GeoSMEFT: recent developments

Adam Martin
(amarti41@nd.edu)

جIU N I V ER S I T Y OF
雷 NOTRE DAME

SM@LHC 2024, May 10th, 2024

Motivation: In SMEFT framework

$$
\begin{gathered}
\mathscr{L}=\mathscr{L}_{S M}+\sum_{d} \sum_{i} \frac{c_{i}^{(d)}}{\Lambda^{d-4}} \mathcal{O}_{i}^{(d)}\left(Q, u_{c}, d_{c}, L, e_{c}, H, D_{\mu}, F_{\mu L} \cdots\right) \\
|A|^{2}=\left|A_{S M}\right|^{2}(1+\frac{1}{\Lambda^{2}} \frac{2 \operatorname{Re}\left(A_{S M}^{*} A_{6}\right)}{\left|A_{S M}\right|^{2}}+\underbrace{\frac{1}{\Lambda^{4}}\left(\frac{\left|A_{6}\right|^{2}}{\left|A_{S M}\right|^{2}}+\frac{2 \operatorname{Re}\left(A_{S M}^{*} A_{8}\right)}{\left|A_{S M}\right|^{2}}\right)+\cdots} \begin{array}{c}
\text { interference piece, } \\
\text { usually largest effect. } \\
\text { State of the art SMEFT }
\end{array} \quad \mathcal{O}\left(1 / \Lambda^{4}\right) \\
\text { corrections }
\end{gathered}
$$

Dual expansion: need to match dimensions, so numerator ~ powers

$$
A_{6}\left(v^{2}, v E, E^{2} ; c_{i}\right) \quad \text { of } v, \partial_{\mu} \sim E \quad A_{8}\left(v^{4}, v^{2} E^{2}, \cdots E^{4} ; c_{i}\right)
$$

Motivation: In SMEFT framework

At high energy $\left(\frac{E^{n}}{\Lambda^{n}}\right)>\left(\frac{v^{n}}{\Lambda^{n}}\right)$:
Assuming Wilson coefficients similar size, operators/ coefficients with energy-dependent contributions will dominate in kinematic tails
big advantage of SMEFT at LHC
But! larger expansion parameter = more sensitive to higher orders!

- To know error on $1 / \Lambda^{2}$ piece, we should know next order...
- Additionally, there are circumstances where interference is suppressed. Then $1 / \Lambda^{4}$ is the leading SMEFT piece
- Top down: $1 / \Lambda^{2}$ fails to capture some UV models
[Dawson et al 2305.0789, Ellis et al 2304.06663]

OK, so we'd like to include $\mathcal{O}\left(1 / \Lambda^{4}\right)$ effects

BUT!

SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal, CP) $O(1000)$ operators at dim-8

Can't we just do $|\operatorname{dim}-6|^{2} ?$

OK, so we'd like to include $\mathcal{O}\left(1 / \Lambda^{4}\right)$ effects

BUT!

SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal, CP) $\mathcal{O}(1000)$ operators at dim-8

Can't we just do $|\operatorname{dim}-6|^{2} ?$
can be okay if nothing else, but lots of pitfalls

- $|\operatorname{dim}-6|^{2}$ is positive definite, total $\mathcal{O}\left(1 / \Lambda^{4}\right)$ need not be
- $|\operatorname{dim}-6|^{2}$ limited to dim - 6 operators...
limited structure, some already bounded, small in some UV setups
Can lead to wildly inaccurate estimates of $\mathcal{O}\left(1 / \Lambda^{4}\right) \ldots$

OK, so we'd like to include $\mathcal{O}\left(1 / \Lambda^{4}\right)$ effects

BUT!

SMEFT Warsaw basis: $\mathcal{O}(60)$ operators at dim-6 (flavor universal, CP) $\mathcal{O}(1000)$ operators at dim-8

Can't we just do $|\operatorname{dim}-6|^{2} ?$
can be okay if nothing else, but lots of pitfalls

- $|\operatorname{dim}-6|^{2}$ is positive definite, total $\mathcal{O}\left(1 / \Lambda^{4}\right)$ need not be
- $|\operatorname{dim}-6|^{2}$ limited to dim - 6 operators...
limited structure, some already bounded, small in some UV setups
Can lead to wildly inaccurate estimates of $\mathcal{O}\left(1 / \Lambda^{4}\right) \ldots$

$$
\begin{aligned}
& \text { Especially dangerous if }|\operatorname{dim}-6|^{2}>S M \times(\operatorname{dim}-6) \\
& \text { without a good reason!! }
\end{aligned}
$$

geoSMEFT = re-organization of SMEFT that makes many
key processes (for LHC SMEFT global fit) calculable $\mathcal{O}\left(1 / \Lambda^{4}\right)$ without needing 1000 operators. Clarifies E vs. v counting

Calculate away, forming a library of process to use as a laboratory to study 'truncation error'.

geoSMEFT

Organize operators by the smallest vertex (\# of particles that enter) they can impact at tree level: 2, 3,4, etc. Minimize the \# of operators affecting 2, 3-particle vertices by strategically placing derivatives (IBP)

- $\quad\left(H^{\dagger} D_{\mu} H\right)^{*}\left(H^{\dagger} D^{\mu} H\right) \supset v^{2}\left(\partial_{\mu} h\right)^{2}$ contributes to 2-particle vertex
$\left(\psi^{\dagger} \psi\right)^{2}$ contributes to 4-particle vertex

- $\square\left(H^{\dagger} H\right) \square\left(H^{\dagger} H\right) \supset v^{4}\left(\partial_{\mu} h\right)^{2}$ would contribute to
but can use IBP to manipulate to
($D_{\mu} H^{\dagger} D^{\mu} H D_{\nu} H^{\dagger} D^{\nu} H$) which only affects 4+ particle vertices

At dimension-6, assuming B,L, flavor universal (59 total)

Min vertex:

	H^{6}	X^{3}
Operator type:	$H^{4} D^{2}$	$\psi^{2} H X$
[X = field strength,	$H^{2} X^{2}$	$\psi^{2} H^{2} D$

ψ^{4}

Number:
14
20
25
0

At dimension-8, assuming B,L, flavor universal (993 total)

Min vertex:

Operator type:

> Operator type: [X = field strength, $\quad H^{6} D^{2}$
$H^{4} X^{2}$
$\psi^{2} H^{5}$

Number:
19

$H^{2} X^{3}$
$\psi^{2} H^{3} X$
X^{4}
$H^{4} D^{4}$
$X^{2} H^{2} D^{2}$
$H^{4} D^{2} X$

47

$\psi^{2} H^{4} D$

927!

At dimension-8, assuming B,L, flavor universal (993 total)

Min vertex:
Operator type:

OX = field strength
$\mathrm{D}=$ deriv]

Number:
19

If we also impose $\mathrm{CP}, \mathrm{U}(3)^{5}$ (remember, must interfere to enter $1 / \Lambda^{4}$)

$$
8 \quad 22
$$

Why is this a good idea?

- "Universal" corrections related to inputs $\sim \mathrm{O}(10)$ new operators. Simplest building block vertices $\sim 0(20)$ ops
- Bulk of operators pushed to more process-specific, 4+-particle interactions
- 2-, 3- particle interactions: going from dim-6 to dim-8 doesn't change kinematics - just added additional H^{2} ! Additional derivatives aren't possible, as all momentum products reduce to masses = constants. So the energy/vev scaling of these terms is set by whatever happens at dim-6
Ex.)

$$
\begin{aligned}
\sim & \frac{E^{2} v}{\Lambda^{2}} \text { at dim-6 } \sim \frac{E^{2} v}{\Lambda^{2}}\left(\frac{v^{2}}{\Lambda^{2}}\right) \text { at dim-8 } \\
H^{\dagger} H X_{\mu \nu} X^{\mu \nu} & \left(H^{\dagger} H\right)^{2} X_{\mu \nu} X^{\mu \nu}
\end{aligned}
$$

Why is this a good idea?

- "Universal" corrections related to inputs $\sim \mathrm{O}(10)$ new operators. Simplest building block vertices ~ O(20) ops
- Bulk of operators pushed to more process-specific, 4+-particle interactions
- 2-, 3- particle interactions: going from dim-6 to dim-8 doesn't change kinematics - just added additional H^{2} ! Additional derivatives aren't possible, as all momentum products reduce to masses = constants. So the energy/vev scaling of these terms is set by whatever happens at dim-6

So, if we're hunting for energy enhanced effects -> energy enhanced dim-6 3-particle + dim-6, dim-8 contact vertices only

What's with the name?

\# operators in 2-particle, 3-particle class saturate, form can be determined to all orders, e.g $h\left(H^{\dagger}, H\right) D^{\mu} H^{\dagger} D_{\mu} H$.

In terms of real Higgs d.o.f. $h_{I J}(\phi)\left(D_{\mu} \phi\right)^{I}\left(D_{\mu} \phi\right)^{J}=$ a metric on field space

$$
h_{I J}=\left[1+\phi^{2} C_{H \square}^{(6)}+\sum_{n=0}^{\infty}\left(\frac{\phi^{2}}{2}\right)^{n+2}\left(C_{H D}^{(8+2 n)}-C_{H, D 2}^{(8+2 n)}\right)\right] \delta_{I J}+\frac{\Gamma_{A, J}^{I} \phi_{K} \Gamma_{A, L}^{K} \phi^{L}}{2}\left(\frac{C_{H D}^{(6)}}{2}+\sum_{n=0}^{\infty}\left(\frac{\phi^{2}}{2}\right)^{n+1} C_{H, D 2}^{(8+2 n)}\right)
$$

$$
\text { SM, } h_{I J}=\mathbf{1} \rightarrow \text { flat space, SMEFT } h_{I J} \neq \mathbf{1} \rightarrow \text { curved }\left\{\begin{array}{c}
\text { 'geometric' SMEFT } \\
\text { or 'geoSMEFT' }
\end{array}\right.
$$

Connects to larger work on geometry of EFT: Active research area!
[Alonso, Jenkins, Manohar '15, '16]
[Helset et al 2210.08000]
[Helset et at 1803.08001]
[Cheung et al 2202.06972]
[Alminawi et al 2308.00017]
[Cohen et al 2202.06965]
[Assi et al 2307.03187]

+ several others

Ok, what do I do with this?

1.) Simplest LHC processes: resonances, 2 -> 2 can be done 'fully' to $\mathcal{O}\left(1 / \Lambda^{4}\right)$ without an order of magnitude increase in operators

$$
\begin{array}{cl}
g g \rightarrow h \rightarrow \gamma \gamma, \gamma Z \quad Z \text {-pole, Drell-Yan } \quad p p \rightarrow V(\ell \ell) h \\
& p p \rightarrow W(\ell \nu) \gamma
\end{array}
$$

[Kim, AM 2203.11976] [Boughezal et al 2106.05337, 2207.01703
[Corbett, AM, Trott 2107.07470] [AM, Trott 2305.05879] [Hays, Helset, AM, Trott 2007.00565]
For these, can use $\mathcal{O}\left(1 / \Lambda^{4}\right)$ as an uncertainty on extraction of dim-6 operators [how to do this systematically?]

Ok, what do I do with this?

1.) Simplest LHC processes: resonances, 2 -> 2 can be done 'fully' to $\mathcal{O}\left(1 / \Lambda^{4}\right)$ without an order of magnitude increase in operators

$$
\begin{array}{cl}
g g \rightarrow h \rightarrow \gamma \gamma, \gamma Z \quad Z \text {-pole, Drell-Yan } \quad p p \rightarrow V(\ell \ell) h \\
& p p \rightarrow W(\ell \nu) \gamma
\end{array}
$$

[Kim, AM 2203.11976] [Boughezal et al 2106.05337, 2207.01703
[Corbett, AM, Trott 2107.07470] [AM, Trott 2305.05879] [Hays, Helset, AM, Trott 2007.00565]
For these, can use $\mathcal{O}\left(1 / \Lambda^{4}\right)$ as an uncertainty on extraction of dim-6 operators [how to do this systematically?]
2.) Initial step: focus on terms that grow with energy (fully, to $\mathcal{O}\left(1 / \Lambda^{4}\right)$). Assuming all WC are same size, these effects will be largest

$$
\begin{array}{rr}
p p \rightarrow W^{+} W^{-}, W^{ \pm} Z & V B F p p \rightarrow h j j \\
{[2303.12493 \text { Degrande] }} & \text { [Assi,AM in prep] }
\end{array}
$$

geoSMEFT applications: $h \rightarrow \gamma \gamma$

Can combine SM loops $\times \mathcal{O}\left(1 / \Lambda^{2}\right)$ with $\mathcal{O}\left(1 / \Lambda^{4}\right)$

$$
\begin{aligned}
& \frac{\Gamma_{S M E F T}^{\hat{m}_{W}}}{\Gamma_{S M}^{\hat{m}_{W}}} \simeq 1-788 f_{1}^{\hat{m}_{W}}, \\
&+394^{2}\left(f_{1}^{\hat{m}_{W}}\right)^{2}-351\left(\Lambda_{H W}^{(6)}-\tilde{C}_{H B}^{(6)}\right) f_{3}^{\hat{m}_{W}}+2228 \delta G_{F}^{(6)} f_{1}^{\hat{m}_{W}} \\
&+979 \tilde{C}_{H D}^{(6)}\left(\tilde{C}_{H B}^{(6)}+0.80 \tilde{C}_{H W}^{(6)}-1.02 \tilde{C}_{H W B}^{(6)}\right)-788\left[\left(\tilde{C}_{H \square}^{(6)}-\frac{\tilde{C}_{H D}^{(6)}}{4}\right) f_{1}^{\hat{m}_{W}}+f_{2}^{\hat{m}_{W}}\right] \\
&+2283 \tilde{C}_{H W B}^{(6)}\left(\tilde{C}_{H B}^{(6)}+0.66 \tilde{C}_{H W}^{(6)}-0.88 \tilde{C}_{H W B}^{(6)}\right)-1224\left(f_{1}^{\hat{m}_{W}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -117 \tilde{C}_{H B}^{(6)}-23 \tilde{C}_{H W}^{(6)}+\left[51+2 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{H W B}^{(6)}+\left[-0.55+3.6 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \tilde{C}_{W}^{(6)} \\
& +\left[27-28 \log \left(\frac{\hat{m}_{h}^{2}}{\Lambda^{2}}\right)\right] \operatorname{Re} \tilde{\mathrm{C}}_{u B}^{(6)}+5.5 \operatorname{Re} \tilde{\mathrm{C}}_{u H}^{(6)}+2 \tilde{\mathrm{C}}_{\mathrm{H} \square}^{(6)}-\frac{\tilde{\mathrm{C}}_{\mathrm{HD}}^{(6)}}{2}
\end{aligned}
$$

$$
-3.2 \tilde{C}_{H D}^{(6)}-7.5 \tilde{C}_{H W B}^{(6)}-3 \sqrt{2} \delta G_{F}^{(6)}
$$

$$
\begin{aligned}
\delta G_{F}^{(6)} & =\frac{1}{\sqrt{2}}\left(\tilde{C}_{e e}^{(3)}+\tilde{C}_{H \mu}^{(3)}-\frac{1}{2} \underset{\mu e e \mu}{\tilde{C}_{l l}^{\prime}}+\tilde{C}_{e \mu \mu e}^{\prime}\right) \\
f_{1}^{\hat{m}_{W}} & =\left[\tilde{C}_{H B}^{(6)}+0.29 \tilde{C}_{H W}^{(6)}-0.54 \tilde{C}_{H W B}^{(6)}\right] \\
f_{2}^{\hat{m}_{W}} & =\left[\tilde{C}_{H B}^{(8)}+0.29\left(\tilde{C}_{H W}^{(8)}+\tilde{C}_{H W, 2}^{(8)}\right)-0.54 \tilde{C}_{H W B}^{(8)}\right] \\
f_{3}^{\hat{m}_{W}} & =\left[\tilde{C}_{H W}^{(6)}-\tilde{C}_{H B}^{(6)}-0.66 \tilde{C}_{H W B}^{(6)}\right]
\end{aligned}
$$

Combined result informs on how assumptions about coefficients affect uncertainty
[2107.07470 Corbett, AM, Trott] [2305.05879 AM, Trott]

Do I gain something vs. using |dim-6|²

Example: VH

SM

$+$

contact 4-pt

Energy enhanced effects

dim-6:	vertex	$H^{\dagger} H W_{\mu \nu} W^{\mu \nu}$
	contact	$\left(Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} Q\right) H^{\dagger} \overleftrightarrow{D}_{I} H$

dim-8:
contact

$$
\begin{aligned}
& \psi^{2} H^{2} D^{3} \supset\left(Q^{\dagger} \sigma^{\mu} D^{\nu} Q\right)\left(D^{\mu} H^{\dagger} D_{\nu} H\right) \\
& \psi^{2} H^{2} X D \supset\left(Q^{\dagger} \bar{\sigma}^{\mu} Q\right) D^{\nu}\left(H^{\dagger} H\right) B_{\mu \nu}
\end{aligned}
$$

Do I gain something vs. using |dim-6|²

Example: VH

SM

3pt - in geoSMEFT

contact 4-pt

Energy enhanced effects

dim-6:	vertex	
	contact	$\left(Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} Q\right) H^{\dagger} \overleftrightarrow{D}_{I} H$

SM dominantly VL, suppressed interference with these!
dim-8:
contact $\quad \psi^{2} H^{2} D^{3} \supset\left(Q^{\dagger} \sigma^{\mu} D^{\nu} Q\right)\left(D^{\mu} H^{\dagger} D_{\nu} H\right)$
$\psi^{2} H^{2} X D \sim\left(Q^{\dagger}=\frac{Q^{2}}{2}\right) D^{\nu}\left(\Psi^{+} H\right) D_{\mu \nu}$

Do I gain something vs. using |dim-6|²

Example: VH

SM

3pt - in geoSMEFT

contact 4-pt

Energy enhanced effects

dim-6: \begin{tabular}{ll}
vertex

contact

$H^{\dagger} H W_{\mu \nu}$

$\left(Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} Q\right) H^{\dagger} \overleftrightarrow{D}_{I} H$
\end{tabular}\longrightarrow squared $\sim c_{6}^{2} \frac{\hat{s}^{2}}{\Lambda^{4}}$

dim-8:

$$
\begin{array}{ll}
\text { contact } & \psi^{2} H^{2} D^{3} \supset\left(Q^{\dagger} \sigma^{\mu} D^{\nu} Q\right)\left(D^{\mu} H^{\dagger} D_{\nu} H\right) \\
& \psi^{2} H^{2} X D \supset\left(Q^{\dagger} \overline{\sigma^{\mu}} Q\right) D^{\nu}\left(H^{\dagger} H\right) B_{\mu \nu}
\end{array}
$$

interference $g_{S M}^{2} c_{8} \frac{\hat{s}^{2}}{\Lambda^{4}}$

Do I gain something vs. using |dim-6|²

Effects at large \hat{s} controlled by:

Do I gain something vs. using |dim-6|²

But, $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{I} Q H^{\dagger} \overleftrightarrow{D}_{I} H$ etc. $\supset Q^{\dagger} \bar{\sigma}^{\mu} Q Z_{\mu}$ are constrained by LEP, while $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{l} D_{\nu} Q D^{\mu} H^{\dagger} \tau_{I} D_{\nu} H$ are $\operatorname{not}\left(\not \supset Q^{\dagger} \bar{\sigma}^{\mu} Q Z_{\mu}\right)$

Do I gain something vs. using |dim-6|²

But, $Q^{\dagger}{ }^{\mu} \tau^{I} Q H^{\dagger} \overleftrightarrow{D}_{l} H$ etc. $\supset Q^{\dagger} \bar{\sigma}^{\mu} Q Z_{\mu}$ are constrained by LEP, while $Q^{\dagger} \bar{\sigma}^{\mu} \tau^{l} D_{\nu} Q D^{\mu} H^{\dagger} \tau_{I} D_{\nu} H$ are not $\left(\not \supset Q^{\dagger} \bar{\sigma}^{\mu} Q Z_{\mu}\right)$
$\bar{q} q \rightarrow V(\bar{q} q) H+$ crossing symmetry gets us VBF

Therefore, expect similar operators to dominate, though kinematics and cuts are slightly different

$p p+V H$
[Assi, AM in progress]

Do I gain something vs. using |dim-6|²

Diboson

Assuming CP, $U(3)^{5}$, no energy enhancements

> VVV is energy enhanced $\left(C_{W} W^{3}\right)$. Important in global fit program, as first place triple gauge operators as appear.

Contact terms only show up at dim-8, ex. class

$$
\psi^{2} X^{2} D
$$

Example: $\gamma W^{ \pm}$, organize calculation by the polarizations of the W, γ

Do I gain something vs. using |dim-6|²

Energy scaling of different polarization amplitudes

$\epsilon_{\gamma} \epsilon_{W}$	SM	$\operatorname{dim}-6 C_{W}$			
++	$\frac{v^{2}}{s}$	$\frac{s}{\Lambda^{2}}$			$\left\|A_{S M}\right\|^{2}+\frac{2 \operatorname{Re}\left(A_{S M}^{*} A_{6}\right)}{\Lambda^{2}}+\frac{1}{\Lambda^{4}}\left\|A_{6}\right\|^{2}$
:---:					
+-					

Do I gain something vs. using |dim-6|²

		W^{3}	$\psi^{2} W^{2} D$	$\begin{gathered} \left\|A_{S M}\right\|^{2}+\frac{2 \operatorname{Re}\left(A_{S M}^{*} A_{6}\right)}{\Lambda^{2}}+\frac{1}{\Lambda^{4}}\left\|A_{6}\right\|^{2} \\ 2 \operatorname{Re}\left(A_{S M}^{*} A_{8}\right) \end{gathered}$
$\epsilon_{\gamma} \epsilon_{W}$	SM	$\operatorname{dim}-6 C_{W}$	dim-8 contact	
				Λ^{4}
+ +	$\frac{v^{2}}{s}$	$\frac{s}{\Lambda^{2}}$	$\frac{s^{2}}{\Lambda^{4}}$	
				But: dim 8
+-	1	0	$\frac{s^{2}}{\Lambda^{4}}$	$\left(Q^{\dagger} \bar{\sigma}^{\mu} \tau^{l} \overleftrightarrow{D}_{\nu} Q\right) W_{\mu \rho}^{I} B_{\rho \nu}$ can interfere with
$+0$	$\frac{v}{\sqrt{s}}$	$\frac{v \sqrt{s}}{\Lambda^{2}}$	$\frac{v s^{3 / 2}}{\Lambda^{4}}$	dominant SM polarization
$\hat{s} \gg m_{W}^{2}$				$S M \times \operatorname{dim}-8 \sim g_{S M}^{2} c_{8} \frac{s^{2}}{\Lambda^{4}}$

Again, dim-8 terms have $\mathcal{O}(1)$ effect at high energy. See also Degrande 2303.10493 (for WW, WZ). Motivates polarization studies

Takeaways

- To take advantage of 'energy frontier’ at LHC, need to know next order SMEFT corrections.
- \mid dim-6| $\left.\right|^{2}$ is an unreliable estimate at best! (And $|\operatorname{dim}-6|^{2}>\operatorname{dim}-6 \times$ SM without good reason I don't trust at all)
- geoSMEFT organization: minimizes operators that enter smallest (\& most universal) vertices. Pushes new energy-enhanced effects to process-specific 4+ particle vertices
- Facilitates full $\mathcal{O}\left(1 / \Lambda^{4}\right)$ calculations. Several key processes relevant for global SMEFT program worked out. From examples worked out so far, impact of $\mathcal{O}\left(1 / \Lambda^{4}\right)$ strongly depends on process and kinematic regime...
- Easy energy vs. vev counting: as first step, focus on energy enhanced terms to $\mathcal{O}\left(1 / \Lambda^{4}\right)$. Assuming all WC are the same size, these will dominate kinematic tails

Thank you!

Extras

geoSMEFT applications: redo LEP1 analysis to $\mathcal{O}\left(1 / \Lambda^{4}\right)$

Using:

$$
\tilde{C}^{(6)}=C^{(6)} \frac{v^{2}}{\Lambda^{2}}, \tilde{C}^{(8)}=C^{(8)} \frac{v^{4}}{\Lambda^{4}}
$$

$$
\begin{aligned}
g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi} & =\frac{\bar{g}_{Z}}{2}\left[\left(2 s_{\theta_{Z}}^{2} Q_{\psi}-\sigma_{3}\right) \delta_{p r}+\bar{v}_{T}\left\langle L_{3,4}^{\psi, p r}\right\rangle+\sigma_{3} \bar{v}_{T}\left\langle L_{3,3}^{\psi, p r}\right\rangle\right] \\
& =\left\langle g_{\mathrm{SM}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle+\left\langle g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle_{\mathcal{O}\left(v^{2} / \Lambda^{2}\right)}+\left\langle g_{\mathrm{eff}, \mathrm{pr}}^{\mathcal{Z}, \psi}\right\rangle \mathcal{O}\left(v^{4} / \Lambda^{4}\right)+\cdots
\end{aligned}
$$

geoSMEFT applications: redo LEP1 analysis to $\mathcal{O}\left(1 / \Lambda^{4}\right)$
Ex.) 2D projections: Zero all dimension-6 operators except two but leave all dimension- 8 on with coefficients +1 . Fix Λ, then compare χ^{2} ellipses with and without dimension- 8 terms

$$
\Lambda=3 \mathrm{TeV}
$$

Do I gain something vs. using |dim-6|2?: $W \gamma$

Do I gain something vs. using |dim-6|2?: $h \rightarrow \gamma \gamma$

If dim-6 coefficients happen to be small, dim-8 can have a big effect even without energy enhancement

Weakly coupled UV: $\left(H^{\dagger} H\right) X^{2}$ loop level $\sim O(0.01)$, while $\left(H^{\dagger} H\right)^{2} X^{2}$ tree level $\sim O(1)$
[Arzt'93, Craig et al '20, Hays et al 2007.00565]

$$
\frac{\operatorname{dim}-8}{\operatorname{dim}-6} \sim\left(\frac{c^{(8)}}{c^{(6)}}\right) \frac{v^{2}}{\Lambda^{2}} \sim 100 \frac{v^{2}}{\Lambda^{2}}
$$

In these scenarios, $\mathcal{O}(1)$ correction from dim-8

Ex. $p p \rightarrow \ell^{+} \ell^{-}, \ell^{ \pm} \nu$ to $\mathcal{O}\left(1 / \Lambda^{4}\right)$
[Kim, AM 2203.11976]
new at 4-pt, $\mathcal{O}(10)$

SM
 operators at $1 / \Lambda^{4}$

$$
p p \rightarrow \ell^{+} \ell^{-}
$$

[see also Boughezal et al 2106.05337, 22027.01703, Allwicher et al 2207.10714]

New kinematics from dimension-8

SM

3pt - in geoSMEFT

new at $4-\rho t, \mathcal{O}(10)$ operators at $1 / \Lambda^{4}$
new spherical harmonics in angular distribution of Drell Yan show up at dimension-8 [2003.1615 Alioli et al]

$$
\begin{aligned}
\mathcal{O}_{8, e d \partial 2} & =\left(\bar{e} \gamma_{\mu} \overleftrightarrow{D}_{\nu} e\right)\left(\bar{d} \gamma^{\mu} \overleftrightarrow{D}^{\nu} d\right), \\
\mathcal{O}_{8, e u \partial 2} & =\left(\bar{e} \gamma_{\mu} \overleftrightarrow{D}_{\nu} e\right)\left(\bar{u} \gamma^{\mu} \overleftrightarrow{D}^{\nu} u\right), \\
\mathcal{O}_{8, l d \partial 2} & =\left(\bar{l} \gamma_{\mu} \overleftrightarrow{D}_{\nu} l\right)\left(\bar{d} \gamma^{\mu} \overleftrightarrow{D}^{\nu} d\right), \\
\mathcal{O}_{8, l u \partial 2} & =\left(\bar{l} \gamma_{\mu} \overleftrightarrow{D}_{\nu} l\right)\left(\bar{u} \gamma^{\mu} \overleftrightarrow{D}^{\nu} u\right), \\
\mathcal{O}_{8, q e \partial 2} & =\left(\bar{e} \gamma_{\mu} \overleftrightarrow{D}_{\nu} e\right)\left(\bar{q} \gamma^{\mu} \overleftrightarrow{D}^{\nu} q\right) .
\end{aligned}
$$

What about dimension-10?

$p p \rightarrow W \gamma, W Z \quad$ all coefficients ~ 1 $\operatorname{dim}-6 \sim 0,|\operatorname{dim}-6|^{2} \sim g_{S M}^{2} c_{6}^{2} \frac{E^{4}}{\Lambda^{4}}, \operatorname{dim}-8 \sim g_{S M}^{2} c_{8} \frac{E^{4}}{\Lambda^{4}}, 1 / \Lambda^{6} \sim g_{S M}^{2} c_{10} \frac{E^{6}}{\Lambda^{6}}$

$$
\frac{\operatorname{dim}-8}{|\operatorname{dim}-6|^{2}} \sim \frac{c_{8}}{c_{6}} \sim 1 \quad \frac{1 / \Lambda^{6}}{\operatorname{dim}-8} \sim \frac{c_{10}}{c_{8}}\left(\frac{E^{2}}{\Lambda^{2}}\right) \sim\left(\frac{E^{2}}{\Lambda^{2}}\right)
$$

$p p \rightarrow \ell \ell$ four fermi contact interactions have strongest energy growth $\operatorname{dim}-\mathbf{6} \sim g_{S M}^{2} c_{6}\left(\frac{E^{2}}{\Lambda^{2}}\right) \quad|\operatorname{dim}-6|^{2} \sim c_{6}^{2}\left(\frac{E^{4}}{\Lambda^{4}}\right) \quad \operatorname{dim}-\mathbf{8} \sim g_{S M}^{2} c_{8} \frac{E^{4}}{\Lambda^{4}} \quad 1 / \Lambda^{6} \sim g_{S M}^{2} c_{10} \frac{E^{6}}{\Lambda^{6}}, c_{6} c_{8} \frac{E^{6}}{\Lambda^{6}}$

$$
\frac{|\operatorname{dim}-6|^{2}}{\operatorname{dim}-6} \sim \frac{c_{6}}{g_{S M}^{2}}\left(\frac{E^{2}}{\Lambda^{2}}\right) \quad \frac{\operatorname{dim}-8}{|\operatorname{dim}-6|^{2}} \sim \frac{g_{S M}^{2} c_{8}}{c_{6}^{2}} \quad \frac{1 / \Lambda^{6}}{|\operatorname{dim}-6|^{2}} \sim \frac{c_{6}}{g_{S M}^{2}}\left(\frac{E^{2}}{\Lambda^{2}}\right)
$$

For coefficients $\sim 1>g_{30}^{2}$, dim-8 subdominant

