

Status of $|V_{ch}|$ determinations

Matteo Fael (CERN)

SM@LHC - Roma - 10 Maggio 2024

Funded by the European Union

Vub AND Vcb EXTRACTION

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

SPECTRAL MOMENTS

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

 $(O)^n - d\Phi$ 17

Cut: moments are measured with progressive cuts in E_l or q^2

$$= (p_{l} + p_{\nu})^{2} = q^{2}$$

= $(p_{B} - q)^{2} = M_{X}^{2}$
= $v_{B} \cdot p_{I} = E_{I}$

leptonic invariant mass

hadronic invariant mass

lepton energy

Q2 MOMENTS

$$\begin{aligned}
\partial O \\
\partial v_B &= 0 \\
\partial v_B &= 0 \\
\hline
\partial v_B &= 0 \\
\hline$$

decays to order $1/m_b^3$ Mannel, Milutin, Vos, hep-ph/2311.12002

10 instead of 19 HQE parameters

First new data since 2010!

Measurements of q^2 moments of inclusive $B \rightarrow X_c l^+ \nu_l$ decays with hadronic tagging Belle, Phys. Rev. D 104, 112011 (2022) Belle II, Phys. Rev. D 107, 072002 (2023)

$|V_{cb}|$ from q^2 moments

$|V_{cb}| = (41.69 \pm 0.59_{\text{fit}} \pm 0.23_{\text{h.o.}}) \times 10^{-3}$ = (41.69 ± 0.63) × 10⁻³

Bernlochner, **MF**, Olschwesky, Person, van Tonder, Vos, Welsch, JHEP 10 (2022) 068

Γ	tree	$lpha_{s}$	α_s^2	$lpha_s^3$	$\langle (q^2)^n \rangle$	tree	$lpha_{s}$	$lpha_s^2$	α_s^3
Partonic	1	\checkmark	1	1	Partonic	\	1	K	
μ_G^2	1	\checkmark			μ_G^2	\checkmark	1		
$ ho_D^3$	1	\checkmark			$ ho_D^3$	\checkmark	1		
$1/m_b^4$	1				$1/m_b^4$	\checkmark			
$m_b^{\rm kin}/\overline{m}_c$		1	1	1		NNLO) corre	ections	miss

N3LO corrections to the total rate! MF, Schönwald, Steinhauser, Phys.Rev.Lett. 125 (2020) 5, 052003 Phys.Rev.D 103 (2021) 1, 014005, Phys.Rev.D 104 (2021) 1, 016003

Incl. q^2 Moments JHEP 10 (2022) 068

Incl. E_{ℓ} , m_X and Incl. q^2 Our Average

	$\mathcal{B}(B \to X \ell \bar{\nu}_{\ell}) \ (\%)$	$\mathcal{B}(B \to X_c \ell \bar{\nu}_\ell) \ (\%)$	In Average		
Belle [63] $E_{\ell} > 0.6 \mathrm{GeV}$	-	10.54 ± 0.31	✓		
Belle [63] $E_{\ell} > 0.4 \mathrm{GeV}$	-	10.58 ± 0.32		V = (42.00)	$+ 0 47 \times 10^{-3}$
CLEO $[65]$ incl.	10.91 ± 0.26	10.72 ± 0.26		$ V_{cb} - (42.00)$	$\pm 0.477 \times 10$
CLEO [65] $E_{\ell} > 0.6$	10.69 ± 0.25	10.50 ± 0.25	\checkmark		
BaBar [62] incl.	10.34 ± 0.26	10.15 ± 0.26	\checkmark		
BaBar SL [64] $E_{\ell} > 0.6 \mathrm{GeV}$	-	10.68 ± 0.24	\checkmark		
Our Average	-	10.48 ± 0.13			
Average Belle [63] & BaBar [64]	-	10.63 ± 0.19			
$(E_\ell > 0.6 \mathrm{GeV})$					
	1		/ 1	4 2	
39	40		41	42	43
			$ V_{cb} \times$	10 ³	

MF, Prim, Vos, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

- Difference mainly driven by the $Br(B \rightarrow X_c l \bar{\nu}_l)$ average
- ► We need new $\operatorname{Br}(B \to X_c l \bar{\nu}_l)$ measurements to improve.
- Challenging control sub-percent effects in the HQE

NNLO CORRECTIONS q^2 SPECTRUM MF, Herren, hep-ph/2403.03976

$$\frac{d\Gamma}{d\hat{q}^2} = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left[F_0(\rho, \hat{q}^2) + \frac{\alpha_s}{\pi} F_1(\rho, \hat{q}^2) + \left(\frac{\sigma_s}{\pi}\right) \right]$$

with $\rho = m_c/m_b$

Integration w.r.t. neutrino-electron phase space

$$\mathscr{L}^{\mu\nu}(p_L) = \int L^{\mu\nu} d\Phi_2(p_L; p_l, p_\nu) = \frac{1}{384\pi^5} \left(1 - \frac{m_\ell^2}{p_L^2}\right)^2 \left[\left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^{\mu} p_L^{\nu} - g^{\mu\nu} p_L^2 \left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^{\mu\nu} p_L^2 \left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^{\mu\nu} p_L^2 \left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^{\mu\nu} p_L^2 \left(1 + \frac{2m_\ell^2}{p_L^2}\right) p_L^2 p_$$

Inverse unitarity

$$\delta(p_L^2 - q^2) \to \frac{1}{2\pi i} \left[\frac{1}{p_L^2 - q^2 - i0} - \frac{1}{p_L^2 - q^2 + i0} \right]$$

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

NNLO calculation

- ► Three-loop diagrams
- ► Three different masses: m_b^2, m_c^2, q^2

NEW: NNLO CORRECTIONS Q2 SPECTRUM MF, Herren, hep-ph/2403.03976 setup from: Bernlochner, MF, et al, JHEP 10 (2022) 068

Unfortunate choice of $\overline{m}_c(2 \,\text{GeV})$

8

NNLO effects mainly re-absorbed in the fit into a shift of ρ_D , r_E and r_G with reduced uncertainty. No major shift in $|V_{cb}|$.

Much better $\overline{m}_c(3 \,\text{GeV})$

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

INCLUSIVE DECAYS: OPEN-SOURCE LIBRARY MF, Milutin, Vos, to appear soon

Open-source python package: **KOLYA**

https://gitlab.com/vcb-inclusive/kolya

• Interface to CRunDec for automatic α_s , m_h^{kin}

and \overline{m}_c RGE evolution Florian Herren, Matthias Steinhauser, arXiv:1703.03751

• SM h.o. effects and NP effects

MF, Rahimi, Vos, JHEP 02 (2023) 086

- Observables
 - $\Gamma_{\rm sl}$, $\Delta {\rm Br}(E_{\rm cut})$
 - Centralised moments $\langle E_{\ell} \rangle_{E_{\text{cut}}}$, $\langle M_X^2 \rangle_{E_{\text{cut}}}$
 - Centralised moments $\langle q^2 \rangle_{q_{cut}^2}$

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

Total Rate

The branching ratio is given by the function BranchingRatio_KIN_MS(Vcb,par,hqe,wc)

```
[10]: Vcb = 42.2e-2
      kolya.TotalRate.BranchingRatio_KIN_MS(Vcb,par,hqe,wc)
```

[10]: 10.64996041511315

Centralized Q2 moments

Q2 moments are evaluated with Q2moments.moment_n_KIN_MS(q2cut, par, hqe, wc), for instance

```
[11]: q2cut = 8.0
      kolya.Q2moments.moment_1_KIN_MS(q2cut,par,hqe,wc)
```

[11]: 8.971188963587162

C Fi:	COMBINED FIT: q^2 , E_l AND M_X^2 MOMENTS Finauri, Gambino, JHEP 02 (2024) 206 Solid DELPHI, CDF, BaBar, Belle data: $\langle E_l \rangle_{E_{cut}}, \langle M_X^2 \rangle_{E_{cut}}, \Delta Br_{E_{cut}}$								
	► New Belle & Belle II: $\langle q^2 \rangle_{q_{\text{cut}}^2}$								
	$ V_{cb} = (41.97 \pm 0.27_{exp} \pm 0.31_{th} \pm 0.25_{\Gamma}) \times 10^{-3}$								$\times 10^{-3}$
	$= (41.97 \pm 0.48) \times 10^{-3}$								
	Compared with 2021 fit: $0.51 \rightarrow 0.48$ reduction								
					< Comparison of the second sec		C	$0.031 \rightarrow 0.000$	018 reduction
-	$m_b^{\rm kin}$	$\overline{m}_c(2{ m GeV})$	μ_{π}^2	$\mu_G^2(m_b)$	$\rho_D^3(m_b)$	$ ho_{LS}^3$	$BR_{c\ell\nu}$	$10^{3} V_{cb} $	
-	4.573	1.090	0.454	0.288	0.176	-0.113	10.63	41.97	9-
	0.012	0.010	0.043	0.049	0.019	0.090	0.15	0.48	-
-	1	0.380	-0.219	0.557	-0.013	-0.172	-0.063	-0.428	
		1	0.005	-0.235	-0.051	0.083	0.030	0.071	reV ²
			1	-0.083	0.537	0.241	0.140	0.335	
				1	-0.247	0.010	0.007	-0.253	
					1	-0.023	0.023	0.140	$6\overline{-}$
						1	-0.011	0.060	-
							1	0.696	5
-								1	1 1

MF, Prim, Vos, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

Independent sets of data

- Difference mainly driven by the $Br(B \rightarrow X_c l \bar{\nu}_l)$ average
- ► We need new $\operatorname{Br}(B \to X_c l \bar{\nu}_l)$ measurements to improve.
- Challenging control sub-percent effects in the HQE

NEW: BELLE II MEASUREMENT OF R(X)

 $K(X_{\ell_1/\ell_2})$

Rahimi, Vos, JHEP 11 (2022) 007 Ligeti, Luke, Tackmann, Phys. Rev. D 105, 073009 (2022)

Enrichment with q^2 selection cut

$$R(X_c) = 0.241 \left[1 - 0.156 \frac{\alpha_s}{\pi} - 1.766 \left(\frac{\alpha_s}{\pi} \right)^2 \right]$$
$$R(X_c) \Big|_{q^2 > 6 \,\text{GeV}^2} = 0.350 \left[1 - 0.782 \frac{\alpha_s}{\pi} - 8.355 \left(\frac{\alpha_s}{\pi} \right)^2 \right]$$

MF, Herren, hep-ph/2403.03976

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

$R^{\exp}(X_{e/\mu}) = 1.007 \pm 0.009(\text{stat}) \pm 0.019(\text{syst})$ Belle II, Phys.Rev.Lett. 131 (2023) 5, 051804 $R^{\exp}(X_{\tau/l}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$ Belle II, hep-ex/2311.07248

QED EFFECTS Bigi, Bordone, Gambino, Haisch, Piccione, JHEP 11 (2023) 163

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

Threshold effects

Collinear enhancement

ELECTRON ENERGY MOMENTS

BaBar correction using PHOTOS

Differences below 0.19% (ℓ_1, ℓ_2) up to 21 % for the third moment

LHCb: Inclusive Semileptonic B⁰_s Decays De Cian, Feliks, Rotondo, Vos, 2312.05147 [hep-ph]

- Semileptonic B_s : well-separated D_s spectrum
- Avoid amplitude analysis and interference effects
- $\blacktriangleright \text{ Inclusive } \overline{B}_{s} \to X_{cs} \ell \overline{\nu}_{\ell}:$ sum-of-exclusive technique
- Study SU(3) breaking in HQE

$$h_i = \left\langle (M_X^2 - \langle M_X^2 \rangle)^n \right\rangle$$

MOMENTS OF THE HADRONIC INVARIANT MASS

• For $\operatorname{Br}(B^0_s \to X_{cs} \ell \bar{\nu}_{\ell})$ and $|V_{cb}|$: Belle II@ $\Upsilon(5S)$

INCLUSIVE DECAYS ON THE LATTICE

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

$\overline{L_{\mu\nu}(\mathbf{q},\omega)} \simeq c_{\mu\nu,0}(\mathbf{q}) + c_{\mu\nu,1}(\mathbf{q})e^{-\omega} + \dots + c_{\mu\nu,N}(\mathbf{q})e^{-N\omega}$

HQE VS LATTICE

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

► Various moments of inclusive $B \to X_c \ell \bar{\nu}_\ell$

- Ensembles generated by the JLQCD and ETMC
- Unphysical light values of the *b* quark mass
 (2.7 GeV and 2.4 GeV)
- > m_c close to its physical value.
- ► To Do: continuum and infinite-volume limits

INCLUSIVE DECAYS ON THE LATTICE

Contributions to $\overline{X}(\mathbf{q})$ with Chebyshevpolynomial approach, N = 9, $\omega_0 = 0.9\omega_{\min}$

Barone, Hashimoto, Jüttner, Kaneko, Kellermann, JHEP 07 (2023) 145

- Bottom quark: relativistic heavy quark formalism
- Valance quarks with DMF, approx. physical masses
- ► RBC/UKQCD ensambles
- Compatible Chebyshev and Backus-Gilbert approach for kernel expansion
- ► Final error on Γ_{sl} about 5%
- To Do: polynomial approximation, finite-volume effects, discretisation errors, continuum limit.

.

$B \to D\pi \ell \bar{\nu}_\ell$ decays: model independent description

Gustafson, Herren, Van de Water, van Tonder, Wagman, hep-ph/2311.00864

Semileptonic gap

TABLE I. Branching fractions used in the simulation of $B \rightarrow$ $X_c \ell \bar{\nu}_\ell.$

Decay	$\mathcal{B}(B^+)$	$\mathcal{B}(B^0)$
$B \to D \ell \nu_{\ell} \\ B \to D^* \ell \nu_{\ell}$	$(2.4 \pm 0.1) \times 10^{-2} (5.5 \pm 0.1) \times 10^{-2}$	$(2.2 \pm 0.1) \times 10^{-2}$ $(5.1 \pm 0.1) \times 10^{-2}$
$B \to D_1 \ell \nu_\ell$ $B \to D_2^* \ell \nu_\ell$ $B \to D_0^* \ell \nu_\ell$ $B \to D_1' \ell \nu_\ell$	$(6.6 \pm 1.1) \times 10^{-3}$ $(2.9 \pm 0.3) \times 10^{-3}$ $(4.2 \pm 0.8) \times 10^{-3}$ $(4.2 \pm 0.9) \times 10^{-3}$	$(6.2 \pm 1.0) \times 10^{-3}$ $(2.7 \pm 0.3) \times 10^{-3}$ $(3.9 \pm 0.7) \times 10^{-3}$ $(3.9 \pm 0.8) \times 10^{-3}$
$B \to D\pi\pi \ell \nu_{\ell}$ $B \to D^*\pi\pi \ell \nu_{\ell}$ $B \to D\eta \ell \nu_{\ell}$ $B \to D^*\eta \ell \nu_{\ell}$	$(0.6 \pm 0.9) \times 10^{-3}$ (2.2 \pm 1.0) \times 10^{-3} (4.0 \pm 4.0) \times 10^{-3} (4.0 \pm 4.0) \times 10^{-3}	$(0.6 \pm 0.9) \times 10^{-3}$ (2.0 \pm 1.0) \times 10^{-3} (4.0 \pm 4.0) \times 10^{-3} (4.0 \pm 4.0) \times 10^{-3}
$B \to X_c \ell \bar{\nu}_\ell$	$(10.8 \pm 0.4) \times 10^{-2}$	$(10.1 \pm 0.4) \times 10^{-2}$

Belle, Phys. Rev. D 104, 112011 Belle II, Phys. Rev. D 107, 072002 (2023)

100% uncertainty on the "gap"

Model-independent description based on unitarity and analyticity

► Generalisation of the BGL formalism for $B \to D^{(*)} \ell \bar{\nu}_{\ell}$ to multi-hadron states

Fit of the measured $M_{D\pi}$ -spectrum. Coupled S-wave $D\pi$, $D\eta$ and D_sK channels Belle, Phys. Rev. D 107, 092003 (2023)

► Prediction: $Br(B \rightarrow D\eta \ell \bar{\nu}_{\ell}) = (1.9 \pm 1.7) \times 10^{-5}$

EXCLUSIVE $|V_{cb}|$ FROM $B \to D^* \ell \bar{\nu}_{\ell}$

$$\frac{d\Gamma}{dw} = \frac{G_F^2 m_B^5}{48\pi^3} |V_{cb}|^2 |\eta_{\rm EW}|^2 (w^2 - 1)^{1/2} P(w) |\mathcal{F}(w)|^2$$

$$\begin{aligned} \frac{\langle D^*(p_{D^*},\epsilon^{\nu})|\,\mathcal{V}^{\mu}\left|\bar{B}(p_B)\right\rangle}{2\sqrt{m_B\,m_{D^*}}} &= \frac{1}{2}\epsilon^{\nu*}\varepsilon^{\mu\nu}_{\ \rho\sigma}v_B^{\rho}v_{D^*}^{\sigma}\boldsymbol{h_V}(w)\\ \frac{\langle D^*(p_{D^*},\epsilon^{\nu})|\,\mathcal{A}^{\mu}\left|\bar{B}(p_B)\right\rangle}{2\sqrt{m_B\,m_{D^*}}} &= \\ \frac{i}{2}\epsilon^{\nu*}\left[g^{\mu\nu}\left(1+w\right)\boldsymbol{h_{A_1}}(w) - v_B^{\nu}\left(v_B^{\mu}\boldsymbol{h_{A_2}}(w) + v_{D^*}^{\mu}\boldsymbol{h_{A_3}}(w)\right)\right]\end{aligned}$$

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

Discard CLN and provide data in a parametrisation independent way.

► BGL is the appropriate framework for FFs fits.

Boyd, Grinstein, Lebed, Phys. Rev. Lett.74, 4603 (1995)

$F(z) = \frac{1}{P_F(z)\phi_F(z)} \sum_{n=0}^{\infty} a_n z^n \text{ with } \sum_{n=0}^{\infty} |a_n|^2 =$

Truncation and the related uncertainties require careful consideration.

Grinstein, Kobach, Phys. Lett.B771, 359 (2017); Bordone, Jung, van Dyk (2019), Eur.Phys.J.C 80 (2020) 2, 74; Bernlochneret al., Phys. Rev.D95, 11, 115008 (2017); Gambino, Jung, Schacht, Phys. Lett.B795, 386 (2019); Bernlochner, Z. Ligeti and D. J. Robinson, Phys. Rev.D100, 1, 013005 (2019)

Dispersive method approach

Di Carlo et al., Phys. Rev. D104, 5, 054502 (2021); Martinelli, Simula, Vittorio, Phys.Rev.D 104 (2021) 9, 094512

Lattice form factors at non-zero recoils

Bin-per-bin exclusive $|V_{cb}|$ extraction (Dispersive Method & BGL)

M. Fael | SM@LHC 2024 | Rome | May 10th 2024

CONCLUSIONS AND OUTLOOK

- ► Inclusive $|V_{cb}|$ extraction from q^2 moments is **robust and gives consistent results** with older data on $\langle E_l^2 \rangle$, $\langle M_X^{2n} \rangle$. Recent N3LO calculations leads to 1.2% uncertainty on $|V_{cb}|$.
- ► What's next: Measure all kin. moments as a function of q_{cut}^2 and E_{cut} in a single analysis: capture full experimental correlations (also w/ and w/o FSR QED effects).
- ► New measurements of $Br(B \to X\ell \bar{\nu}_{\ell})$ are also necessary!
- ► LHCb can enter the inclusive business with M_X moments in $B_s \to X_{cs} \ell \bar{\nu}_{\ell}$.
- First calculations of inclusive decays on the lattice but not mature yet. Validate, complement and improve the HQE.
- ► $B \rightarrow D^*$ FFs at non-zero recoil from three lattice group.
- ► New data published on differential distributions of $B \to D^* \ell \bar{\nu}_{\ell}$.
- ► JLQCD seems to give a more consistent picture but the situation is still puzzling.
- M. Fael | SM@LHC 2024 | Rome | May 10th 2024

