

Status of $\left|V_{c b}\right|$ determinations

Matteo Fael (CERN)

Funded by
the European Union
$\star \star \star$

$V_{w t}$ AND $V_{\text {ct }}$ EXTRACTION

THE HEAVY QUARK EXPANSION

Perturbative QCD!

$\Gamma_{3}=\Gamma_{3}^{(0)}+\alpha_{s} \Gamma_{3}^{(1)}+\alpha_{s}^{2} \Gamma_{3}^{(2)}+\alpha_{s}^{3} \Gamma_{3}^{(3)}$

$$
\Gamma=\Gamma_{3}+\Gamma_{5} \frac{\langle B| \mathcal{O}_{5}|B\rangle}{m_{b}^{2}}+\Gamma_{6} \frac{\langle B| \mathcal{O}_{6}|B\rangle}{m_{b}^{3}}+\ldots
$$

Free quark decay

Darwin term ρ_{D}^{3}
Spin-Orbit term $\rho_{L S}^{3}$
Kinetic term μ_{π}^{2}, chromomagnetic term μ_{G}^{2}

SPECTRAL MOMENTS

$$
\left\langle O^{n}\right\rangle_{\mathrm{cut}}=\int_{\mathrm{cut}}(O)^{n} \frac{d \Gamma}{d \Phi} d \Phi / \int_{\mathrm{cut}} \frac{d \Gamma}{d \Phi} d \Phi
$$

Cut: moments are measured with progressive cuts in E_{l} or q^{2}

$$
\begin{aligned}
& \text { Q2 MOMENTS } \quad \frac{\partial O}{\partial v_{B}}=0 \\
& O=\left(p_{l}+p_{\nu}\right)^{2}=q^{2} \\
& O=\left(m_{B} v_{B}-q\right)^{2}=M_{X}^{2} \\
& O=v_{B} \cdot p_{l}=E_{l}
\end{aligned}
$$

> Γ_{sl} and $\left\langle q^{2 n}\right\rangle$ are invariant under reparametrization

- HQE parameters: 8 instead of 13 up to $1 / m_{b}^{4}$
> NEW METHOD: extract $\left|V_{c b}\right|$ from q^{2} moments
MF, Mannel, Vos, JHEP 02 (2019) 177
New: Inclusive semileptonic $b \rightarrow c l \bar{l}_{l}$ decays to order $1 / m_{b}^{5}$
Mannel, Milutin, Vos, hep-ph/2311.12002
> 10 instead of 19 HQE parameters

First new data since 2010!
Measurements of q^{2} moments of inclusive $B \rightarrow X_{c} l^{+} \nu_{l}$ decays with hadronic tagging Belle, Phys. Rev. D 104, 112011 (2022)
Belle II, Phys. Rev. D 107, 072002 (2023)

$\left|V_{c b}\right|$ FROM q^{2} MOMENTS

$$
\begin{aligned}
\left|V_{c b}\right| & =\left(41.69 \pm 0.59_{\mathrm{ft}} \pm 0.23_{\mathrm{h} . \mathrm{o}}\right) \times 10^{-3} \\
& =(41.69 \pm 0.63) \times 10^{-3}
\end{aligned}
$$

Bernlochner, MF, Olschwesky, Person, van Tonder, Vos, Welsch, JHEP 10 (2022) 068

Γ	tree	α_{s}	α_{s}^{2}	α_{s}^{3}		$\left\langle\left(q^{2}\right)^{n}\right\rangle$	tree	α_{s}	α_{s}^{2}	α_{s}^{3}
Partonic	\checkmark	\checkmark	\checkmark	\checkmark		Partonic	\checkmark	\checkmark		
μ_{G}^{2}	\checkmark	\checkmark				μ_{G}^{2}	\checkmark	\checkmark		
ρ_{D}^{3}	\checkmark	\checkmark				ρ_{D}^{3}	\checkmark	\checkmark		
$1 / m_{b}^{4}$	\checkmark					$1 / m_{b}^{4}$	\checkmark			
$m_{b}^{\text {kin }} \bar{m}_{c}$		\checkmark	\checkmark	\checkmark						

[^0]

MF, Prim, Vos, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

NNLO CORRECTIONS q^{2} SPECTRUM
 MF, Herren, hep-ph/2403.03976

$$
\begin{aligned}
& \quad \frac{d \Gamma}{d \hat{q}^{2}}=\frac{G_{F}^{2} m_{b}^{5}}{192 \pi^{3}}\left|V_{c b}\right|^{2}\left[F_{0}\left(\rho, \hat{q}^{2}\right)+\frac{\alpha_{s}}{\pi} F_{1}\left(\rho, \hat{q}^{2}\right)+\left(\frac{\alpha_{s}}{\pi}\right)^{2} F_{2}\left(\rho, \hat{q}^{2}\right)\right]+O\left(\frac{1}{m_{b}^{2}}\right) \\
& \text { with } \rho=m_{c} / m_{b} \\
& \text { Integration w.r.t. neutrino-electron phase space } \\
& \mathscr{L}^{\mu \nu}\left(p_{L}\right)=\int L^{\mu \nu} d \Phi_{2}\left(p_{L} ; p_{l}, p_{\nu}\right)=\frac{1}{384 \pi^{5}}\left(1-\frac{m_{\ell}^{2}}{p_{L}^{2}}\right)^{2}\left[\left(1+\frac{2 m_{\ell}^{2}}{p_{L}^{2}}\right) p_{L}^{\mu} p_{L}^{\nu}-g^{\mu \nu} p_{L}^{2}\left(1+\frac{m_{\ell}^{2}}{2 p_{L}^{2}}\right)\right] \quad \text { Analytic expressions at NNLO! }
\end{aligned}
$$

Inverse unitarity

$$
\delta\left(p_{L}^{2}-q^{2}\right) \rightarrow \frac{1}{2 \pi i}\left[\frac{1}{p_{L}^{2}-q^{2}-i 0}-\frac{1}{p_{L}^{2}-q^{2}+i 0}\right]
$$

NNLO calculation

- Three-loop diagrams
> Three different masses: $m_{b}^{2}, m_{c}^{2}, q^{2}$

INCLUSIVE DECAYS: OPEN-SOURCE LIBRARY

MF, Milutin, Vos, to appear soon

Open-source python package: KOLYA

https://gitlab.com/vcb-inclusive/kolya

- Interface to CRunDec for automatic $\alpha_{s}, m_{b}^{\text {kin }}$ and \bar{m}_{c} RGE evolution
Florian Herren, Matthias Steinhauser, arXiv:1703.03751

STAY TUNED

- SM h.o. effects and NP effects

MF, Rahimi, Vos, JHEP 02 (2023) 086

- Observables
- $\Gamma_{\text {sl }}, \Delta \operatorname{Br}\left(E_{\text {cut }}\right)$
- Centralised moments $\left\langle E_{\ell}\right\rangle_{E_{\mathrm{cut}}},\left\langle M_{X}^{2}\right\rangle_{E_{\mathrm{cut}}}$
- Centralised moments $\left\langle q^{2}\right\rangle_{q_{\text {cut }}^{2}}$

COMBINED FIT: q^{2}, E_{l} AND M_{X}^{2} MOMENTS

Finauri, Gambino, JHEP 02 (2024) 206
> Old DELPHI, CDF, BaBar, Belle data:

$$
\left\langle E_{l}\right\rangle_{E_{\mathrm{cut}}},\left\langle M_{X}^{2}\right\rangle_{E_{\mathrm{cut}}}, \Delta \operatorname{Br}_{E_{\mathrm{cut}}}
$$

- New Belle \& Belle II: $\left\langle q^{2}\right\rangle_{q_{\text {ut }}^{2}}$

$$
\begin{aligned}
\left|V_{c b}\right| & =\left(41.97 \pm 0.27_{\exp } \pm 0.31_{\text {th }} \pm 0.25_{\Gamma}\right) \times 10^{-3} \\
& =(41.97 \pm 0.48) \times 10^{-3}
\end{aligned}
$$

Compared with 2021 fit: $0.51 \rightarrow 0.48$ reduction $-0.031 \rightarrow 0.018$ reduction

Only $\alpha_{s}^{2} \beta_{0}$ corrections included for $\left\langle q^{2}\right\rangle$

MF, Prim, Vos, Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01090-w

NEW: BELLE II MEASUREMENT OF R(X)

$$
R\left(X_{\ell_{1} \mid \ell_{2}}\right)=\frac{\Gamma_{B \rightarrow X \ell_{1} \bar{\nu}_{1}}}{\Gamma_{B \rightarrow X \ell_{2} \bar{\nu}_{2}}}
$$

$$
\begin{aligned}
& R^{\exp }\left(X_{e / \mu}\right)=1.007 \pm 0.009 \text { (stat) } \pm 0.019 \text { (syst) } \\
& R^{\exp }\left(X_{\tau / l}\right)=0.228 \pm 0.016 \text { (stat) } \pm 0.036 \text { (syst) } \\
& R^{\mathrm{SM}}\left(X_{\tau / l}\right)=0.225 \pm 0.005 \\
& \text { Belle II, hep-ex/2311.0724 }
\end{aligned}
$$

Enrichment with q^{2} selection cut

$$
\begin{aligned}
R\left(X_{c}\right) & =0.241\left[1-0.156 \frac{\alpha_{s}}{\pi}-1.766\left(\frac{\alpha_{s}}{\pi}\right)^{2}\right] \\
\left.R\left(X_{c}\right)\right|_{q^{2}>6 \mathrm{GeV}^{2}} & =0.350\left[1-0.782 \frac{\alpha_{s}}{\pi}-8.355\left(\frac{\alpha_{s}}{\pi}\right)^{2}\right]
\end{aligned}
$$

MF, Herren, hep-ph/2403.03976

QED EFFECTS

Bigi, Bordone, Gambino, Haisch, Piccione, JHEP 11 (2023) 163
Exact $\mathcal{O}\left(\alpha_{\mathrm{em}}\right)$ calculation vs
collinear and threshold enhancements

$$
\sim \frac{4 \pi \alpha_{\mathrm{em}}}{9}
$$

$\sim \log \left(\frac{m_{b}^{2}}{m_{e}^{2}}\right)-1$

$$
\begin{aligned}
\frac{\Gamma}{\Gamma_{\mathrm{LO}}} & =1+\frac{\alpha}{\pi}\left(\log \frac{M_{Z}^{2}}{m_{b}^{2}}-\frac{11}{6}+5.516(14)\right) \\
& =1+1.43 \%-0.44 \%+1.32 \%=1+2.31 \%
\end{aligned}
$$

Well approximated by EW logs and threshold effects

BaBar correction using PHOTOS
BaBar, Phys. Rev. D 69 (2004) 111104

ELECTRON ENERGY MOMENTS

BaBar correction using PHOTOS

Differences below $0.19 \%\left(\ell_{1}, \ell_{2}\right)$ up to 21% for the third moment

LHCb: Inclusive Semileptonic B_{s}^{0} Decays

De Cian, Feliks, Rotondo, Vos, 2312.05147 [hep-ph]

- Semileptonic B_{s} : well-separated D_{s} spectrum
> Avoid amplitude analysis and interference effects
\rangle Inclusive $\bar{B}_{s} \rightarrow X_{c s} \ell \bar{\nu}_{\ell}$: sum-of-exclusive technique
> Study SU(3) breaking in HQE

$$
h_{i}=\left\langle\left(M_{X}^{2}-\left\langle M_{X}^{2}\right\rangle\right)^{n}\right\rangle
$$

MOMENTS OF THE HADRONIC INVARIANT MASS

INCLUSIVE DECAYS ON THE LATTICE

$$
L_{\mu \nu}(\mathbf{q}, \omega) \simeq c_{\mu \nu, 0}(\mathbf{q})+c_{\mu \nu, 1}(\mathbf{q}) e^{-\omega}+\ldots+c_{\mu \nu, N}(\mathbf{q}) e^{-N \omega}
$$

HQE VS LATTICE

- Various moments of inclusive $B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$
> Ensembles generated by the JLQCD and ETMC
- Unphysical light values of the b quark mass (2.7 GeV and 2.4 GeV)
> m_{c} close to its physical value.
> To Do: continuum and infinite-volume limits

Gambino, Hashimoto, Mächler, Panero, Sanfilippo, Simula, Smecca, Tantalo, JHEP 07 (2022) 083

INCLUSIVE DECAYS ON THE LATIICE

Contributions to $\bar{X}(\mathbf{q})$ with Chebyshevpolynomial approach, $N=9, \omega_{0}=0.9 \omega_{\text {min }}$

- Bottom quark: relativistic heavy quark formalism
> Valance quarks with DMF, approx. physical masses
- RBC/UKQCD ensambles
> Compatible Chebyshev and BackusGilbert approach for kernel expansion
- Final error on Γ_{sl} about 5%
> To Do: polynomial approximation, finite-volume effects, discretisation errors, continuum limit.

$B \rightarrow D \pi \ell \bar{\nu}_{\ell}$ DECAYS: MODEL INDEPENDENT DESCRIPTION

Gustafson, Herren, Van de Water, van Tonder, Wagman, hep-ph/2311.00864

Semileptonic gap

TABLE I. Branching fractions used in the simulation of $B \rightarrow$ $X_{c} \ell \bar{\nu}_{\ell}$.

Decay	$\mathcal{B}\left(B^{+}\right)$	$\mathcal{B}\left(B^{0}\right)$
$B \rightarrow D \ell \nu_{\ell}$	$(2.4 \pm 0.1) \times 10^{-2}$	$(2.2 \pm 0.1) \times 10^{-2}$
$B \rightarrow D^{*} \ell \nu_{\ell}$	$(5.5 \pm 0.1) \times 10^{-2}$	$(5.1 \pm 0.1) \times 10^{-2}$
$B \rightarrow D_{1} \ell \nu_{\ell}$	$(6.6 \pm 1.1) \times 10^{-3}$	$(6.2 \pm 1.0) \times 10^{-3}$
$B \rightarrow D_{2}^{*} \ell \nu_{\ell}$	$(2.9 \pm 0.3) \times 10^{-3}$	$(2.7 \pm 0.3) \times 10^{-3}$
$B \rightarrow D_{0}^{*} \ell \nu_{\ell}$	$(4.2 \pm 0.8) \times 10^{-3}$	$(3.9 \pm 0.7) \times 10^{-3}$
$B \rightarrow D_{1}^{\prime} \ell \nu_{\ell}$	$(4.2 \pm 0.9) \times 10^{-3}$	$(3.9 \pm 0.8) \times 10^{-3}$
$B \rightarrow D \pi \pi \ell \nu_{\ell}$	$(0.6 \pm 0.9) \times 10^{-3}$	$(0.6 \pm 0.9) \times 10^{-3}$
$B \rightarrow D^{*} \pi \pi \ell \nu_{\ell}$	$(2.2 \pm 1.0) \times 10^{-3}$	$(2.0 \pm 1.0) \times 10^{-3}$
$B \rightarrow D \eta \ell \nu_{\ell}$	$(4.0 \pm 4.0) \times 10^{-3}$	$(4.0 \pm 4.0) \times 10^{-3}$
$B \rightarrow D^{*} \eta \ell \nu_{\ell}$	$(4.0 \pm 4.0) \times 10^{-3}$	$(4.0 \pm 4.0) \times 10^{-3}$
$B \rightarrow X_{c} \ell \bar{\nu}_{\ell}$	$(10.8 \pm 0.4) \times 10^{-2}$	$(10.1 \pm 0.4) \times 10^{-2}$

Belle, Phys. Rev. D 104, 112011
Belle II, Phys. Rev. D 107, 072002 (2023)
100% uncertainty on the "gap"
$B^{+} \rightarrow D^{-} \pi^{+} \ell^{+} \nu$

- Model-independent description based on unitarity and analyticity
> Generalisation of the BGL formalism for $B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}$ to multi-hadron states
> Fit of the measured $M_{D \pi}$-spectrum. Coupled S-wave $D \pi, D \eta$ and $D_{s} K$ channels Belle, Phys. Rev. D 107, 092003 (2023)
- Prediction: $\operatorname{Br}\left(B \rightarrow D \eta \ell \bar{\nu}_{\ell}\right)=(1.9 \pm 1.7) \times 10^{-5}$

EXCLUSIVE $\left|V_{c b}\right|$ FROM $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$

$$
\frac{d \Gamma}{d w}=\frac{G_{F}^{2} m_{B}^{5}}{48 \pi^{3}}\left|V_{c b}\right|^{2}\left|\eta_{\mathrm{EW}}\right|^{2}\left(w^{2}-1\right)^{1 / 2} P(w)|\mathscr{F}(w)|^{2}
$$

$$
\begin{gathered}
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{V}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}=\frac{1}{2} \epsilon^{\epsilon^{*}} \varepsilon_{\rho \sigma}^{\mu \nu} v_{B}^{\rho} v_{D^{*}}^{\sigma} h_{V}(w) \\
\frac{\left\langle D^{*}\left(p_{D^{*}}, \epsilon^{\nu}\right)\right| \mathcal{A}^{\mu}\left|\bar{B}\left(p_{B}\right)\right\rangle}{2 \sqrt{m_{B} m_{D^{*}}}}= \\
\frac{i}{2} \epsilon^{\nu *}\left[g^{\mu \nu}(1+w) h_{A_{1}}(w)-v_{B}^{\nu}\left(v_{B}^{\mu} h_{A_{2}}(w)+v_{D^{*}}^{\mu} h_{A_{3}}(w)\right)\right]
\end{gathered}
$$

- Discard CLN and provide data in a parametrisation independent way.
> BGL is the appropriate framework for FFs fits. Boyd, Grinstein, Lebed, Phys. Rev. Lett.74, 4603 (1995)

$$
F(z)=\frac{1}{P_{F}(z) \phi_{F}(z)} \sum_{n=0}^{\infty} a_{n} z^{n} \text { with } \sum\left|a_{n}\right|^{2}=1
$$

- Truncation and the related uncertainties require careful consideration.

Grinstein, Kobach, Phys. Lett.B771, 359 (2017); Bordone, Jung, van Dyk (2019), Eur.Phys.J.C 80 (2020) 2, 74; Bernlochneret al., Phys. Rev.D95, 11, 115008 (2017); Gambino, Jung, Schacht, Phys. Lett.B795, 386 (2019); Bernlochner, Z. Ligeti and D. J. Robinson, Phys. Rev.D100, 1, 013005 (2019)
> Dispersive method approach
Di Carlo et al., Phys. Rev. D104, 5, 054502 (2021); Martinelli, Simula, Vittorio, Phys.Rev.D 104 (2021) 9, 094512
> Lattice form factors at non-zero recoils

- Bin-per-bin exclusive $\left|V_{c b}\right|$ extraction
(Dispersive Method \& BGL)
Martinelli, Simula, Vittorio, Eur.Phys.J. C 84 (2024) 4, 400
- Differential distributions from

Belle, Phys. Rev. D 108 (2023) 012002, Belle II, Phys. Rev. D 108 (2023) 092013, Belle, Phys. Rev. D 100 (2019) 052007

$$
\begin{aligned}
& \left|V_{c b}\right|=38.17(85) \times 10^{-3} \\
& \left|V_{c b}\right|=39.19(90) \times 10^{-3} \\
& \left|V_{c b}\right|=39.83(87) \times 10^{-3}
\end{aligned}
$$

FNAL/MILC hep-1at2105. 14019 JLQCD
HPQCD hep-lat/2304.03137v2

CONCLUSIONS AND OUTLOOK

> Inclusive $\left|V_{c b}\right|$ extraction from q^{2} moments is robust and gives consistent results with older data on $\left\langle E_{l}^{2}\right\rangle,\left\langle M_{X}^{2 n}\right\rangle$. Recent N3LO calculations leads to 1.2% uncertainty on $\left|V_{c b}\right|$.
$>$ What's next: Measure all kin. moments as a function of q_{cut}^{2} and E_{cut} in a single analysis: capture full experimental correlations (also w/ and w/o FSR QED effects).
> New measurements of $\operatorname{Br}\left(B \rightarrow X \ell \bar{\nu}_{\ell}\right)$ are also necessary!
$>$ LHCb can enter the inclusive business with M_{X} moments in $B_{s} \rightarrow X_{c s} \ell \bar{\nu}_{\ell}$.

- First calculations of inclusive decays on the lattice but not mature yet. Validate, complement and improve the HQE.
$>B \rightarrow D^{*}$ FFs at non-zero recoil from three lattice group.
$>$ New data published on differential distributions of $B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$.
> JLQCD seems to give a more consistent picture but the situation is still puzzling.

[^0]: N3LO corrections to the total rate!
 MF, Schönwald, Steinhauser, Phys.Rev.Lett. 125 (2020) 5, 052003 Phys.Rev.D 103 (2021) 1, 014005 , Phys.Rev.D 104 (2021) 1, 016003

