 2A_D A_{\overline{D}} r_B \cos(\delta_B - \gamma)$

• LHCb y measurements with multibody D decays

- $B^{\pm} \rightarrow D^{*}K^{\pm}$ (full reconstructed \rightarrow better control of backgrounds) [JHEP 12 (2023) 013]
- $B^{\pm} \rightarrow D^{*}K^{\pm}$ (partially reconstructed \rightarrow higher signal efficiency) [JHEP 02 (2024) 118] with $D^{*}\rightarrow D^{0} \pi$ or and $D^{0} \rightarrow K^{0}_{s} h^{+}h^{-}$
- The measurements are performed by analyzing the signal yields variation across the D decay phase space
 - They are independent of any amplitude model
 - direct measurement of D strong phase from BESIII and CLEO [JHEP05(2021)164]

y angle

LHCb

- Gain complementary info from $B^0 \rightarrow DK^*(892)^0$:
 - interference 3 times larger that for $B^{\pm} \rightarrow Dh^{\pm}$
- $\mathbf{B}^0 \rightarrow \mathbf{DK}^*(\mathbf{892})^0$ with $\mathbf{D} \rightarrow \mathbf{K}^0_s \mathbf{h}^+\mathbf{h}^-$ [Eur. Phys. J. C 84 (2024)
 - The γ angle is determined by examining the distributions of signal decays in phase space bins of $D^0{\rightarrow}K^0{}_{\rm s}~h^+h^-$

$$N_i(B^0) = h^{B^0} \left[F_{-i} + (x_+^2 + y_+^2)F_i + 2\kappa\sqrt{F_iF_{-i}}(x_+c_i - y_+s_i) \right]$$

$$x_{\pm} \equiv r_{B^0} \cos(\delta_{B^0} \pm \gamma)$$
$$y_{\pm} \equiv r_{B^0} \sin(\delta_{B^0} \pm \gamma)$$

• $B^0 \rightarrow D^0K^*(892)^0$ with the ADS and GLW D-decays final states [arXiv:2401.17934]

Candidates / (15.0 MeV/ c^2

160

140 -

120 -

100 -

20

5200

 $D \rightarrow K_S^0 \pi^+ \pi^-$

LHCb

 $9 \, {\rm fb}^{-1}$

5300

5400

5500

+

Data

Total

 $B^0 \rightarrow DK^{*0}$

 $B^{0} \rightarrow D\pi^{+}\pi^{-}$ $B^{+} \rightarrow DK^{+}$ Combinatorial

5600 5700 5800

 $m(DK^{*0})$ [MeV/ c^2]

- $\overline{B}^0_s \to DK^{*0}$

---- $B^0 \rightarrow D^* K^{*0}$

---- $\overline{B}^0_s \rightarrow D^* K^{*0}$

Fit to selected data through a simultaneous unbinned extended maximum-likelihood fit of the B^0 candidate reconstructed mass on each flavour of each D^0 final state

 Statistical precision on the CP-violating observables has improved by around 60% comparison to the previous results

Combination of the last two results Results from $D \rightarrow K^{0}{}_{s} h^{+}h$ broke the degeneracy

$$\gamma = (63.3 \pm 7.2)^{\circ}$$

 $r_{B^0}^{DK^*} = 0.233 \pm 0.016$
 $\delta_{B^0}^{DK^*} = (191.8 \pm 6.0)^{\circ}$

Decay-time dependent y measurement

- Measurement of CP asymmetry in $B_s^0 \rightarrow D_s^- K^+$ [LHCb-CONF-2023-004]
- With $D_s^- \rightarrow K^+\pi^+\pi^-$, $D_s^- \rightarrow K^-K^+\pi^-$, $D_s^- \rightarrow \pi^{-+}\pi^-\pi^-$
- Time dependent measurement of $\boldsymbol{\gamma}$

$$\begin{split} \Gamma\left(B_{s}^{0}(t) \rightarrow f/\bar{f}\right) &\sim e^{-\Gamma_{s}t} \left(\cosh\left(\frac{\Delta\Gamma_{s}}{2}t\right) + C_{ff\bar{f}}\cos\left(\Delta m_{s}t\right) + A_{ff\bar{f}}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma_{s}}{2}t\right) - S_{ff\bar{f}}\sin\left(\Delta m_{s}t\right)\right) \\ C_{f} &= C_{\bar{f}} = \frac{1 - r_{D_{s}K}^{2}}{1 + r_{D_{s}K}^{2}} \qquad A_{f}^{\Delta\Gamma} = \frac{-2r_{D_{s}K}\cos\left(\delta - (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad S_{f} = \frac{2r_{D_{s}K}\sin\left(\delta - (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \\ A_{\bar{f}}^{\Delta\Gamma} &= \frac{-2r_{D_{s}K}\cos\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \qquad S_{\bar{f}} = \frac{2r_{D_{s}K}\sin\left(\delta + (\gamma - 2\beta_{s})\right)}{1 + r_{D_{s}K}^{2}} \end{split}$$

- Simultaneous fit of all modes and run 2 years
- Two dimensional invariant mass fit: 20950±180 candidates

Decay-time dependent y measurement

• The decay time fit has to be corrected for:

[LHCb-CONF-2023-004]

To separate B_s^0 / \bar{B}_s^0 candidates \longrightarrow flavour-tagging

- · estimates initial flavour
- exploits various fragmentation processes
- MVA-based mistag probability

Decay-time resolution

- Finite decay-time resolution in the detector leads to a dilution of the observed oscillation
- The prompt sample of $D_s^-\pi^+$ was exploited

$$D_{res} \approx e^{-\frac{1}{2}\Delta m_s^2 \sigma^2}$$

Decay-time acceptance

- Decay-time distorted by selection requirements
- Heavily correlated with the CP observable D_f , $D_{ar{f}}$
- Acceptance fixed to $B^0 \to D_s^- \pi^+$ fit and corrected by the ratio of the decay-time acceptances of $D_s^- K^+$ and $D_s^- \pi^+$

Decay-time dependent y measurement

- External input: $\Delta \Gamma_s$, Γ_s , detection asymmetry
- Input from $B^0 \rightarrow D_s^- \pi^+$ [Nature Physics 18, (2022) 1-5]
 - Resolution calibration
 - Decay time acceptance
 - Tagging calibration
 - Production asymmetry
 - Δm_s
- External input: $\phi_s = -2\beta_s$ [arXiv:2308.01468]
- Significant CP violation in the interference (8.8σ)
- Measured CPV observables

Parameter	Value					
C_f	0.791	± 0.0	$061 \pm$	0.02	2	
$A_f^{\Delta\Gamma}$.	-0.051	± 0.1	$134 \pm$	0.03	7	
$A^{\Delta}_{ar{f}}$ ·	-0.303	± 0.1	$125 \pm$	0.03	6	
S_f' .	-0.571	± 0.0	$084 \pm$	0.02	3	
$S_{ar{f}}$.	-0.503	± 0.0	$084 \pm$	0.02	5	
Source		C_f	$A_f^{\Delta\Gamma}$	$A^{\Delta\Gamma}_{\bar{f}}$	S_f	$S_{\bar{f}}$
Δm_s		0.007	0.004	0.004	0.108	0.103
Detection asymmetry			0.079	0.083	0.006	0.007
Multivariate fit		0.045	0.095	0.121	0.088	0.112
Flavour tagging		0.256	0.026	0.028	0.012	0.070
Decay-time resolution model		0.195	0.002	0.003	0.058	0.167
Decay-time bias		0.062	0.027	0.046	0.188	0.167
Decay-time acceptance, Γ_s , $\Delta\Gamma_s$		0.006	0.225	0.231	0.003	0.003
Decay-time acceptance ratios		0.001	0.018	0.018		
Neglecting correlations		0.137	0.081	0.054	0.135	0.043
Total		0.358	0.273	0.285	0.278	0.294

- Compatible with run 1 @ 1.3σ

Combination between run 1 and run 2 ongoing

SM @ LHC

Measurement of ϕ_s in $B^0_s \rightarrow J/\psi K^+K^-$

[PRL132(2024)051802]

• B decays to CP eigenstates allow to probe the mixing phase $\beta_s = \phi_s/2$ through the interference between decays with and without mixing with a c- \overline{c} resonance in the final state.

$$\beta_s \equiv \arg\left[-(V_{ts}V_{tb}^*)/(V_{cs}V_{cb}^*)\right]$$

- Unique opportunity to LHC due to Lorentz boost in p-p collisions
- $B^{0}{}_{s} \rightarrow J/\psi K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$ channel,in the vicinity of $\varphi(1020)$ resonance
- Full run II analysis
- The data sample is divided in 48 independent subsamples:
 - 6 bins in the of invariant mass in the [990,1050] MeV/c²
 - 2 trigger categories,
 - 4 years of data taking
- Extended maximum likelihood fit to extract the signal yields

Measurement of ϕ_s in $B^0_s \rightarrow J/\psi K^+K^-$

[PRL132(2024)051802]

- To extract $\varphi_s,$ CP even and CP-odd decay amplitude need to be disentangled since they depend on angular momentum between J/ψ and the kaons pair

 \rightarrow A weighted simultaneous fit to decay time distribution and decays angles (cos θ_{K} , cos θ_{μ} , φ_{h}) in the helicity basis is performed

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ &$

- The fit function account for :
- Decay time resolution calibrated with prompt fake signals $\rightarrow~\sigma{\sim}~42 ps$
- Flavour tagging calibrated with $B^+ \rightarrow J/\psi K^+$ and $B_S \rightarrow D_s \pi^+ \rightarrow \epsilon \sim 4\%$
- Angular efficiencies

Measurement of ϕ_s in $B^0_s \rightarrow J/\psi K^+K^-$

Parameter	Values
$\phi_s \; [\mathrm{rad}]$	$-0.039 \pm 0.022 \pm 0.006$
$ \lambda $	$1.001 \pm 0.011 \pm 0.005$
$\Gamma_s - \Gamma_d \ [\mathrm{ps}^{-1}]$	$-0.0056 {}^{+ 0.0013}_{- 0.0015} \ \pm 0.0014$
$\Delta \Gamma_s \ [\mathrm{ps}^{-1}]$	$0.0845 \pm 0.0044 \pm 0.0024$
$\Delta m_s \; [{\rm ps}^{-1}]$	$17.743 \pm 0.033 \pm 0.009$
$ A_{\perp} ^2$	$0.2463 \pm 0.0023 \pm 0.0024$
$ A_0 ^2$	$0.5179 \pm 0.0017 \pm 0.0032$
$\delta_{\perp} - \delta_0 [\mathrm{rad}]$	$2.903 \ ^{+ \ 0.075}_{- \ 0.074} \ \pm 0.048$
$\delta_{\parallel} - \delta_0 \; [{ m rad}]$	$3.146 \pm 0.061 \pm 0.052$

- Most precise measurement to date and consistent with SM
- $|\lambda|$: consistent with no direct CPV
- $\Gamma_s \Gamma_d$: consistent with HQE expectation [JHEP12 (2017) 068]
- No polarization dependence
- Combination with run 1:

 $\phi_s = -0.044 \pm 0.020$ rad

 $|\lambda| = 0.990 \pm 0.010$

• LHCb combination:

 $\phi_s = -0.031 \pm 0.018$ rad

[PRL132(2024)051802]

[PRL 114 (2015) 041801.EPJC 79 (2019) 706, EPJC81 (2021) 1026] [PLB 736 (2014) 186, PLB 797 (2019) 134789, PLB 762 (2016) 253, PRL 113 (2014) 211801]

A lot of results are still being produced with LHCb Run1+Run2 sample

- World leading measurements of mixing phases of neutral B mesons
- New measurements of $B \rightarrow Dh$ decays continuously improving the constraints on the γ angle
- LHCb is still exploiting its enormous charm data sample to look for CP violation in this sector
 - No evidence of discrepancies is observed with respect to SM expectations
- LHCb Upgrade I is going to start to collect data with the potential to more than double its sample in the next two years
- Complementarity and cross-check with Belle II will be fundamental as well

Measurement of $\Delta \Gamma_s$ in $B^0_s \rightarrow J/\psi \pi^+\pi^-$ and $B^0_s \rightarrow J/\psi \eta'$

The decay-width difference between the light and heavy mass eigenstates

1

- $\Delta\Gamma_{s}$ can be determined from the decay-width difference between a CP-odd and a CP-even B⁰_s mode.
- If CP violation is negligible:

$$\Gamma(B_s^0(t) \to f) \propto e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + \eta_{CP} \sinh\left(\frac{\Delta\Gamma_s t}{2}\right) \right]$$

5500

5500

integrating over a time bin

N_{L(H):} CP-even(odd) modes

г

efficiency in each decay time bin

- 1st measurement using n' channel
- In agreement with the SM ٠

[LHCb-PAPER-2023-025]

SM @ LHC

Measurement of $sin(2\beta)$

- B decays to CP eigenstates allow to probe the mixing phase β through the interference between decays with and without mixing

re
$$\mathcal{A}^{CP}(t) = \frac{\Gamma(\overline{B}^0(t) \to f) - \Gamma(B^0(t) \to f)}{\Gamma(\overline{B}^0(t) \to f) + \Gamma(B^0(t) \to f)} = \frac{S\sin(\Delta m_d t) - C\cos(\Delta m_d t)}{\cosh(\frac{1}{2}\Delta\Gamma_d t) + \mathcal{A}_{\Delta\Gamma}\sinh(\frac{1}{2}\Delta\Gamma_d t)}$$

where

$$S = \sin(2\beta + \Delta\phi_d + \Delta\phi_d^{\rm NP})$$

• Decay channels: $B^0_s \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K^0_s$, $B^0_s \rightarrow \psi(2s)(\rightarrow \mu^+\mu^-)K^0_s$, $B^0_s \rightarrow J/\psi(\rightarrow e^+e^-)K^0_s$ with $K^0_s \rightarrow \pi\pi$

$$P(t,d,\eta) \propto \left[1 + d(1 - 2\omega^{+}(\eta))\right] P_{B^{0}}(t) + \left[1 + d(1 - 2\omega^{-}(\eta))\right] P_{\bar{B}^{0}}(t)$$

$$P_{B^{0}(\bar{B}^{0})}(t) \propto \left\{ (1 + A_{P})(1 + \Delta \epsilon_{tag})e^{-\Gamma_{d}t'}(1 + S)\sin(\Delta m_{d}t') \pm C\cos(\Delta m_{d}t')) \right\} \otimes R(t - t') \cdot \epsilon(t)$$

- Simultaneous fit of all channels
- Combination run2 and run1 data

$$\begin{split} S^{\text{Run } 1\&2}_{J/\psi K^0_{\text{S}}} &= 0.726 \pm 0.014 \, (\text{stat+syst}) \\ C^{\text{Run } 1\&2}_{J/\psi K^0_{\text{S}}} &= 0.010 \pm 0.012 \, (\text{stat+syst}) \end{split}$$

Most precise single measurement Agreement with CKMfitter predictions

[LHCb-PAPER-2023-013]

LHCb

- LHCb was originally designed for CP violation and rare beauty & charm decays
- But now it is a general purpose detector: *exotic spectroscopy, EW precision physics, heavy ions, fixed target program...*

- LHCb is a spectrometer in the forward direction $(2 < \eta < 5)$
- Excellent vertexing, tracking and particle identification
- Low trigger threshold on hadrons, muons and photons
- Production of all types of b and c hadrons

SM @ LHC