GeoSMEFT: recent developments

Adam Martin (amarti41@nd.edu)

SM@LHC 2024, May 10th, 2024

Motivation: In SMEFT framework

Dual expansion: need to match dimensions, so numerator ~ powers of v, $\partial_{\mu} \sim E$ $A_6(v^2, vE, E^2; c_i)$ $A_8(v^4, v^2E^2, \cdots E^4; c_i)$

Motivation: In SMEFT framework

At high energy
$$\left(\frac{E^n}{\Lambda^n}\right) > \left(\frac{\nu^n}{\Lambda^n}\right)$$
:

Assuming Wilson coefficients similar size, operators/ coefficients with energy-dependent contributions will dominate in kinematic tails

big advantage of SMEFT at LHC

But! larger expansion parameter = more sensitive to higher orders!

- To know error on $1/\Lambda^2$ piece, we should know next order...
- Additionally, there are circumstances where interference is suppressed. Then $1/\Lambda^4$ is the leading SMEFT piece
- Top down: $1/\Lambda^2$ fails to capture some UV models

[Dawson et al 2305.0789, Ellis et al 2304.06663]

OK, so we'd like to include $\mathcal{O}(1/\Lambda^4)$ effects

BUT! SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal, CP) $\mathcal{O}(1000)$ operators at dim-8

Can't we just do $|\dim - 6|^2$?

OK, so we'd like to include $\mathcal{O}(1/\Lambda^4)$ effects

BUT! SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal, CP) $\mathcal{O}(1000)$ operators at dim-8

Can't we just do $|\dim - 6|^2$?

can be okay if nothing else, but lots of pitfalls

- $|\dim 6|^2$ is positive definite, total $\mathcal{O}(1/\Lambda^4)$ need not be
- |dim 6|² limited to dim 6 operators...
 limited structure, some already bounded, small in some UV setups

Can lead to wildly inaccurate estimates of $\mathcal{O}(1/\Lambda^4)$...

OK, so we'd like to include $\mathcal{O}(1/\Lambda^4)$ effects

BUT! SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal, CP) $\mathcal{O}(1000)$ operators at dim-8

Can't we just do $|\dim - 6|^2$?

can be okay if nothing else, but lots of pitfalls

- $|\dim 6|^2$ is positive definite, total $\mathcal{O}(1/\Lambda^4)$ need not be
- |dim 6|² limited to dim 6 operators...
 limited structure, some already bounded, small in some UV setups

Can lead to wildly inaccurate estimates of $\mathcal{O}(1/\Lambda^4)$...

Especially dangerous if $|\dim - 6|^2 > SM \times (\dim - 6)$ without a good reason!!

geoSMEFT-ist perspective

geoSMEFT = re-organization of SMEFT that makes many key processes (for LHC SMEFT global fit) calculable $\mathcal{O}(1/\Lambda^4)$ without needing 1000 operators. Clarifies E vs. v counting

Calculate away, forming a library of process to use as a laboratory to study 'truncation error'.

<u>geoSMEFT</u>

Organize operators by the smallest vertex (# of particles that enter) they can impact at tree level: 2, 3,4, etc. Minimize the # of operators affecting 2, 3-particle vertices by strategically placing derivatives (IBP)

• $(H^{\dagger}D_{\mu}H)^{*}(H^{\dagger}D^{\mu}H) \supset v^{2}(\partial_{\mu}h)^{2}$ contributes to 2-particle vertex

• $\Box (H^{\dagger}H) \Box (H^{\dagger}H) \supset v^4 (\partial_{\mu}h)^2$ would contribute to

but can use IBP to manipulate to

 $(D_{\mu}H^{\dagger}D^{\mu}HD_{\nu}H^{\dagger}D^{\nu}H)$ which only affects 4+ particle vertices

At dimension-6, assuming B,L, flavor universal (59 total)

At dimension-8, assuming B,L, flavor universal (993 total)

At dimension-8, assuming B,L, flavor universal (993 total)

If we also impose CP, U(3)⁵ (remember, must interfere to enter $1/\Lambda^4$)

22

8

[trend continues to dim > 8 too!]

Why is this a good idea?

Ex.)

- "Universal" corrections related to inputs ~ O(10) new operators.
 Simplest building block vertices ~ O(20) ops
- Bulk of operators pushed to more process-specific, 4+-particle interactions
- 2-, 3- particle interactions: going from dim-6 to dim-8 doesn't change kinematics just added additional H²! Additional derivatives aren't possible, as all momentum products reduce to masses = constants. So the energy/vev scaling of these terms is set by whatever happens at dim-6

 $\sim \frac{K^2 v}{\Lambda^2} \text{ at dim-6} \sim \frac{E^2 v}{\Lambda^2} \left(\frac{v^2}{\Lambda^2}\right) \text{ at dim-8}$ $= \frac{H^{\dagger} H X_{\mu\nu} X^{\mu\nu}}{H^{\dagger} H X_{\mu\nu} X^{\mu\nu}} \qquad = \frac{H^{\dagger} H Y_{\mu\nu} X^{\mu\nu}}{(H^{\dagger} H)^2 X_{\mu\nu} X^{\mu\nu}}$

Why is this a good idea?

- "Universal" corrections related to inputs ~ O(10) new operators.
 Simplest building block vertices ~ O(20) ops
- Bulk of operators pushed to more process-specific, 4+-particle interactions
- 2-, 3- particle interactions: going from dim-6 to dim-8 doesn't change kinematics just added additional H²! Additional derivatives aren't possible, as all momentum products reduce to masses = constants. So the energy/vev scaling of these terms is set by whatever happens at dim-6

So, if we're hunting for energy enhanced effects —> energy enhanced dim-6 3-particle + dim-6, dim-8 contact vertices only

What's with the name?

operators in 2-particle, 3-particle class saturate, form can be determined to all orders , e.g $h(H^{\dagger}, H) D^{\mu}H^{\dagger}D_{\mu}H$.

In terms of real Higgs d.o.f. $h_{IJ}(\phi) \left(D_{\mu} \phi \right)^{I} \left(D_{\mu} \phi \right)^{J} = a$ metric on field space

$$h_{IJ} = \left[1 + \phi^2 C_{H\Box}^{(6)} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2}\right)^{n+2} \left(C_{HD}^{(8+2n)} - C_{H,D2}^{(8+2n)}\right)\right] \delta_{IJ} + \frac{\Gamma_{A,J}^I \phi_K \Gamma_{A,L}^K \phi^L}{2} \left(\frac{C_{HD}^{(6)}}{2} + \sum_{n=0}^{\infty} \left(\frac{\phi^2}{2}\right)^{n+1} C_{H,D2}^{(8+2n)}\right)$$
SM, $h_{IJ} = \mathbf{1} \rightarrow \text{flat space, SMEFT} \quad h_{IJ} \neq \mathbf{1} \rightarrow \text{curved} \quad \begin{cases} \text{'geometric' SMEFT} \\ \text{or 'geoSMEFT'} \end{cases}$

Connects to larger work on geometry of EFT: Active research area!

 [Alonso, Jenkins, Manohar '15, '16]
 [Helset et at 1803.08001]
 [Cohen et al 2202.06965]

 [Helset et al 2210.08000]
 [Cheung et al 2202.06972]
 [Assi et al 2307.03187]

 [Alminawi et al 2308.00017]
 + several others

Ok, what do I do with this?

1.) Simplest LHC processes: resonances, 2 -> 2 can be done 'fully' to $\mathcal{O}(1/\Lambda^4)$ without an order of magnitude increase in operators

$$gg \to h \to \gamma\gamma, \gamma Z$$
 Z-pole, Drell-Yan $pp \to V(\ell \ell) h$
 $pp \to W(\ell \nu) \gamma$

[Kim, AM 2203.11976] [Boughezal et al 2106.05337, 2207.01703 [Corbett, AM, Trott 2107.07470] [AM, Trott 2305.05879] [Hays, Helset, AM, Trott 2007.00565]

For these, can use $\mathcal{O}(1/\Lambda^4)$ as an uncertainty on extraction of dim-6 operators [how to do this systematically?]

Ok, what do I do with this?

1.) Simplest LHC processes: resonances, 2 -> 2 can be done 'fully' to $\mathcal{O}(1/\Lambda^4)$ without an order of magnitude increase in operators

$$gg \to h \to \gamma\gamma, \gamma Z$$
 Z-pole, Drell-Yan $pp \to V(\ell \ell) h$
 $pp \to W(\ell \nu) \gamma$

[Kim, AM 2203.11976] [Boughezal et al 2106.05337, 2207.01703 [Corbett, AM, Trott 2107.07470] [AM, Trott 2305.05879] [Hays, Helset, AM, Trott 2007.00565]

For these, can use $\mathcal{O}(1/\Lambda^4)$ as an uncertainty on extraction of dim-6 operators [how to do this systematically?]

2.) Initial step: focus on terms that grow with energy (fully, to $\mathcal{O}(1/\Lambda^4)$). Assuming all WC are same size, these effects will be largest

 $pp \rightarrow W^+W^-, W^\pm Z$ $VBF pp \rightarrow hjj$ [2303.10493 Degrande] [Assi,AM in prep]

geoSMEFT applications: $h \rightarrow \gamma \gamma$

Can combine SM loops x $\mathcal{O}(1/\Lambda^2)$ with $\mathcal{O}(1/\Lambda^4)$

$$\frac{\Gamma_{SMEFT}^{\hat{m}_{W}}}{\Gamma_{SM}^{\hat{m}_{W}}} \simeq 1 - 788 f_{1}^{\hat{m}_{W}}, \qquad 1/\Lambda^{2} \qquad \text{Only 4 dim-8 operators needed!} \\ + 394^{2} (f_{1}^{\hat{m}_{W}})^{2} - 351 (\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)}) f_{3}^{\hat{m}_{W}} + 2228 \delta G_{F}^{(6)} f_{1}^{\hat{m}_{W}}, \\ + 394^{2} (f_{1}^{\hat{m}_{W}})^{2} - 351 (\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)}) f_{3}^{\hat{m}_{W}} + 2228 \delta G_{F}^{(6)} f_{1}^{\hat{m}_{W}}, \\ + 979 \tilde{C}_{HD}^{(6)} (\tilde{C}_{HB}^{(6)} + 0.80 \tilde{C}_{HW}^{(6)} - 1.02 \tilde{C}_{HWB}^{(6)}) - 788 \left[\left(\tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{4} \right) f_{1}^{\hat{m}_{W}} + f_{2}^{\hat{m}_{W}} \right], \\ + 2283 \tilde{C}_{HD}^{(6)} (\tilde{C}_{HB}^{(6)} + 0.66 \tilde{C}_{HW}^{(6)} - 0.88 \tilde{C}_{HWB}^{(6)}) - 1224 (f_{1}^{\hat{m}_{W}})^{2}, \\ - 117 \tilde{C}_{HB}^{(6)} - 23 \tilde{C}_{HW}^{(6)} + \left[51 + 2 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}} \right) \right] \tilde{C}_{HWB}^{(6)} + \left[-0.55 + 3.6 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}} \right) \right] \tilde{C}_{W}^{(6)}, \\ + \left[27 - 28 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}} \right) \right] \operatorname{Re} \tilde{C}_{uB}^{(6)} + 5.5 \operatorname{Re} \tilde{C}_{uH}^{(6)} + 2 \tilde{C}_{H\Box}^{(6)} - \frac{\tilde{C}_{HD}^{(6)}}{2}, \\ - 3.2 \tilde{C}_{HD}^{(6)} - 7.5 \tilde{C}_{HWB}^{(6)} - 3\sqrt{2} \delta G_{F}^{(6)}. \end{array}$$

$$\begin{split} \delta G_F^{(6)} &= \frac{1}{\sqrt{2}} \left(\tilde{C}_{Hl}^{(3)} + \tilde{C}_{Hl}^{(3)} - \frac{1}{2} (\tilde{C}'_{\mu e e \mu} + \tilde{C}'_{e \mu \mu e}) \right), \\ f_1^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(6)} + 0.29 \; \tilde{C}_{HW}^{(6)} - 0.54 \; \tilde{C}_{HWB}^{(6)} \right], \\ f_2^{\hat{m}_W} &= \left[\tilde{C}_{HB}^{(8)} + 0.29 \; (\tilde{C}_{HW}^{(8)} + \tilde{C}_{HW,2}^{(8)}) - 0.54 \; \tilde{C}_{HWB}^{(8)} \right], \\ f_3^{\hat{m}_W} &= \left[\tilde{C}_{HW}^{(6)} - \tilde{C}_{HB}^{(6)} - 0.66 \; \tilde{C}_{HWB}^{(6)} \right], \end{split}$$

Combined result informs on how assumptions about coefficients affect uncertainty

> [2107.07470 Corbett, AM, Trott] [2305.05879 AM, Trott]

Example: VH

contact 4-pt

Energy enhanced effects

dim-6: vertex $H^{\dagger}H W_{\mu\nu}W^{\mu\nu}$ contact $(Q^{\dagger}\bar{\sigma}^{\mu}\tau^{I}Q)H^{\dagger}\overleftrightarrow{D}_{I}H$

dim-8: contact $\psi^2 H^2 D^3 \supset (Q^{\dagger} \sigma^{\mu} D^{\nu} Q) (D^{\mu} H^{\dagger} D_{\nu} H)$ $\psi^2 H^2 X D \supset (Q^{\dagger} \bar{\sigma}^{\mu} Q) D^{\nu} (H^{\dagger} H) B_{\mu\nu}$

[2306.00053 Corbett, AM]

Example: VH

Energy enhanced effects

dim-6: vertex

vertex $H^{\dagger}HW_{\mu\nu}W^{\mu\nu}$ contact $(Q^{\dagger}\bar{\sigma}^{\mu}\tau^{I}Q)H^{\dagger}\overleftrightarrow{D}_{I}H$ SM dominantly V_L, suppressed interference with these!

dim-8: contact $\psi^2 H^2 D^3 \supset (Q^{\dagger} \sigma^{\mu} D^{\nu} Q) (D^{\mu} H^{\dagger} D_{\nu} H)$ $\psi^2 H^2 X D \supset (Q^{\dagger} \overline{\sigma}^{\mu} Q) D^{\nu} (H^{\dagger} H) B_{\mu\nu}$

[2306.00053 Corbett, AM]

Example: VH

But, $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} Q H^{\dagger} \overleftrightarrow{D}_{I} H$ etc. $\supset Q^{\dagger} \bar{\sigma}^{\mu} Q Z_{\mu}$ are constrained by LEP, while $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} D_{\nu} Q D^{\mu} H^{\dagger} \tau_{I} D_{\nu} H$ are not ($\not \supseteq Q^{\dagger} \bar{\sigma}^{\mu} Q Z_{\mu}$)

But, $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} Q H^{\dagger} \overleftrightarrow{D}_{I} H$ etc. $\supset Q^{\dagger} \bar{\sigma}^{\mu} Q Z_{\mu}$ are constrained by LEP, while $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} D_{\nu} Q D^{\mu} H^{\dagger} \tau_{I} D_{\nu} H$ are not ($\nearrow Q^{\dagger} \bar{\sigma}^{\mu} Q Z_{\mu}$)

 $\bar{q}q \rightarrow V(\bar{q}q)H$ + crossing symmetry gets us VBF

Therefore, expect similar operators to dominate, though kinematics and cuts are slightly different

Diboson

VVV is energy enhanced ($C_W W^3$). Important in global fit program, as first place triple gauge operators as appear. Contact terms only show up at dim-8, ex. class $\psi^2 X^2 D$

Example: γW^{\pm} , organize calculation by the polarizations of the W, γ

Energy scaling of different polarization amplitudes

$$|A_{SM}|^{2} + \frac{2Re(A_{SM}^{*}A_{6})}{\Lambda^{2}} + \frac{1}{\Lambda^{4}}|A_{6}|^{2}$$

with dim-6 alone, largest energy enhancement (to $\mathcal{O}(1/\Lambda^4)$) comes from from

dim-6
$$C_W |^2 \sim g_{SM}^2 c_6^2 \frac{s^2}{\Lambda^4}$$

Again, dim-8 terms have $\mathcal{O}(1)$ effect at high energy. See also Degrande 2303.10493 (for WW, WZ). Motivates polarization studies

<u>Takeaways</u>

- To take advantage of 'energy frontier' at LHC, need to know next order SMEFT corrections.
- |dim-6|² is an unreliable estimate at best! (And |dim-6|² > dim-6 x SM without good reason I don't trust at all)
- geoSMEFT organization: minimizes operators that enter smallest (& most universal) vertices. Pushes new energy-enhanced effects to process-specific 4+ particle vertices
- Facilitates full $\mathcal{O}(1/\Lambda^4)$ calculations. Several key processes relevant for global SMEFT program worked out. From examples worked out so far, impact of $\mathcal{O}(1/\Lambda^4)$ strongly depends on process and kinematic regime...
- Easy energy vs. vev counting: as first step, focus on energy enhanced terms to $\mathcal{O}(1/\Lambda^4)$. Assuming all WC are the same size, these will dominate kinematic tails

Thank you!

Extras

geoSMEFT applications: redo LEP1 analysis to $O(1/\Lambda^4)$

Using:

$$\tilde{C}^{(6)} = C^{(6)} \frac{v^2}{\Lambda^2}, \tilde{C}^{(8)} = C^{(8)} \frac{v^4}{\Lambda^4}$$

$$g_{\text{eff,pr}}^{\mathcal{Z},\psi} = \frac{\bar{g}_{Z}}{2} \left[(2s_{\theta_{Z}}^{2} Q_{\psi} - \sigma_{3}) \delta_{pr} + \bar{v}_{T} \langle L_{3,4}^{\psi,pr} \rangle + \sigma_{3} \bar{v}_{T} \langle L_{3,3}^{\psi,pr} \rangle \right]$$
$$= \langle g_{\text{SM,pr}}^{\mathcal{Z},\psi} \rangle + \langle g_{\text{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^{2}/\Lambda^{2})} + \langle g_{\text{eff,pr}}^{\mathcal{Z},\psi} \rangle_{\mathcal{O}(v^{4}/\Lambda^{4})} + \cdots$$

SMEFT correc	tions in $\{\hat{m}_W, \hat{m}_W, \hat{m}_W\}$	$(\hat{m}_Z, \hat{G}_F)/\{\hat{lpha}, \hat{m}_Z\}$	$Z, \hat{G}_F \}$ scheme	
$\mathcal{O}(rac{v^4}{\Lambda^4})$	$\langle g^{\mathcal{Z},u_R}_{ ext{eff,pp}} angle$	$\langle g_{ ext{eff,pp}}^{\mathcal{Z},d_R} angle$	$\langle g_{\mathrm{eff},\mathrm{pp}}^{\mathcal{Z},\ell_R} angle$	
$\langle g_{ ext{eff}}^{\mathcal{Z},\psi} angle^2$	14/5.5	-27/-11	-9.1/-3.6	
$\tilde{C}_{HB} C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58	
\tilde{C}^2_{HD}	0.28 / -0.026	-0.14/0.013	-0.42/0.040	
$ ilde{C}_{HD} ilde{C}^{(6)}_{H\psi}$	-0.83/-0.19	-0.83/-0.19	-0.83/-0.19	
$\tilde{C}_{HD}\tilde{C}_{HWB}$	0.59/-0.19	-0.29/0.097	-0.88/0.29	
$\tilde{C}_{HD}\langle g_{\mathrm{eff}}^{\mathcal{Z},\psi} \rangle$	4.0/0.50	4.0/0.50	4.0/0.50	
$(ilde{C}_{H\psi}^{(6)})^2$	0.62/1.4	-1.2/-2.8	-0.42/-0.93	
$\tilde{C}_{HWB} \tilde{C}^{(6)}_{H\psi}$	-0.69/0.58	-0.69/0.58	-0.69/0.58	
$ ilde{C}_{H\psi}^{(6)} \langle g_{ ext{eff}}^{\mathcal{Z},\psi} angle$	-6.7/-5.8	13/12	4.5/3.9	
$\tilde{C}_{HWB} \left\langle g_{\text{eff}}^{\mathcal{Z},\psi} \right\rangle$	3.7/0.26	3.7/0.26	3.7/0.26	
$\tilde{C}_{HW} C_{HWB}$	-0.21/0.39	0.10/-0.19	0.31/-0.58	
$ ilde{C}^{(8)}_{HD}$	-0.014/0.026	0.0069/-0.013	0.021/-0.040	
$ ilde{C}^{(8)}_{HD,2}$	-0.21/0.026	0.10/-0.013	0.31/-0.040	
$ ilde{C}^{(8)}_{H\psi}$	0.19/0.19	0.19/0.19	0.19/0.19	
$ ilde{C}^{(8)}_{HW,2}$ 24	-0.38, [2102.02819 Corbett, Helset, AM, Tr			
~ (9)			I . I	1

geoSMEFT applications: redo LEP1 analysis to $O(1/\Lambda^4)$

Do I gain something vs. using |dim-6|^2?: $W\gamma$

Do I gain something vs. using |\text{dim-6}|^2?: h \rightarrow \gamma \gamma

If dim-6 coefficients happen to be small, dim-8 can have a big effect even without energy enhancement

Weakly coupled UV: $(H^{\dagger}H)X^2$ loop level ~ O(0.01), while $(H^{\dagger}H)^2X^2$ tree level ~ O(1)

[Arzt'93, Craig et al '20, Hays et al 2007.00565]

$$\frac{\text{dim-8}}{\text{dim-6}} \sim \left(\frac{c^{(8)}}{c^{(6)}}\right) \frac{v^2}{\Lambda^2} \sim 100 \frac{v^2}{\Lambda^2}$$

[see also Boughezal et al 2106.05337, 2207.01703, Allwicher et al 2207.10714]

New kinematics from dimension-8

new spherical harmonics in angular distribution of Drell Yan show up at dimension-8 [2003.1615 Alioli et al]

$$\begin{split} \mathcal{O}_{8,ed\partial 2} &= (\bar{e}\gamma_{\mu}\overleftrightarrow{D}_{\nu}e)(\bar{d}\gamma^{\mu}\overleftrightarrow{D}^{\nu}d),\\ \mathcal{O}_{8,eu\partial 2} &= (\bar{e}\gamma_{\mu}\overleftrightarrow{D}_{\nu}e)(\bar{u}\gamma^{\mu}\overleftarrow{D}^{\nu}u),\\ \mathcal{O}_{8,eu\partial 2} &= (\bar{e}\gamma_{\mu}\overleftrightarrow{D}_{\nu}e)(\bar{u}\gamma^{\mu}\overleftarrow{D}^{\nu}d),\\ \mathcal{O}_{8,lu\partial 2} &= (\bar{l}\gamma_{\mu}\overleftrightarrow{D}_{\nu}l)(\bar{d}\gamma^{\mu}\overleftarrow{D}^{\nu}d),\\ \mathcal{O}_{8,lu\partial 2} &= (\bar{l}\gamma_{\mu}\overleftrightarrow{D}_{\nu}l)(\bar{u}\gamma^{\mu}\overleftarrow{D}^{\nu}u),\\ \mathcal{O}_{8,qe\partial 2} &= (\bar{e}\gamma_{\mu}\overleftarrow{D}_{\nu}e)(\bar{q}\gamma^{\mu}\overleftarrow{D}^{\nu}q). \end{split}$$

What about dimension-10?

$$pp \rightarrow W\gamma, WZ \quad \text{all coefficients} \sim 1$$

$$dim-6 \sim 0 \quad , \quad |dim-6|^2 \sim g_{SM}^2 c_6^2 \frac{E^4}{\Lambda^4} \quad , \quad dim-8 \sim g_{SM}^2 c_8 \frac{E^4}{\Lambda^4} \quad , \quad 1/\Lambda^6 \sim g_{SM}^2 c_{10} \frac{E^6}{\Lambda^6}$$

$$\frac{dim-8}{|dim-6|^2} \sim \frac{c_8}{c_6} \sim 1 \qquad \qquad \frac{1/\Lambda^6}{dim-8} \sim \frac{c_{10}}{c_8} \left(\frac{E^2}{\Lambda^2}\right) \sim \left(\frac{E^2}{\Lambda^2}\right)$$

 $\begin{array}{l} pp \rightarrow \mathscr{CC} \text{ four fermi contact interactions have strongest energy growth} \\ \text{dim-6} \sim g_{SM}^2 c_6 \Big(\frac{E^2}{\Lambda^2} \Big) & |\,\text{dim-6}\,|^2 \sim c_6^2 \Big(\frac{E^4}{\Lambda^4} \Big) & \text{dim-8} \sim g_{SM}^2 c_8 \frac{E^4}{\Lambda^4} & 1/\Lambda^6 \sim g_{SM}^2 c_{10} \frac{E^6}{\Lambda^6}, c_6 c_8 \frac{E^6}{\Lambda^6} \\ & \frac{|\,\text{dim-6}\,|^2}{|\,\text{dim-6}\,|^2} \sim \frac{c_6}{g_{SM}^2} \Big(\frac{E^2}{\Lambda^2} \Big) & \frac{|\,\text{dim-8}\,|}{|\,\text{dim-6}\,|^2} \sim \frac{g_{SM}^2 c_8}{c_6^2} & \frac{1/\Lambda^6}{|\,\text{dim-6}\,|^2} \sim \frac{c_6}{g_{SM}^2} \Big(\frac{E^2}{\Lambda^2} \Big) \\ & \text{For coefficients} \sim 1 > g_{30}^2 M, \text{ dim-8 subdominant} \end{array}$