

(results from FASER and SND@LHC)

Marco Dallavalle (INFN Bologna, SND@LHC Collaboration)

STANDARD MODEL AT THE LHC Rome, May 7-10, 2024

Collider Neutrinos

Motivation

collisions (pp -> VX)

neutrino experiments.

Since the 1980s, before the LHC design phase, it was proposed to use the intense neutrino flux from pp

However, only in the last decade, it was shown that the backgrounds in the real CERN's LHC are low enough for

High Energy Neutrinos from LHC pp collisions

M.Dallavalle, SM@LHC, Rome, May 2024

P. Foldenauer,^{1,*} F. Kling,^{2,3,†} and P. Reimitz^{4,‡} arXiv:2108.05370v2 [hep-ph] 23 Dec 2021

Physics potential in new domains

all three flavour it will be the largest sample of v_{τ}

Explore ν interactions at unprecedent lab energies

 v_e from forward charm production; their rate constrain gluon PDF at very small x

relevant for FCC and astroparticle exp.

Two complementary LHC v experiments

	SND@LHC	FASER
Location	Off-axis : $7.2 < \eta < 8.4$ On-axis : $\eta > 8.8$ Enhances charm parentageEnhances statistics	
Target	800 kg of tungsten	1100 kg of tungsten
Hybrid Detector technology	Emulsion vertex detector , electromagnetic and hadronic calorimeters	Emulsion vertex detector and spectrometer

expected neutrino interactions in LHC Run3 (250 fb⁻¹)

Expected number of CC interactions in FASER ν with 250 fb⁻¹

104

uon

 \mathbf{sity}

ue).

(see

2

	Gener	ators	FAS	$ER\nu$ at Ru	n 3	 Propagation to SND@LHC with FLUKA mode 			m odel o	f the			
ligh	nt hadrons	charm hadrons	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + \bar{\nu}_{\mu} $	$\nu_{\tau} + \bar{\nu}_{\tau}$		GENIE neutrino interaction model.						
E	POS-LHC	_	1149	7996	-		 Neutrino interactions in SND@LHC / 250 fb⁻¹: 						
SIB	WLL 2.3d	_	1126	7261	-							-20	00 -5000
QGS	SJET 2.04	_	1181	8126	-			Neutrin	os in acceptance	CC neutrino	o interactions	NC neutrino i	interacti
PYTH	IIAforward	_	1008	7418	-		Flave	our $\langle E \rangle$ [Ge	V] Yield	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield
	_	POWHEG Max	1405	1373	76		$ \nu_{\mu} $	130	3.0×10^{12}	452	910	480	270
	_	POWHEG	527	511	28		$ u_{\mu} $ $ \nu_{e}$	339	3.4×10^{11}	485 760	250	480 720	140 80
	_	POWHEG Min	294	284	16	Į.							
	Combi	nation	1675^{+911}_{-372}	8507^{+992}_{-962}	28^{+48}_{-12}	I I	avour	Neutrinos i $\langle E \rangle \ [GeV]$	in acceptance Yield	CC neutrino $\langle E \rangle$ [GeV]	o interactions Yield	$ $ NC neutrin $\langle E \rangle$ [GeV]	no inter Y
						1	ν_{μ}	130	3.0×10^{12}	452	910	480	5

https://arxiv.org/abs/2402.13318

both experiments expressed interest

SND@LHC

- Model neutrino production in pp collisions with **DPMJET**.

	Neutrinos in	acceptance	CC neutrin	no interactions	NC neutrino i	nter
vour	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yield	$\langle E \rangle ~[GeV]$	Yi
$ u_{\mu}$	130	$3.0 imes 10^{12}$	452	910	480	2
$\bar{ u}_{\mu}$	133	$2.6 imes 10^{12}$	485	360	480	1
ν_e	339	$3.4 imes 10^{11}$	760	250	720	8
$\bar{\nu}_e$	363	$3.8 imes 10^{11}$	680	140	720	Ę
ν_{τ}	415	$2.4 imes 10^{10}$	740	20	740	1
$\bar{\nu}_{\tau}$	taking	o ataºa	SØ4dN		n474(680	tb
ОТ		4.0×10^{12}		1690		5

selection: no signal in Veto, interaction in target, track in spectrometer with p>100 GeV

1.1 ton

153 +12_13 muon neutrino interactions 16 standard deviations above the background-only hypothesis

on-axis

The selected signal region in extrapolated radius $r_{\text{veto}\nu}$ FIG. 2. and reconstructed track momentum p_{μ} is depicted. The region with lower momenta and larger radii is dominated by background events consisting of charged particles that miss the FASER ν scintillator station.

neutrino, anti-neutrino separation in FASER

https://arxiv.org/pdf/2403.12520.pdf

 v_e CC candidate

 ν_{μ} CC candidate

rotated view

beam view

M.Dallavalle, SM@LHC, Rome, May 2024

 $\Delta \phi$ between high-E charged lepton and remaining particle system

First Measurement of the v_e and v_μ Interaction Cross Sections at the LHC with FASER's Emulsion Detector

Figure 13: The measured cross section per nucleon for v_e (left) and v_{μ} (right). The dashed contours labelled "Bodek-Yang" are cross sections predicted by the Bodek-Yang model, as implemented in GENIE.

SND@LHC ν_{μ} analysis update 2024

	background	observed	significa
ν _μ CC	0.25 +0.06 _{-0.06}	32	12 σ

New this year

Updated analysis with 2023 data

and extended fiducial volume.

Event selection Fiducial volume

- Reject events in first wall.
 - Previously used only walls 3 and 4.
- Reject side-entering backgrounds.
- Signal acceptance: 18%
 - Up from 7.5%.

Muon neutrino identification

- Large scintillating fibre detector activity.
- Large HCal activity.
- One muon track associated to the vertex.
- Signal selection efficiency: 35%

y [cm]

(C.Vilela at the 58th Recontres de Moriond, QCD, April 2024)

SND@LHC calibration of hadron energy measurement in summer 2023 with hadron beams from SPS

SND@LHC new v_{μ} results 2024

Next: determination of hadronic shower direction will allow for complete reconstruction of event kinematics and measurement of incoming neutrino energy

 v_e CC interactions (+ v_τ CC 0µ) and Neutral Currents

	background	observed
Ομ	0.13 +0.04 _{-0.04}	6

0μ events SND@LHC

significance

5.8 σ

v_e CC observation in emulsions

Strategy

- Identify regions of high track density in the emulsions.
- Consistent with the expectation of electromagnetic shower development.
- Search for neutral vertices associated to identified showers.

Status

• Electromagnetic shower patterns identified.

• Vertex association ongoing.

4 mm

SND@LHC upgrade for LHC Run4 (AdvancedSND)

- sligthy closer to the collision axis η >7.9
- a new target of 2 tons with up to 120 layers of tungsten and silicon detectors to replace emulsions
- tenfold increase in statistics
- improved spectrometer capabilities, to separate neutrino and anti-neutrino CC interactions
- possibility of triggering the ATLAS event read-out when a neutrino is tagged in AdvSND

CONCLUSIONS

- Since 2022 two experiments study very forward v_e , v_μ , v_τ from LHC collisions (pp >vX): • SND@LHC in 7.2 < η < 8.4, FASER in η > 8.8
- - those neutrinos expand the Physics reach of LHC:
 - carry information on parton fractional momenta down to 10-6 and can contrain **QCD** uncertainties
 - allow for studying vN interactions for all three flavors at energies in the E_v TeV range
- the experiments already collected 70 fb⁻¹ in 2022-23 and will collect 250 fb⁻¹ by the end of LHC Run3
- First measurements are coming out:
 - both experiments neatly detected v_{μ} and v_{e} events over a negligible background
 - FASER has performed a first measurement of $v_{\mu}N$ and $v_{e}N$ CC interaction cross sections
- the experiments plan to continue data taking also in HL-LHC

additional material

Neutrino physics: QCD

- measurement of the charmed hadrons can be translated into measurement of the corresponding open charm production
 - angular correlation between charmed hadron and parent charm
- charm production at LHC dominated by gluon-gluon scattering
- average lowest momentum fraction accessible at SND@LHC $\sim 10^{-6}$
 - here, gluon PDF completely unknown, theory work ongoing on resummation
- constrain PDF with SND@LHC data

 - use LHCb measurement in $\eta < 4.5$, $\sqrt{s} = 7, 13$ TeVs

- taking ratio of cross-sections at different energies/rapidities reduces scale uncertainty [JHEP 11 (2015) 009] [Nucl. Phys. B871 (2013) 1-20] [JHEP 03 (2016) 159]

	~	0	0	h
2	U	Z	Ζ	
	_	_		_

FASER detector

https://arxiv.org/abs/2207.11427

- 10 cm radius
- 7 m long

Tracking spectrometer stations

3 x 3 layers of ATLAS SCT strip modules

Electromagnetic Calorimeter

4 LHCb Outer ECAL modules

Trigger / pre-shower scintillator system

Air-core magnets 0.57 T Dipoles 1.5 m decay volume

Front Scintillator

Scintillator veto system

2 x 20 mm thick 30 x 30 cm area 2 x 20 mm thick 35 x 30 cm area To ATLAS IP

Interface Tracker (IFT)

Trigger / timing scintillator station

10mm thick + dual PMT readout (σ = 400 ps)

Akitaka Ariga, FASER, Moriond EW 2024

FASERv emulsion detector

730 layers of 1.1 mmtungsten + emulsion(8 interaction lengths)

Muons at FASER site

- Muons brings rich info to validate beamline simulation
- Eventually we could validate hadron production models at *p*-*p* collisions

A.Ariga, FASER collab., Moriond EW 2024

Table 3: The number of MC reconstructed events of neutral-hadron interactions satisfying the v_e and v_{μ} CC event selection. The scaling factor shows the ratio of the data luminosity to the MC luminosity.

Hadron type	K_L	n	
Events simulated ($E_h > 200 \text{ GeV}$)	13497	13191	13
Events selected as v_e CC	0	0	
Events selected as v_{μ} CC	6	11	
Scaling factor (data/MC)	1/232	1/256	1/
Hadron type	K_S	\bar{n}	
Hadron type Events reconstructed ($E_h > 200 \text{ GeV}$)	<i>K</i> _S 7113	<i>n</i> 5827	5
Hadron type Events reconstructed ($E_h > 200 \text{ GeV}$) Events selected as $v_e \text{ CC}$	<i>K</i> _S 7113 1	<i>n</i> 5827 0	5
Hadron type Events reconstructed ($E_h > 200 \text{ GeV}$) Events selected as v_e CC Events selected as v_μ CC	<i>K</i> _S 7113 1 3	<i>n</i> 5827 0 3	5

https://arxiv.org/pdf/2403.12520.pdf

SND@LHC Muon flux measurement

- Backgrounds to neutrino signals in SND@LHC are mainly due to muon interactions in the tunnel walls.
- Precise measurements of the muon flux allow for validating and constraining our background model.

Eur. Phys. J. C (2024) 84: 90

System	Muon flux [10 ⁴ fb/cm ²] same fiducial area		
SciFi	2.06 ± 0.01 (stat.) ± 0.12 (sys.)		
DS	2.02 ± 0.01 (stat.) ± 0.08 (sys.)		

Measurements with the SciFi tracker, downstream muon system and emulsion detectors give consistent results.

Lepton Flavour Universality tests

- Charm hadron decays contribute to the flux of all three types of neutrinos at SND@LHC. The detector has excellent flavour identification capabilities.
- Unique opportunity to test lepton flavour universality with neutrinos. Take ratios of event rates: v_{e}/v_{τ} and v_{e}/v_{μ} . \bigcirc

Lepton Flavour Universality tests

- Charm hadron decays contribute to the flux of all three types of neutrinos at SND@LHC. The detector has excellent flavour identification capabilities.
- Unique opportunity to test lepton flavour universality with neutrinos.
 - Take ratios of event rates: v_{e}/v_{τ} and v_{e}/v_{μ} . Ο

	ν in ϵ	acceptance	(CC DIS	NC DIS		
Flavour	All	not from π/K	All	not from π/K	All	not from π/K	
$\overline{ u_{\mu}}$	8.6×10^{13}	8.2×10^{12}	1.2×10^{5}	3.3×10^{4}	3.6×10^{4}	1.0×10^{4}	
$ar{ u}_{\mu}$	7.0×10^{13}	9.6×10^{12}	4.4×10^{4}	1.8×10^{4}	1.6×10^{4}	6.5×10^{3}	
$ u_e$	1.3×10^{13}	9.1×10^{12}	4.2×10^{4}	3.6×10^{4}	1.3×10^{4}	1.1×10^{4}	
$ar{ u}_e$	1.3×10^{13}	9.2×10^{12}	1.9×10^{4}	$1.7{ imes}10^4$	7.0×10^{3}	6.1×10^{3}	
${ u}_{ au}$	7.3×10^{11}	7.3×10^{11}	2.1×10^{3}	2.1×10^{3}	6.7×10^{2}	$6.7{ imes}10^2$	
$ar{ u}_{ au}$	9.4×10^{11}	9.4×10^{11}	1.2×10^{3}	1.2×10^2	4.6×10^{2}	4.6×10^2	
Tot	$ 1.8 \times 10^{14}$	3.8×10^{13}	2.3×10^{5}	1.1×10^{5}	7.3×10^{4}	3.5×10^{4}	

Table 10: Number of neutrinos in the Target acceptance, CC DIS and NC-DIS neutrino interactions, assuming $3000 \, \text{fb}^{-1}$, as estimated with DPMJET+FLUKA and GENIE generators.

AdvSND Letter of Intent:

<u>CERN-LHCC-2024-007 / LHCC-I-040</u>

