

Effective field theory constraints from the top quark sector

Sergio Sánchez Cruz on behalf of the ATLAS and CMS Collaborations

SM@LHC Workshop - Rome

08.05.2024

The top EFT basis

arXiv:1802.07237

 Set of flavour assumptions used by convention for top quark studies

 42 CP-conserving and 11 CP-violating operators

Programme of measurements by ATLAS and CMS

- Order of 30 operators probed in the top EFT basis
- Complementary search programme in ATLAS and CMS
- I will cover:
 - Newest results by ATLAS and CMS in the "canonical" flavour symmetry scenario
 - Results going beyond the usual flavour assumptions (LFV, BNV)
- For measurements in top physics see:
 - Tae Jeong's talk on tt+bb/tt+tt
 - Jonathan's talk on ttW, ttZ, ttgamma
- FCNCs in Efe's talk

Measurement of ttZ production

arXiv:2312.04450

- Signal/background discriminated using DNNs
- Differential measurements as functions of p_T^z, p_T^{top}, y^{top}, p_T^{ttbar}, ...
- Inclusive cross section, spin correlations also measured
- Results consistent with the NLO reference models

ttZ - EFT interpretation

- Two scenarios considered:
 - Top+boson scenario
 - Four-quark scenario
- Three types of fits:
 - BSM/SM interference only, marginalised
 - Quadratic marginalised + independent
- Results consistent with the SM, slight deviations from zero due to degenerate modes
- PCA used to determine combinations of WCs with sensitivity \rightarrow **3 sensitive directions** (C/ Λ^2 < 3.15 TeV⁻²)

ATLAS

 $\Re[C_{tW}]$

S[CIW

 $\Re[C_{tG}]$

 $\Im[C_{tG}]$

 $\Re[C_{B}]$

 $\Im[C_{B}]$

 $C_{HO}^{(3)}$

-100

-7.5

-5.0

-2.5

25

50

 \sqrt{s} = 13 TeV, 140 fb SMEFT Λ = 1 TeV ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ SMEFT $\Lambda = 1 \text{ TeV}$

Global mode

7.5

 C/Λ^2 [TeV⁻²]

68% CI

95% CI

Quadratic (marg

68% CI

C/A2 [TeV-2]

- Linear (marg.)

- Quadratic (indp.)

Measurement of ttγ production

- ttγ production measured in single and di-lepton channels
- DNNs used to discriminate backgrounds against ttγ production, regardless of the origin of the photon
- Measurements performed as a function of p_T^{γ} , η^{γ} , $p_T(j1) \Delta R(\gamma, lep)$, ...
 - η^{γ} well described by state-of-the-art MC
 - p_T^{γ} slightly softer than predicted
- Measurements also performed for ttγ production and decay separately

Measurement of tty production

- Limits on EFT operators using the unfolded photon pT distribution
- Setting limits on the top quark electroweak dipole moments

R[Ctw]/A² [TeV⁻²

ATLAS

 $\sqrt{s} = 13 \,\text{TeV}, 140 \,\text{fb}^{-1}$

SMEFT $\Lambda = 1$ TeV

68% CI (obs.)

95% CI (obs.)

Global mode 68% CI (exp.) 95% CI (exp.) Standard Model

Combination of ttZ and tty measurements

- EFT interpretation from the simultaneous ttZ and ttγ measurements
 - Using the boson p_T distributions
 - Measuring top electroweak dipole moments
 - Sensitivity dominated by ttγ
- Some complementarity between analyses, different regions of the boson p_T spectrum are probed

EFT in top quark production in association with leptons

• tt+X processes populate the multilepton final state (two-same sign, three, four leptons)

Results

Other WCs profiled (20)

Other WCs profiled (1 σ) Other WCs fixed to SM (2 σ)

 $egin{aligned} & c_{\mathrm{t}}^{T(\ell\,)} \ & c_{\mathrm{t}}^{S(\prime)} \end{aligned}$

Other WCs fixed to SM (1 σ)

CMS

138 fb⁻¹ (13 TeV)

- Results consistent with the SM
- Setting limits on 26 independent Wilson coefficients

Results

- Limits on Wilson coefficients are translated to limits in the new physics scale
- 2-top-2-lepton operators: ∧ > O(800 GeV) _ - O(1 TeV)
- top+boson operators: $\Lambda > O(300 \text{ GeV}) O(1 \text{ TeV})$
- 4-heavy-quark-operators: Λ > O(700 GeV) - O(1 TeV)
- 2-light-2-heavy operators: Λ > O(1 3 TeV)

	CMS Supplementary			138 fb ^{−1} (13 TeV)	CMS Preliminary		138 fb ⁻¹ (13 TeV)
		<i>c</i> _{<i>i</i>} = 0.01	<i>c_i</i> = 1	$c_i = (4\pi)^2$			
$C_{t}^{T(\ell)}$	-				$c_{t}^{T(\ell)}$		
$c_t^{S(l)}$					$C_t^{S(l)}$		
$c_{\rm te}^{(l)}$					$c_{\rm te}^{(l)}$		
$c_{t\ell}^{(\ell)}$					$c_{t\ell}^{(\ell)}$		
C ^(l) Qe					C ^(l)		
$C_{Ql}^{-(l)}$					$C_{Ql}^{-(l)}$		
C ₀₁					$c_{0}^{3(l)}$		
Cφt		_			C _{ot}		
c ³			-		Cφtb		
C _{pQ}			1		C _{φQ}		
Cro		_			Cha		
 C_0					C_0		
C _{to}					C _{to}		
C _{tZ}	-				C _{tZ}		
CtW					C _{tW}		
$c_{\rm Qt}^1$	-				$c_{\rm Qt}^1$		
$C_{\rm Qt}^8$	-	;			$c_{\rm Qt}^8$		
$c_{\rm QQ}^1$		1			$c_{\rm QQ}^1$		
$c_{\rm tt}^1$	-				$c_{\rm tt}^1$		
C_{tq}^8					C_{tq}°		
C_{Qq}^{18}					C_{Qq}^{18}		
c_{tq}^1	-				C_{tq}^1		
C_{Qq}^{11}	-				C_{Qq}^{11}		
C ³⁸ Qq					C ³⁸ Qq		
C_{Qq}^{31}	-				$C_{\rm Qq}^{\rm 31}$		-

Top quark probing lepton flavour violation

- Four-fermion contact interactions may introduce LFV
- Different LFV couplings studied by ATLAS and CMS:
 - tqeµ by CMS in <u>arXiv:2312.03199</u> and <u>JHEP 06 (2022) 082</u>
 - Covering latest result by ATLAS on tqμτ <u>arXiv:2403.06742</u>

Lepton flavour violation

- Sensitivity coming from tll production and t \rightarrow ll'q decay
 - Fully dominated in production for tuµt
 - More balanced between the two channels for tcµt
- Using events with two same-sign muons, a hadronically decaying T candidate and at least one jet
- Backgrounds dominated by tt+X (ttW, ttZ, ttH) and WZ production
- Semi data-driven estimation of nonprompt μ and jets faking τ

15

- Results compatible with SM expectations within 1.6σ
- Slight excess driven by the last HT bin in the signal region
- Setting limits on LFV for fermion operators, translated to 10⁻⁶ - 10⁻⁷ limits in LFV top quark decay modes
- Analysis also interpreted in terms of leptoquarks

Baryon number violation

- Baryon number violation can be induced by 4-fermion operators
- Introducing top + lepton production and t \rightarrow lqq decay

$$\mathcal{L}_{\text{eff}} = \frac{C_s}{\Lambda^2} \epsilon^{\alpha\beta\gamma} [\overline{\mathbf{t}^c_{\alpha}} \mathbf{d}_{\gamma}] [\overline{\mathbf{u}^c_{\beta}} \ell] + \frac{C_t}{\Lambda^2} \epsilon^{\alpha\beta\gamma} [\overline{\mathbf{t}^c_{\alpha}} \ell] [\overline{\mathbf{u}^c_{\beta}} \mathbf{d}_{\gamma}] + \text{h.c.}$$

- Probing tlqq' couplings with l=e,µ, q=u,c, q'=d,s, b
- Probing scalar and tensor Lorentz structure
- Studying the dilepton channel (ee, eµ, µµ) in events with exactly one b-tagged jet

arXiv:2402.18461

Baryon number violation

- BDT used to discriminate between top+lepton BNV production signal and SM backgrounds
- Rely mostly on lepton and top quark ^B/₂
 p_T and ΔΦ(I,I)
- Results consistent with the SM within 2 sigma
- Setting limits in top branching fraction between 10⁻⁹-10⁻⁶

Conclusions

- Overview of latest results on EFTs involving the top quark
 - Showed an snapshot of a broader on-going programme
- ATLAS and CMS study both the "canonical" flavour symmetry and violations of accidental symmetries (BNV, LFV)
- Complementary programmes followed by both collaborations, both in methodology and observables used
- All results are compatible with the SM
- More analyses and combinations are ongoing
 - See talks on combinations by Alessandro (Higgs combinations) and Andrea (all sectors)
- Keep posted for more interesting results

