STANDARD MODEL AT THE LHC 2024 – ROMA – 08/05/2024

Charged current semileptonic decays at LHCb

Marta Calvi Università Milano-Bicocca and INFN

On behalf of the LHCb Collaboration

Charged current semileptonic decays

Tree-level semileptonic decays due to weak charged current are an open portal for many studies

- Large semileptonic branching ratios
- Huge production of all b-hadrons at LHC

LHCb measurements done on

- ✓ CKM parameters, notably V_{cb} [PRD101(2020)072004] , V_{ub} [PRL126(2021)081804], [NP11(2015)743]
- ✓ Decay rate shapes: form factors [JHEP 12(2020)144],[PRD96(2017)112005]
- ✓ B hadrons production fractions [PRD100(2019)0311022], lifetimes [PRL119(2017)101801]

 \overline{B}^{0} –

Leaning on precise SM predictions

 \rightarrow Test SM consistency and search for effects of possible Physics BSM

In this talk

08/05/24

- Test of Lepton Flavour Universality
- Angular analysis

LFU and semitauonic decays

- Lepton Flavour Universality
 - Electroweak couplings to all charged leptons are universal in the SM, differences between e, μ , and τ are driven only by masses
 - no known symmetry principle behind this
 - Any deviation from LFU is a key signature of physics processes beyond the SM.

• Decay modes with taus are particularly interesting for new mediators coupling to 3-rd generation, e.g charged Higgs, leptoquarks ...

$R(H_c)$

- Powerful tests of LFU from ratios of branching fractions of B decays to different leptons
 - Hadronic uncertainties mostly cancel in the ratio ightarrow precise theory predictions
 - Reduced experimental systematic uncertainties in ratios of efficiencies

$$R(\mathcal{H}_{c}) = \frac{\mathcal{B}(\mathcal{H}_{b} \rightarrow \mathcal{H}_{c} \tau \nu_{\tau})}{\mathcal{B}(\mathcal{H}_{b} \rightarrow \mathcal{H}_{c} \mu \nu_{\mu})}$$

$$\mathcal{H}_{b} = B^{0}, B^{+}_{(c)}, \Lambda^{0}_{b}, B^{0}_{s} \dots$$

$$\mathcal{H}_{c} = D^{*}, D^{0}, D^{+}, D_{s}, \Lambda^{(*)}_{c}, J/\psi \dots$$

$$P \text{ Measurements done for several b and c hadrons}$$

$$Most \text{ precise for } B \rightarrow D^{(*)} |_{V}$$

$$P \text{ Deviations from SM in R(D)-R(D^{*}) seen by several experiments}$$

$$LHCb \text{ measurements done with muonic [PRL 131, 111802] and hadronic tau decays [PRD 108, 012018]}$$

$$World \text{ average in 3.3 } \sigma \text{ tension from SM in 2023}$$

New: R(D^{(*)+}) from $\overline{B}^0 \rightarrow D^{(*)+} \tau^- \overline{\nu}_{\tau}$

LHCb-PAPER-2024-007 in preparation First presented at Moriond EW

- First LHCb measurement using $D^+ \rightarrow K^- \pi^+ \pi^+$
- Feed-down from unreconstructed $D^{*+} \rightarrow D^+ \pi^0 / \gamma$ gives access to $R(D^*)$ in the same visible $K^- \pi^+ \pi^+ \mu^-$ final state.
- Using muonic $\tau \rightarrow \mu \overline{\nu}_{\mu} v_{\tau}$ decays have same final state for signal and normalization modes

- No direct knowledge on B momentum at LHC, rest frame kinematics determined using B flight direction and boost approximation: $\gamma \beta_{z,total} = \gamma \beta_{z,visible}$
 - Provides good separation between signal and normalization modes in kinematic distributions

LHCb-PAPER-2024-007

Data sample selection

- Data sample: 2 fb⁻¹ collected in 2015-16
- Candidate selection: topologic, kinematic and particle ID requirements on $(K\pi\pi)_D\mu$, and fake-D⁺ subtraction
- Isolation BDT against additional charged and neutral particles from the rest of the event

• Invert isolation requirement to select control samples with enhanced sensitivity to background contributions

Signal sample	1π sample	2π sample	1K sample
$D^+\mu^-$	$D^+\mu^-\pi^-$	$D^+\mu^-\pi^+\pi^-$	$D^+\mu^-K^\pm$

• Simultaneous fit of the 4 samples using the rest-frame quantities: m_{miss}^2 , E_{μ}^* , $q^2 = (p_B - p_D)^2$

Fit components (I)

- Signal, normalization and physic backgrounds templates constructed from MC
- Main background
 - Feed-down from $B \rightarrow D^{**}[D^+X]\mu\nu$ and $B \rightarrow D^{**}[D^+X]\tau\nu$
 - Fractions of 1P states varied in the fit.
 - Higher mass states varied also in shape.
 - Double-charm $B \rightarrow D^+ H_c[\mu v X] X'$
 - Fractions and shapes of different components varied in the fit.

B^0 decays	B^+ decays
$B^0 \to D_0^* (2400)^- \mu^+ \nu_\mu$	$B^+ \to \overline{D}_0^* (2400)^0 \mu^+ \nu_\mu$
$B^0 \to D_2^*(2460)^- \mu^+ \nu_\mu$	$B^+ \to \overline{D}_2^* (2460)^0 \mu^+ \nu_\mu$
$B^0 \to D_1^*(2420)^- \mu^+ \nu_\mu$	$B^+ \to \overline{D}_1^* (2420)^0 \mu^+ \nu_\mu$
$B^0 \rightarrow D_1(H)^- \mu^+ \nu_\mu$	$B^+ \to \overline{D}_1(H)^0 \mu^+ \nu_\mu$

• Form factor parameterisation:

B → D⁺: BGL [PRD 94 (2016) 094008] B → D^{*}: BGL [Eur. Phys. J. C 82, 1141 (2022)] B → D^{**}: BLR [PRD 95 (2017) 014022] Use HAMMER [Eur. Phys. J. C. 80(2020) 883] and RooHammerModel [JINST 17 (2022) T04006] to vary the form factor parameters in the fit (with external constraints applied).

LHCb-PAPER-2024-007

Fit components (II)

- Size of simulated sample can limit the final precision
- This analysis uses a «tracker-only» ultra-fast simulation to generate large samples
 - Emulate missing features of some detectors response
 - PID efficiencies determined from data calibration samples

- Two templates from data
 - μ mis-identified component extracted from non-muon control sample
 - combinatorial background from same charge $D^{\pm}\mu^{\pm}$ data sample
- Final tuning with multi-dimensional reweighting: excellent data/simulation agreement

Fit results - signal region

9

Fit results - control regions

• Excellent agreement also in the sub-samples that control the background modelling

Results

$$R(D^+) = 0.249 \pm 0.043 \pm 0.047$$

$$R(D^{*+}) = 0.402 \pm 0.081 \pm 0.085$$

 $\rho = -0.39$

Systematic uncertainties

Source	$\mathcal{R}(D^+)$	$\mathcal{R}(D^{*+})$
Form factors	0.023	0.035
$\overline{B} \to D^{**}[D^+X]\mu/\tau\nu$ fractions	0.024	0.025
$\overline{B}^{+/0} \to D^+ X_c X$ fraction	0.020	0.034
Misidentification	0.019	0.012
Simulation size	0.009	0.030
Combinatorial background	0.005	0.020
Data/simulation agreement	0.016	0.011
Muon identification	0.008	0.027
Multiple candidates	0.007	0.017
Total systematic uncertainty	0.047	0.086

Signal yields: N_{τ}^{D} ~35.000, N_{τ}^{D*} ~29.000

$$R(D^{(*)+}) = \frac{\epsilon_{\mu}^{D^{(*)+}}}{\epsilon_{\tau}^{D^{(*)+}}} \frac{N_{\tau}^{D^{(*)+}}}{N_{\mu}^{D^{(*)+}}} \frac{1}{\mathscr{B}(\tau^{-} \to \mu^{-}\nu_{\tau})}$$

Uncertainty on ratio of efficiencies very subdominant.

Main systematic uncertainties from form-factor parameterisation and background modelling.

New R(D)-R(D*) world average

• New LHCb result is compatible with previous LHCb measurements that used muonic and hadronic tau decays and with SM.

New word average

- R(D) and R(D^{*}) exceed the SM predictions by 1.7σ and 2.3σ respectively.
- R(D)-R(D*) combined average in 3.17 σ tension from SM

Semitauonic decays - Angular analysis

- Angular analyses provide sensitivity to NP beyond integrated rates
 - Can test presence of new mediators and different spin structures
- First LHCb angular analysis on $B \rightarrow D^* \tau v$ decays measures the D^* polarization fraction
- The differential decay rate

D^{*} longitudinal polarization fraction in B⁰ \rightarrow D^{*-} $\tau^+\nu_{\tau}$

- Use $\tau^{-} \rightarrow 3\pi(\pi^{0})\nu_{\tau}$ decays.
- Run1 and part of Run2 data (5 fb⁻¹), same samples as for R(D^{*}) hadronic tau analyses [PRL 120, 171802], [PRD 108, 012018]
- Three pions vertex provides tau decay position that suppress dominant background $B^0 \rightarrow D^{*-} 3\pi$
- D^0 , τ^- and B^0 decay vertices allow to estimate B momentum with good precision

- Additional background suppression from specific dynamics of $\tau^- \rightarrow 3\pi v_{\tau}$ decay
- Lower hadronic tau BR, but higher purity sample than in muonic analysis
- 4D-binned template fit, simultaneous on two q² bins ($\leq 7 \text{ GeV}^2/c^4$), τ^- decay time, anti-D_s BDT output and cos θ_D

F_L^{D*} results

[arXiv:2311.05224]

 F^{D*} determined from the observed signal polarized and unpolarized yields

 $\begin{array}{ll} q^2 < 7 \, {\rm GeV}^2 / c^4 : & 0.51 \pm 0.07 (stat) \pm 0.03 (syst) \\ q^2 > 7 \, {\rm GeV}^2 / c^4 : & 0.35 \pm 0.08 (stat) \pm 0.02 (syst) \\ q^2 {\rm integrated} : & 0.43 \pm 0.06 (stat) \pm 0.03 (syst) \end{array}$

- Main systematic from simulated templates statistics, FF parametrization, D_s decay model in background.
 - 🔶 Data

Compatible with previous Belle measurement:

 $F_L^{D^*} = 0.60 \pm 0.08 \pm 0.04$ [arXiv:1903.03102]

Compatible with SM:

$$\begin{split} F_L^{D^*} &= 0.441 \pm 0.006 \; [\text{PRD 98 (2018) 095018}] \\ F_L^{D^*} &= 0.457 \pm 0.010 \; [\text{Eur. Phys. J. C 79, 268 (2019)} \\ F_L^{D^*} &= 0.467 \pm 0.009 \; [\text{Eur. Phys. J. C 80, 347 (2020)}] \\ F_L^{D^*} &= 0.422 \pm 0.010 \; [\text{arXiv:2310.03680}] \\ F_L^{D^*} &[q^2 < 7GeV^2/c^4] = 0.495 \pm 0.017 \; [\text{arXiv:2310.03680}] \\ F_L^{D^*} &[q^2 > 7GeV^2/c^4] = 0.383 \pm 0.006 \; [\text{arXiv:2310.03680}] \end{split}$$

Conclusion and Outlook (I)

- First LHCb measurement of R(D⁺) & R(D^{*+}), with a muonic decay of the tau lepton.
 - Compatible with the World Average and with the SM.
 - New HFLAV average: overall tension with SM at the level of 3.17 $\sigma.$
- LFU can be tested in many more modes
 - $B_c \rightarrow J/\psi \tau v$ (muonic tau) [PRL 120, 121801] and $\Lambda_b \rightarrow \Lambda_c \tau v$ (hadronic tau) [PRL 128, 191803] already pioneered by LHCB with Run1 data. Updates on Run2 data are ongoing.
 - New modes under study
 - $B_s \rightarrow D_s^{(*)} | v$ decays
 - B⁰ decays to other charm mesons and other D decay modes
 - $B^0 \rightarrow D^{**-} \tau^+ \nu_{\tau}$
 - $D^{*+} \rightarrow D^0 \pi^+ (D^0 \rightarrow K^- 3\pi); D^{*0} \rightarrow D^0 \gamma/\pi^0$

Conclusion and Outlook (II)

- First LHCb angular analysis of charged-current semitauonic decays, measuring $F_L^{D^*}$ in $B^0 \rightarrow D^* \tau v$
 - Better precision than previous result, compatible with it and with the SM
- Full angular analysis of $B^0 \rightarrow D^* \mu v$ and $B^0 \rightarrow D^* \tau v$ will provide new tests of possible physics beyond SM
- Full Run2 data sample to be fully exploited (total of 9 fb⁻¹) and Run3 data taking at x5 instantaneous luminosity underway.
 Future LHCb upgrade could provide up to 300 fb⁻¹.
 - Larger control samples and improved model descriptions will help to control systematic uncertainties

Backup

$F_L^{D^*}IN B \rightarrow D^* \tau v DECAYS - Systematics$

Source	low q^2	high q^2	whole region
Fit validation	0.003	0.002	0.003
FF model	0.007	0.003	0.005
FF parameters	0.013	0.006	0.011
Limited template statistics	0.027	0.017	0.019
Fraction of signal $\tau^+ \to \pi^+ \pi^- \pi^+ \pi^0 \nu_\tau$ decays	0.001	0.001	0.001
Fraction of D^{**} feed-down	0.001	0.004	0.003
Signal selection	0.005	0.004	0.005
Bin migration	0.008	0.006	0.007
$F_L^{D^*}$ in simulation	0.007	0.003	0.007
D_s^+ decay model	0.008	0.009	0.009
Shape of $\cos \theta_D$ template in $D^{*-}D_s^+$ decays	0.002	0.001	0.002
Shape of $\cos \theta_D$ template in $D^{*-}D_s^{*+}$ decays	0.007	0.002	0.004
Shape of $\cos \theta_D$ template in $D^{*-}D_s^+X$ decays	0.007	0.006	0.007
Shape of $\cos \theta_D$ template in $D^{*-}D^+X$ decays	0.002	0.002	0.003
Shape of $\cos \theta_D$ template in $D^{*-}D^0X$ decays	0.002	0.002	0.003
$F_L^{D^*}$ integration method		-	0.002
Total	0.036	0.023	0.029

LHCb combination

Other R(H_c) at LHCb

Phys. Rev. Lett. 120, 121801

• $\Lambda_{\rm h} \rightarrow \Lambda_{\rm c} \tau \nu$ (hadronic tau)

Phys. Rev. Lett. 128, 191803