

Full vs Simplified Likelihoods in Higgs (Re-)interpretations

Nicholas Wardle

SM@LHC 2024 CNR, Rome 7-10 May 2024

LHC "interpretation" spectrum

Exclusion limits/contours In UV-complete models Raw data

LHC "interpretation" spectrum

LHC "interpretation" spectrum

"Full" Likelihood

The LHC is a random number generator...

"Full" "Experimental" Likelihood

We never use the *full* likelihood for Higgs measurements/interpretations, so I call the most complete thing we use the *experimental* likelihood. For Higgs measurements, typically

<u>"Full" "Experimental" Likelihood</u>

We never use the *full* likelihood for Higgs measurements/interpretations, so I call the most complete thing we use the *experimental* likelihood. For Higgs measurements, typically

$$L(\vec{\mu},\vec{\nu}) = \prod_{n} p\left(x_{n};\sum_{i,f}\mu_{i}\mu_{f}^{f}S_{i,n}^{f}(\vec{\nu}) + \sum_{k} B_{k}(\vec{\nu})\right) \cdot \prod_{i} p(y_{i};\nu_{i})$$
The "data" in each channel
$$\int_{0}^{0} \int_{0}^{0} \int$$

Experimental Likelihood interpretations

Profiled Experimental Likelihood

Interpretations - couplings

Higgs interpretations performed by *re-parameterizing* $L(\vec{\mu}, \vec{\nu}) \rightarrow L(\vec{\kappa}, \vec{\nu})$

Interpretations – STXS

These days (with more data since LHC Run-2), we can measure more than global signal strengths and couplings

→ Differential measurements – eg STXS " $\vec{\mu}$ " *

arXiv:2402.05742 (sub to JHEP)

Interpretations – STXS

These days (with more data since LHC Run-2), we can measure more than global signal strengths and couplings

→ Differential measurements – eg STXS " $\vec{\mu}$ " *

Exploit sensitivity to kinematic dependence of BSM contributions \rightarrow Effective field theory interpretations

arXiv:2402.05742 (sub to JHEP)

*ignores dominant theory uncertainties 12

2HDM interpretations of STXS measurements

2HDM interpretations of STXS measurements

Simplified Likelihoods

<u>Interpretation of $H \rightarrow invisible</u>$ </u>

When the result is presented as single number, interpretation is "straightforward*"

Gaussian approximations

Simple approximation of likelihood allows for fast/easy interpretation of Higgs boson measurements

0.9

1.0

1.1

5.4

4.8

4.2

3.6

2.4

1.8

1.2

0.6

0.0

 $\frac{1.2}{\kappa_V}$

 $^{3.0}\Delta\chi^2$

Gaussian approximations

HiggsSignals-2 using ATLAS Combination (79.8 fb⁻¹

Gaussian approximations

Ľr. Phys 81(2 145

HiggsSignals-2 using ATLAS Combination (79.8 fb⁻¹

EFT interpretations with Simplified Likelihoods

Comparison of constraints on Wilson Coefficients from simplified likelihood approach with experimental likelihood

EFT interpretations with Simplified Likelihoods++

Inclusion of asymmetric uncertainties possible with slight extension to Gaussian approximation*

$$-2\ln\left(\frac{L(\vec{\mu},\hat{\vec{\nu}})}{L(\hat{\vec{\mu}},\hat{\vec{\nu}})}\right) \approx \rho_{ij}\chi_i\chi_j, \ \mu_i = \alpha_i + \beta_i\chi_i + \gamma_i\chi_i^2$$

Coefficients α , β , γ , and matrix ρ determined from published best-fit, asymmetric uncertainties and correlation matrix [1,2]

*Can also use "variable Gaussian" as in S. Kraml, T.Q. Loc, D.T. Nhung, L.D. Ninh $C = \Sigma(\mu) . \rho . \Sigma(\mu)$

[1] J. Araz <u>arxXiv:2307.06996</u> [2] <u>JHEP04 (2019) 064</u>

EFT interpretations with Simplified Likelihoods++

Inclusion of asymmetric uncertainties possible with slight extension to Gaussian approximation*

$$-2\ln\left(\frac{L(\vec{\mu},\hat{\vec{\nu}})}{L(\hat{\vec{\mu}},\hat{\vec{\nu}})}\right) \approx \rho_{ij}\chi_i\chi_j, \ \mu_i = \alpha_i + \beta_i\chi_i + \gamma_i\chi_i^2$$

Coefficients α , β , γ , and matrix ρ determined from published best-fit, asymmetric uncertainties and correlation matrix [1,2]

Caveats for Re-interpreting Higgs measurements

EPJC 80 957 (2020)

Caveats for Re-interpreting Higgs measurements

<u>EPJC **80** 957 (2020)</u>

Caveats for Re-interpreting Higgs measurements

$$L(\vec{\mu},\vec{\nu}) = \prod_{n} p\left(x_n; \sum_{i,f} \mu_i \mu^f S^f_{i,n}(\vec{\nu}) + \sum_k B_k(\vec{\nu})\right) \cdot \prod_i p(y_i;\nu_i)$$

BSM interpretations of Higgs measurements should consider effects on backgrounds* too

Nicholas Wardle

A note on combinations of simplified likelihoods

Correlation information between measurements (eg due to theory uncertainties) often lost when using simplified likelihood ...

A note on combinations of simplified likelihoods

Correlation information between measurements (eg due to theory uncertainties) often lost when using simplified likelihood ...

Why can't we (you) just use the experimental likelihood then?

CMS Higgs observation LH

Even ~12 years ago our Higgs boson experimental likelihood composed of

- 5 decay channels (analyses)
- Mix of template/parametric analyses
- ~700 parameters

Extremely complicated <u>statistical</u> <u>model</u>

How can we communicate likelihood function for (re-)interpretations?

Like this ...

CMS releases #HiggsBoson discovery data to the public

The **CMS Collaboration** has recently released, in electronic format, the combination of the measurements that contributed to establishing the discovery of the Higgs boson in 2012.

This release coincides with the publication of the Combine software – the statistical analysis tool that CMS developed during the first run of **#LHC**, to search for the unique particle, which has since been adopted throughout the collaboration.

Find out more: https://lnkd.in/gq_Tb5UB

CMS releases Higgs boson discovery data to the public

home.cern • 3 min read

CDS Search records Communities My dashboard		⇒ Log in
CMS statistical models		
Published April 15, 2024 Version v1.0		
CMS Higgs boson observation statistical model	1K ⊛ views	118 L DOWNLOADS
CMS Collaboration 🚓	► Show	more details
Introduction	Versions	
This resource contains the full statistical model from the Higgs Run-1 combination, which led to the Higgs boson discovery, in the format of Combine datacards. The instructions below include a few basic examples on how to extract the significance and signal strength measurements, for more details please consult the Combine documentation.	Version v1.0 10.17181/c2948-e8875	Apr 15, 202
Datacards	Cite all versions? You can cite all 10.17181/2cp5k-ggn24. This DOI r always resolve to the latest one. Re	versions by using the DOI epresents all versions, and will ead more.
Datacards for the combination (and per-decay channel sub-combinations) leading to the Higgs-boson discovery at CMS are in the 125.5 folder. The nuisance parameters corresponding to different sources of systematic uncertainties are described in the *.html and *.yml files located in that folder.		
For the full combination of decay channels, the relevant datacard is 125.5/comb.txt. The individual datacards for each of the analyses in CMS targeting the main Higgs boson decay modes are also in the 125.5 folder.	Communities	
Software instructions	CMS statistical models	3
General installation instructions for Combine can be found in the Combine documentation.	Details	
A container image is provided to ensure reproducible results. The results in this README are obtained using v9.2.1:		
<pre>docker runname combine -it gitlab-registry.cern.ch/cms-cloud/combine-standalone:v9.2.1</pre>	DOI (Cite this version - v1.0) DOI 10.17181/c2948-e8875	
A slim version of the container image is also available at gitlab-registry.cern.ch/cms-cloud/combine-standalonerv9.2.1-slim. Versions of packages in the slim container image do not match exactly with the ones in the default container, so small differences in the output of commands with respect to the ones shown below are to be expected.	DOI (Cite all versions) DOI 10.17181/2cp5k-ggn24	
You can copy files (such as the datacards and other inputs for combine) using docker cp as documented here.	Resource type	
For the commands below, you may require running ulimit -s unlimited; ulimit -u unlimited to avoid memory issues.	Publisher CERN	

https://new-cds.cern.ch/records/c2948-e8875

Note : ATLAS pyHF full experimental statistical models (+data) also available since 2019 but none for SM Higgs measurements yet...

in

(Re-)using the likelihood

CMS statistical software (Combine) published to allow (re-) interpretation of published CMS statistical models (see <u>Combine</u> paper and <u>online documentation</u>)

S		model	P0	POIs	Description	Pvt	hon based model implementation
PhysicsMode	Couplings with resolved loops	К1	PO dohmm,PO dohzgPO dohcchglugluPO BRUPO higgsMassRange=x,y	kappa_W,kappa_Z,kap pa_b,kappa_t, kappa_tau,kappa_mu	Higgs boson couplir $H o \gamma\gamma$ loops are options doX=1, the by the appropriate c are tied to other probranching ratio unce of just using the unc with range $x < m_{H}$	576 × 577 578 579 580 581 582 584 583 584 585 586 585 586 587 588 589 590	<pre>def getHiggsSignalYieldScale(setf, production, decay, energy): name = "CZ_XSBReacl_%s_%s_%s" % (production, decay, energy) if setI.rodeBuilder.out.inution(name) = None: if production in ["ggH", "ggH", "ggZ", "tH4", "tH4"]: XScal = ("geMegH", self.kappa_K) elif production = "m4": XScal = ("geMegH", self.kappa_K) elif production = "m2": XScal = ("geMegH", "kappa_L") elif production = "bH4": XScal = ("g</pre>
	Couplings with effective loops	К2	PO dohmm,PO dohzgPO dohcchglugluPO BRUPO higgsMassRange=x,y	kappa_g,kapppa_gam ,kappa_Zgam,kappa_W ,kappa_Z,kappa_b, kappa_t, kappa_tau,kappa_mu ,kappa_Zg	Higgs boson couplir $H ightarrow Z\gamma$ loops are the options doX=1, scaled by the appropriated to other processes branching ratio unce of just using the unce with range $x < m_{ m fi}$	591 592 593 594 595 596 597 598 609 601 602 603 604 605 604	<pre>BRccal = decay if not self.modelBuilder.out.function("c7_BRscal_" + BRscal): raite RuntimeError("Decay mode %s not supported" % decay) if decay = "hss": BRscal = "hbb" BRscal = "hbb" if production == "ggd" and (decay in self.add_bbH) and energy in ["7TeV", "8TeV", "13TeV", "14TeV"]: b2g = "GRS_Rbdiggliss_s% (decay, energy 0.01) b2g = "GRS_Rbdiggliss" (decay, energy 0.01) b2g = "GRS_Rbdiggliss" (decay, energy 0.01) elter self.modelBuilder.factory_('expr:%s("%seq1", %s, c7_BRscal_%s)' % (name, X5scal[0], X5scal[1], BRscal)) print("[UK-HGG Kappas]", name, production, decay, energy, ": ", ends" ") self.modelBuilder.out.function(name).Print("") return name </pre>

Command line interface to construct + (re-)parameterize likelihood eg : $\vec{\mu} \rightarrow \vec{\mu}(\kappa_V, \kappa_F)$

- > text2workspace.py -P HiggsAnalysis.CombinedLimit.HiggsCouplings_ICHEP12:cVcF 125.5/comb.txt -m 125.5 -o comb_kVkF.root
- > combine comb_kVkF.root -m 125.5 -M MultiDimFit --algo singles

Nicholas Wardle

as, BRscall

Summary

Interpretations of Higgs measurements of great interest to community

- Evolution with time from inclusive (→kappas) to differential (→EFT) focused measurements
- Ultimately aim is to place constraints on (or better yet discovery) new physics and the way we get to that matters

Simplifications facilitate communication + re-use of experimental results

- Gaussian approximation extremely useful but need to be careful of
 - correlations (both experimental and theoretical)
 - Non-gaussian behavior (we never truly reach asymptotes so precision matters)
 - Generalizations of assumptions made from SM \rightarrow BSM not always valid
- Truly full likelihoods not realized experimentally (yet) though several ideas emerging (see backup) on doing that

CMS has published first full experimental likelihood – the CMS Higgs discovery statistical model (+ the data used)

- Code available to (re-)use the model for interpretations of Higgs results
- Many more planned for the future

Summary

Interpretations of Higgs measurements of great interest to community

- Evolution with time from inclusive (→kappas) to differential (→EFT) focused measurements
- Ultimately aim is to place constraints on (or better yet discovery) new physics and the way we get to that matters

Simplifications facilitate communication + re-use of experimental results

- Gaussian approximation extremely useful but need to be careful of
 - correlations (both experimental and theoretical)
 - Non-gaussian behavior (we never truly reach asymptotes so precision matters)
 - Generalizations of assumptions made from SM \rightarrow BSM not always valid
- Truly full likelihoods not realized experimentally (yet) though several ideas emerging (see backup) on doing that

CMS has published first full experimental likelihood – the CMS Higgs discovery statistical model (+ the data used)

- Code available to (re-)use the model for interpretations of Higgs results
- Many more planned for the future

Backup Slides

"Full" "Experimental" Likelihood

We never use the *full* likelihood for Higgs measurements/interpretations, so I call the most complete thing we use the *experimental* likelihood. For Higgs measurements, typically

$$L(\vec{\mu},\vec{\nu}) = \prod_{n} p\left(x_n; \sum_{i,f} \mu_i \mu^f S^f_{i,n}(\vec{\nu}) + \sum_k B_k(\vec{\nu}) \right) \cdot \prod_i p(y_i;\nu_i)$$

The "data" in each channel can be ...

<u>"Full" "Experimental" Likelihood</u>

We never use the full likelihood for Higgs measurements/interpretations, so I call the most complete thing we use the experimental likelihood. For Higgs measurements, typically

$$L(\vec{\mu},\vec{\nu}) = \prod_{n} p\left(x_{n};\sum_{i,f} \mu_{i}\mu^{f}S_{i,n}^{f}(\vec{\nu}) + \sum_{k} B_{k}(\vec{\nu})\right) \cdot \prod_{i} p(y_{i};\nu_{i})$$
Parameters of interest*
$$\mu_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}}$$

$$P_{i} = \frac{\sigma_{i}}{(\sigma_{i})_{\text{SM}}} \text{ and } \mu^{f} = \frac{BR^{f}}{(BR^{f})_{\text{SM}}} \text$$

Nicholas Wardle

<u>"Full"</u> "Experimental" Likelihood

We never use the *full* likelihood for Higgs measurements/interpretations, so I call the most complete thing we use the *experimental* likelihood. For Higgs measurements, typically

$$L(\vec{\mu},\vec{\nu}) = \prod_n p$$

Experimental/Detector systematics:

• Object efficiencies, energy scales, luminosity

Signal theory uncertainties:

 $x_n; \sum_{i,f} \mu_i \mu^f S^f_{i,n}(\vec{\nu}) + \sum_k$

Inclusive x-section uncertainties, QCD scale, pdf, UEPS, Branching ratios, jet counting

Background theory uncertainties:

Often rather different phase-spaces considered for extrapolating from control regions for data-driven estimates

Higgs Combinations have O(1000)'s nuisance parameters

Profiling

To estimate parameters of the model (and intervals on the parameters of interest), (one or two at a time...), we eliminate parameters of likelihood via **profiled likelihood**

Example, say we have just 2 parameters

- L(P₁,P₂) describes full likelihood
- Profiling out one of the parameters gives is a profiled likelihood
- We use Wilks' theorem to determine intervals from ratios of profiled log-likelihood (q)

$$q(P_1) = -2\ln\left(\frac{L(P_1, \hat{P}_2)}{L(\hat{P}_1, \hat{P}_2)}\right)$$

- q=0 \rightarrow "best-fit" for P₁
- $q \le 1 \rightarrow 1\sigma$ interval for P_1

Higgs Production and Decay

ggH

Latest Higgs Combinations (inputs)

ATLAS: arXiv:2402.05742 (sub to JHEP)

Decay channel	Analysis Production mode	\mathcal{L} [fb ⁻¹]	Reference	Binning	SMEFT	2HDM and (h)MSSM
$H \to \gamma \gamma$	$(ggF, VBF, WH, ZH, t\bar{t}H, tH)$	139	[38] [19]	STXS-1.2 differential	\checkmark \checkmark (subset)	√
$H \to ZZ^*$	$(ZZ^* \rightarrow 4\ell:~{\rm ggF},~{\rm VBF},~WH+ZH,~t\bar{t}H+tH)$	139	[22] [18]	STXS-1.2 differential	\checkmark (subset)	\checkmark
	$(ZZ^* \to \ell\ell\nu\bar{\nu}/\ell\ell q\bar{q}: t\bar{t}H \text{ multileptons})$	36.1	[27]	$STXS-0^*$		\checkmark
$H \to \tau \tau$	$ \begin{array}{l} (\mathrm{ggF},\mathrm{VBF},WH+ZH,t\bar{t}H+tH) \\ (t\bar{t}H\mathrm{multileptons}) \end{array} $	$139 \\ 36.1$	[39] [27]	$\begin{array}{c} {\rm STXS-1.2} \\ {\rm STXS-0}^{*} \end{array}$	\checkmark	\checkmark
$H \to WW^*$	(ggF, VBF) (WH, ZH) $(t\bar{t}H multileptons)$	$139 \\ 36.1 \\ 36.1$	[40] [41] [27]	STXS-1.2 STXS-0* STXS-0*	\checkmark	\checkmark \checkmark
$H \to bb$	$\begin{array}{l} (WH, ZH) \\ (\text{VBF}) \\ (t\bar{t}H + tH) \\ (\text{boosted Higgs bosons: inclusive production}) \end{array}$	139 126 139 139	$\begin{matrix} [42,25] \\ [43] \\ [44] \\ [45] \end{matrix}$	STXS-1.2 STXS-1.2 STXS-1.2 STXS-1.2	$\begin{array}{c} \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array}$	\checkmark
$\begin{array}{l} H \rightarrow Z \gamma \\ H \rightarrow \mu \mu \end{array}$	(inclusive production) (ggF + $t\bar{t}H + tH$, VBF + $WH + ZH$)	$139 \\ 139$	[46] [47]	$STXS-0^*$ $STXS-0^*$	\checkmark	\checkmark

CMS: <u>Nature 607 (2022) 60-68</u>

Analysis	Decay tags	Production tags
Single Higgs boson production	on	
$ m H ightarrow \gamma\gamma$ [42]	$\gamma\gamma$	ggH, $p_{T}(H) \times N_{j}$ bins VBF/VH hadronic, $p_{T}(Hjj)$ bins WH leptonic, $p_{T}(V)$ bins ZH leptonic ttH $p_{T}(H)$ bins, tH
$H \rightarrow ZZ \rightarrow 4\ell$ [43]	4µ, 2e2µ, 4e	ggH, $p_{T}(H) \times N_{j}$ bins VBF, m_{jj} bins VH hadronic VH leptonic, $p_{T}(V)$ bins
	eμ/ee/μμ	$ggH \le 2$ -jets
$H \rightarrow MMM \rightarrow \ell_1 \ell_2 \ell_3 \ell_4$	$\mu\mu$ +jj/ee+jj/e μ +jj	VBF VH badronic
$H \rightarrow WW \rightarrow \ell \nu \ell \nu $ [44]	$rac{3\ell}{4\ell}$	WH leptonic ZH leptonic
$ m H ightarrow m Z\gamma$ [45]	$Z\gamma$	ggH VBF
${ m H} ightarrow au au$ [46]	$e\mu, e au_h, \mu au_h, au_h au_h$	ggH, $p_T(H) \times N_j$ bins VH hadronic VBF
m H ightarrow m bb [47–51]	$W(\ell \nu)H(bb) \ Z(\nu \nu)H(bb), Z(\ell \ell)H(bb)$	VH, high- $p_T(V)$ WH leptonic ZH leptonic ttH, $\rightarrow 0, 1, 2\ell + jets$
$H \rightarrow \mu \mu$ [52]	bb NN	ggH, high- $p_{\rm T}({\rm H})$ bins ggH
ttH production with H \rightarrow leptons [53]	$2\ell SS, 3\ell, 4\ell,$ $1\ell + \tau_{\rm L}, 2\ell SS + 1\tau_{\rm L}, 3\ell + 1\tau_{\rm L}$	VBF ttH
$H \rightarrow Inv. [71, 72]$	$p_{\rm T}^{\rm miss}$	ggH VBF VH hadronic ZH leptonic

Simplified likelihoods for searches

$L(\boldsymbol{lpha}, \boldsymbol{\delta}) \pi(\boldsymbol{\delta}) = \prod_{I} \Pr\left(n_{I}^{\text{obs}} \mid n_{I}(\boldsymbol{lpha}, \boldsymbol{\delta})\right) \pi(\boldsymbol{\delta})$ Arbitrary units 0.2 0.18 0.16 m_3 0.14 N = 1006.50 + 43.50 + 13.50 = 1006.50 + 43.50 = 1006.50 + 43.50 = 1006.50 + 1006.50 = 1006.50 $N = 256.40 \stackrel{*18.60}{.29.13} (eff.) \stackrel{*31.10}{.39.01} (s.f.)$ $N = 52.60^{+7.40}_{-10.93}$ (eff.) $^{-12.60}_{-9.90}$ (s.f.) Category 2 Category 3 Category 1 Number of events Observed data 0.12 Nominal background (± stat unc.) 0.1 Energy scale up/down 0.08 Theory uncertainty up/down lew physics signal 0.06 0.04 0.02 Bin index 2 These are the same as simplify the full likelihood $\sum_{I=1}^{P=90} L(\mu, \boldsymbol{\delta}) \pi(\boldsymbol{\delta}) \to L(\mu, \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) = \prod_{I=1}^{P=90} P(n_I^{\text{obs}} | \boldsymbol{\mu} \cdot \boldsymbol{n}_{s,I} + a_I + b_I \theta_I + c_I \theta_I^2) \cdot \frac{1}{\sqrt{(2\pi)^P}} e^{-\frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\rho}^{-1} \boldsymbol{\theta}}$ I=1

A. Buckley, M. Citron, S. Fichet, S. Kraml, W. Waltenberger, NW J. High Energ. Phys. 2019, 64 (2019)

Nicholas Wardle

Non-Gaussian effects can be accounted for

Simplified likelihoods in the wild!

Real experimental likelihoods converted into simplified likelihoods*...

"Search for dark matter produced with an energetic jet or a hadronically decaying W or Z boson at \sqrt{s} = 13 TeV"<u>JHEP 07 (2017) 014</u>

- Data separated into 1 or 2 jet topologies
- Binned missing transverse momentum distribution used to separate signal from background
 → 29 bins

Workflows

Standard workflow for predictions

o

Example from CMS (EXO-20-004)

"Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton

collisions at 13 TeV" – Full Run-2 data update

HepData entry

- Signal templates & cutflows
- Simplified likelihood inputs
- MC Generator configs for various signals + <u>MadAnalysis implementation</u>

Higgs interpretation without a (on-shell) Higgs?

<u>2HDM (к vs EFT)</u>

A comparison between the excluded regions from the two approaches is shown in Figure 21. In the regions where the assumptions used in this study are valid, the excluded regions are very similar in the two approaches. In the Type-I model for large values of $\tan \beta$, the EFT-based approach leads to looser constraints on $\cos(\beta - \alpha)$ than the κ -framework-based approach. This difference stems from the fact that the EFT-based approach (i) does not exploit the constraints from the *HVV* couplings, that only enter at dimension-8 in the SMEFT expansion and are not considered here, and (ii) retains only terms of $O(\cos(\beta - \alpha))$ in the expansion of κ_{λ} , while in the κ -framework-based approach the constraint $\kappa_V = \sin(\beta - \alpha)$ and the full dependence of κ_{λ} on $\cos(\beta - \alpha)$ are considered. However, part of the region of Type-I model parameter space allowed in the EFT-based approach but not in that based on the κ -framework is inconsistent with the alignment limit hypothesis of $|\cos(\beta - \alpha)| \ll 1$.

Non-Gaussian likelihoods

1.4

Timeline for public likelihoods

L. Heinrich

<u>Recommendations for re-interpretations</u>

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults

SciPost Phys. 9, 022 (2020)

Reinterpretation of LHC results for new physics: status and recommendations after run 2

The LHC BSM Reinterpretation Forum

Abstract

Pos

We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.

© Opyright W. Abdallah et al. This work is licensed under the Creative Commons Attribution 4.0 International License. Published by the SciPost Foundation.

Received 02-04-2020 Accepted 06-08-2020 Check fo Published 21-08-2020 updates doi:10.21468/SciPostPhys.9.2.022

Sci Post

Publishing statistical models: Getting the most out of particle physics experiments

Kyle Cranmer^{1†*}, Sabine Kraml^{2‡*}, Harrison B. Prosper^{3o*}, Philip Bechtle⁴, Florian U. Bernlochner⁴, Itay M. Bloch⁵, Enzo Canonero⁶, Marcin Chrzaszcz⁷, Andrea Coccaro⁸, Jan Conrad⁹, Glen Cowan¹⁰, Matthew Feickert¹¹, Nahuel F. Iachellini^{12,13}, Andrew Fowlie¹⁴, Lukas Heinrich¹⁵, Alexander Held¹, Thomas Kuhr^{13,16}, Anders Kvellestad¹⁷, Maeve Madigan¹⁸, Farvah Mahmoudi^{15,19},
 Knut D. Morå²⁰, Mark S. Neubauer¹¹, Maurizio Pierini¹⁵, Juan Rojo⁸, Sezen Sekmen²²,
 Luca Silvestrini²³, Veronica Sanz^{24,25}, Giordon Stark²⁶, Riccardo Torre⁸,
 Robert Thorne²⁷, Wolfgang Waltenberger²⁸, Nicholas Wardle²⁹ and Jonas Wittbrodt³⁰

Abstract

The statistical models used to derive the results of experimental analyses are of incredible scientific value and are essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases — including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits — we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results.

© Ocopyright K. Cranmer et al. This work is licensed under the Creative Commons Attribution 4.0 International License. Published by the SciPost Foundation.

Received 16-09-2021 Accepted 08-12-2021 Published 25-01-2022 doi:10.21468/SciPostPhys.12.1.037

Public Statistical Models

ATLAS has been releasing public versions of their statistical models for several years

Limited to simple histogram-based models but very welcomed by the pheno community for reinterpretations

ATLAS analyses with pyHF compatible public models:

Observation of the tgamma production	TOPQ	Accepted by PRL	2023-02-02	13	140 fb ⁻¹	Documents 2302.01283 Inspire HepData Internal
Search for gluinos in multi-b final states	SUSY	Eur. Phys. J. C 83 (2023) 561	2022-11-15	13	139 fb ⁻¹	Documents 2211.08028 Inspire HepData Internal
Measurement of the s-channel single top cross-section at 13 TeV	TOPQ	JHEP 06 (2023) 191	2022-09-19	13	139 fb ⁻¹	Documents 2209.08990 Inspire HepData Internal
Search for flavor-changing neutral-current couplings between the top-quark and the photon at 13 $\ensuremath{\text{TeV}}$	TOPQ	Phys. Lett. B 842 (2023) 137379	2022-05-05	13	139 fb ⁻¹	Documents 2205.02537 Inspire HepData Internal
Search for SUSY in events with 2 leptons, jets and MET	SUSY	Eur. Phys. J. C 83 (2023) 515	2022-04-27	13	139 fb ⁻¹	Documents 2204.13072 Inspire HepData Internal
Search BSM H—hh—bb gamma gamma and hh—bb gamma gamma	HDBS	Phys. Rev. D 106 (2022) 052001	2021-12-22	13	139 fb ⁻¹	Documents 2112.11876 Inspire HepData Internal
Search for charginos and neutralinos in all-hadronic final states	SUSY	Phys. Rev. D 104 (2021) 112010	2021-08-17	13	139 fb ⁻¹	Documents 2108.07586 Inspire HepData Briefing Internal
4-top xsec measurement	TOPQ	JHEP 11 (2021) 118	2021-06-22	13	139 fb ⁻¹	Documents 2106.11683 Inspire HepData Internal
Search for gluinos, stops and electroweakinos in RPV models in final states with 1L and many jets	SUSY	Eur. Phys. J. C 81 (2021) 1023	2021-06-17	13	139 fb ⁻¹	Documents 2106.09609 Inspire HepData Briefing Internal

Likelihoods are an essential link between theory and ATLAS data. (Image: K. Cranmer/ATLAS Collaboration)

HepData for published likelihoods

Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum

https://www.hepdata.net/record/ins1748602

m(b,) [GeV]

The ATLAS collaboration

💮 HEPData

Keine Automation Information

Q Browse all 🛛 🗐

Q Search HEPData

Aad, Georges, Abbott, Brad, Abbott, Dale Charles, Abed Abud, Adam , Abeling, Kira , Abhayasinghe, Deshan Kavishka , Abidi, Sved Haider, Abouzeid, Ossama, Abraham, Nicola, Abramowicz, Halina

Search for displaced leptons in $\sqrt{s} = 13$

TeV pp collisions with the ATLAS detector

CERN-EP-2020-205, 2020

https://doi.org/10.17182/hepdata.98796

Nicholas Wardle

INSPIRE

A search for charged leptons with large impact parameters using 139 fb⁻¹ of $\sqrt{s} = 13$ TeV pp collision data from the ATLAS detector at the LHC is presented, addressing a long-standing gap in coverage of possible new physics signatures. Results are consistent with the background prediction. This search provides unique sensitivity to long-lived scalar supersymmetric lepton-partners (sleptons). Fo lifetimes of 0.1 ns, selectron, smuon and stau masses up to 720 Ge 680 GeV, and 340 GeV are respectively excluded at 95% confidence level, drastically improving on the previous best limits from LEP.

10.17192/handata.00706.u1/t42				Pro	ton-Proton Scat	tering 🔷 💊 Ele	ctroweak
Observed 95% CL exclusion sensitivity. The limit is displayed in the lifetime vs. $m(\vec{r})$ plane. Staus, $\vec{r}_{1,2}$ are the mixed				♥ R-p	arity violating		
Expected stau limits >							Visualize
Figure aux5		\tilde{e} (mass,	\tilde{e} (mass,	\tilde{e} (mass,	$\tilde{\tau}$ (mass,	$\tilde{\tau}$ (mass,	VISUULIZO
10.17182/hepdata.98796.v1/t44		lifetime) =	lifetime)	lifetime)=	lifetime)	lifetime)=	50,000
Expected 95% CL exclusion sensitivity. The limit is displayed in the lifetime vs. $m(\bar{r})$ plane. Staus, $\tilde{\tau}_{1,2}$ are the mixed		(100 GeV, 0.01 ns)	= (300 GeV, 1 ns)	(500 GeV, 0.1 ns)	= (200 GeV, 0.1 ns)	(300 GeV, 0.1 ns)	45,000 40,000
Observed LH stau limits >	initial number of events (50830.0	870.0	93.6	4210.0	870.0	35,000
Figure aux9	$\mathcal{L} \times \sigma$						25,000
10.17182/hepdata.98796.v1/t45							20,000
Observed 95% CL exclusion sensitivity. The limit is displayed in the lifetime vs. $m(\tilde{\tau}_L)$	pass trigger and at least 2	736.0	238.0	66.3	37.1	15.7	15,000
prane, where sL is the pure-state	baseline leptons						10,000
Expected LH stau limits >	2 leading	393.0	143.0	40.5	18.1	7.84	5,000 -

Cutflow SR-ee 10.17182/hepdata.98796.v1/t1

for (200 GeV, 0.1 ns), and 104,000 for (300 GeV, 0.1 ns).

Cutflow for SR-ee for 5 representative signal points. For the following e mass and lifetime points, the number

of Monte Carlo events generated are: 24,000 for (100 GeV. 0.01 ns), 16,000 for (300 GeV. 1 ns), and 12,000 for

(500 GeV. 0.1 ns). For the $\tilde{\tau}$ mass and lifetime points, the number of Monte Carlo events generated are: 30.000

observable

SUSY Supersymmetry

Table aux12

cmenergies

13000

tps://www.hepdata.i

P P --> SLEPTON SLEPTON

1600

1400

1200

1000

800

600

400

200

[GeV]

ر گ

reactions

Ch

📥 Download All 🗸

Version 1 -

expected 95% CL exclusion sensitivity. The

limit is displayed in the lifetime vs. $m(\tilde{\ell})$

Ƴ Filter 46 data tables

plane in SR-µµ targeting smuon

Observed stau limits

production.

Publishing profiled likelihoods

In between simple and full likelihoods → Communicating **profiled likelihoods** in EFT

Train a DNN to learn $-2 \ln \frac{L(\vec{c})}{L(\hat{\vec{c}})}$

DNN can cope with high dimensional space (here example is t-quark measurement with 16 WCs!

Publish DNN for 16D likelihood surface

- $\ensuremath{\textcircled{\odot}}$ Much faster as interpretation already performed
- \rightarrow can re-interpret (re-profile) very quickly as underlying model is a DNN!
- 😕 Parameterization baked in
- ightarrow can't incorporate developments in EFT, systematics embedded into results

<u>Unfolded vs Full sim</u>

$\underline{\mathsf{EFT}}\,\mathrm{H} \rightarrow \mathrm{WW}\,(\mathrm{HIG} - 22 - 008)$

Direct parameterization of H-VV vertices in terms of EFT couplings \rightarrow directly measure from terms in LH

Only one of c_{HW} , c_{HWB} , and c_{HB} is independent, the same is also true for cp-odd versions.

$\underline{\mathsf{AC}}\,\mathrm{H}\,\overline{\rightarrow}\,\mathrm{VV}$

EFT parameterizations in **Combine**

EFT quadratic parametrization can be seen as matrix multiplication. Use optimized matrix math libraries (Eigen) to compute products \rightarrow Factor 100x speed up in minimization

$$y = y_{SM} \left(1 + \sum_{i} c_i A_i + \sum_{i \le j} c_i c_j B_{ij} \right) \quad \Longleftrightarrow \quad y = y_{SM} \left(\begin{bmatrix} 1\\c_1\\c_2\\\vdots \end{bmatrix}^{\top} \begin{bmatrix} 1 & A_1/2 & A_2/2 & \cdots \\ A_1/2 & B_{11} & B_{12}/2 & \cdots \\ A_2/2 & B_{12}/2 & B_{22} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} 1\\c_1\\c_2\\\vdots \end{bmatrix} \right)$$

Pros and Cons

100x speed up in profiled fits
 Memory consumption reduced ~x2
 JSON parametrization: no template
 proliferation
 Does not support any syst unc. on EFT
 Assumes EFT factorized from
 nuisances

ctG fit	AnalyticAnomalousCoupling	InterferenceModel
Fast scan time	103s	2.7s
Fast scan memory	600 MB	307 MB
Profile nuisance scan time	1835s (30min)	10.6s
Profile nuisance scan memory	602 MB	311 MB
Profile scan time	2604s (40min)	27s
Profile scan memory	600 MB	311 MB

Comparison from Nick Smith

<u>STXS \rightarrow EFT Parameterizations in Combine</u>

166

168

169

170 171

172

173 174

175

176

177

178

179

180 181

182

184

185

186

187

188

199

200 201

203 204

205

206

207

208

202 ~

183 🗸

167 🗸

STXStoSMEFTModel.py

65		# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
66		# Global function to extract reco category, STXS bin, decay mode and energy from process name
67	\sim	<pre>def getProcessInfo(bin, process):</pre>
68		foundRecoCategory = bin
69		foundSTXSBin = process
70		foundDecay = None
71		foundEnergy = "13TeV"
72		# Iterate over Higgs decays
73		<pre>matchedDecayString = False</pre>
74		for D in ALL_HIGGS_DECAYS:
75		<pre>if matchedDecayString:</pre>
76		continue
77		if "_%s" % D in foundSTXSBin:
78		foundSTXSBin = re.sub("_%s" % D, "", foundSTXSBin)
79		foundDecay = D
80		matchedDecayString = True
81		# Also drop year tag in STXS bin name if present
82		for Y in ["2016", "2017", "2018"]:
83		if "_%s" % Y in foundSTXSBin:
84		foundSTXSBin = re.sub("_%s" % Y, "", foundSTXSBin)
85		
86		# Catch for H->Zgam
87		<pre>it (tounduccay == "n2g") ("bkg" in tounds/iXsbin):</pre>
88		tonugityprin = tonugityprin.sb(rt("_")[0]
89		if not motokedDecouftning.
90		I not matcheducedystring:
91		haise Kuntimetrion (valuation error, no supported decay round in process)
92		return (foundRecoCategory, foundSTXSRin, foundDecay, foundEnergy)
94		(ionalecodecies), ionasiosing ionased, ionased,
Nicholas	Na	Indle
i i ci i o i d S	vva	

<pre>if not self.DC.isSignal[process]: return 1.0</pre>
Extract process line info
(recocat, stxsbin, decay, energy) = getProcessInfo(bin, process)
Return 1 (no scaling) for fixed processes and scaling for non-fixed
if stxsbin in self.fixProcesses: return 1.0
else:
procStr = stxsbin
<pre>return self.getHiggsSignalYieldScale(procStr, decay, energy)</pre>
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Extract pois from yaml file
def extractPOIs(self, filename):
with open(filename, "r") as tpois:
try:
* Apply eigenvector theorem if set
* Apply Eigenvector threshold 11 set
nois to keen = $\{\}$
for noi, v in self nois items():
if "eigenvalue" in v:
if y["sigenvalue"] > float(self.sigenvalueThreshold):
pois to keep[poi] = v
else:
pois to keep[poi] = v
<pre>self.pois = pois_to_keep</pre>
except yaml.YAMLERROR as exc:
print(exc)
Function to extract STXS scaling terms from json file
<pre>def extractSTXSScalingTerms(self, filename=""):</pre>
<pre>if filename != "":</pre>
with open(filename, "r") as jf:
<pre>self.STXSScalingTerms = json.load(jf)</pre>
else:
<pre>sett.SIXSSCalinglerms = {}</pre>

Overwrite getYieldScale to extract (RECO-category,STXS bin,decay,energy)

def getYieldScale(self, bin, process):

Other features in **Combine**

CMS CMS 35 \boxtimes ± $\Delta\lambda^{Pre-fit}$ 10^{2} — Pre-fit CMS ---- Post-fit $\pm \Delta \lambda^{\text{Post-fit}}$ $f(\tilde{q}_{LHC}(\mu = 0.4) | \mu = 0.4)$ p_u 30 0.30 10^{1} $f(\tilde{q}_{LHC}(\mu = 0.4) | \mu = 0)$ Data $\square 1 - p_b$ units 10 $--- \tilde{q}_{LHC}^{obs}(\mu = 0.4)$ 0.25 1.0 / 10-ر ل ل ل ل ل ر ل ر الار ر الار Events / 10 0.20 10^{-1} പ് 0.15 10^{-4} 10-5 0.10 0.0 0.2 0.4 0.6 Fit diagnostics tools 10^{-6} 4 6 Q $\tilde{q}_{\rm LHC}(\mu=0.4)$ С 0.05 $\overline{}$ Pre-fit ---- Post-fit $0.00 \stackrel{\longleftarrow}{-} 0.1$ 0.6 0.8 0.0 0.2 0.4 1.0 0.3 1.25 0.2 0.4 05 <u>A</u> Post-fit <u>A</u> Pre-fit μ CMS 0.75 — 0.0 - 10 0.2 0.4 0.6 0.8 1.0 10 CMS x = MVA output ---- Fit constraint (obs.) +1 SD impact (obs.) -1 SD impact (obs.) CMS -1 SD impact (exp.) Fit constraint (exp.) +1 SD impact (exp.) 8 = r_{ggH} q(r_{ggH}, r_{qqH}) b tagging efficiency (b ie $= r_{qqH}$ Multi-dimensional profile b tagging efficiency (c jets, line ^{нь} 6-JES: Absolute (d Additional b jets in likelihood scans/contours Additional jets in tt (n)b Normalization 2 atrix-element scale variations (tt agging efficiency (ciets, guadrati b tagging efficiency (ligh Normalization t IES: Relative Sample (201) Ś. 0 Additional b iets in t r_{ggH} MC stat. in bin 2 of SR-2 / µµ tttt (201 JES: Elavor QCD (botto Final-state radiation sca 0.0 2.5 5.0 7.5 10.0 12.5 ment scale variations (tt) Parameter of interest value IC stat, in bin 3 of SR-3ℓ tttt (201) Installation via pre-compiled container image: Initial-state radiation scale (tt atrix-element scale variations (ttl > docker run ---name combine --it gitlab-registry.cern.ch/cms-cloud/combine-standalone:v9.2.1 -2 docker $(\hat{v} - v_0) / \Delta v$ Λr

Determine upper/confidence limits

Nicholas Wardle

Many other statistical routines available : see Combine paper and online documentation

Getting to the "full" likelihood

DNN based likelihoods

Random samples from the toy search experimental likelihood serve as training data for a Deep Neural Network [1]

- 2 hidden layer NN, with SELU activation functions between layers tested different #nodes in hidden layers.
- Adam optimizer with MSE as loss function to train the NN parameters.
- Sampling based on p(x) in this case known from the expt. LH

[1] A. Coccaro, M. Pierini, L. Silvestrini, R. Torre: <u>Eur. Phys. J. C 80, 664 (2020)</u>.

ML-based likehood(ratios)

In some cases, it may be more challenging than necessary to learn the likelihood directly

 \rightarrow if $p(\mathbf{x}|\alpha)$ must be obtained from some complex simulation, but can still generate from p

If you can find a function s(x) that is monotonic with $r(x; \alpha_0, \alpha_1)$ [1], then;

$$r(\mathbf{x}|\alpha_0, \alpha_1) = \frac{p(\mathbf{x}|\alpha_0)}{p(\mathbf{x}|\alpha_1)} = \frac{p(s(\mathbf{x})|\alpha_0)}{p(s(\mathbf{x})|\alpha_1)}$$

e.g $s(\mathbf{x})$ can be a classifier trained to separate $\alpha_0 vs \alpha_1$

Here **x** can be anything \rightarrow not restricted to binned likelihoods!

likelihood-free based inference or Approximate Bayesian Computation (ABC) more common outside HEP - See [2] for a very nice review of applications in HEP!

[1] <u>arXiv:1506.02169</u> [2] <u>arXiv:2010.06439</u>

See the PhyStat seminar from Kyle Cranmer for more ML based approaches and MadMiner

 $p(\mathbf{x}|\gamma) = (1-\gamma) \frac{p_{c_0}(\mathbf{x}) + p_{c_1}(\mathbf{x})}{\gamma} + \gamma p_{c_2}(\mathbf{x})$

MadMiner

Sourced from https://github.com/diana-hep/madminer.

Excellent tutorial by K. Cramner: https://indico.cern.ch/event/982553/contributions/4220018/attachments/2185603/3706682/MadMiner-tutorial-reinterp-2021.pdf

Nicholas Wardle

Nuisance parameters description

Public statistical model comes with nuisance parameter naming + description as .html files

e.g H→ττ channel nuisance parameters in systematics_higgs_htt.html

	class		description
CMS_scale_met_8TeV	MET_scale	single overall met energy scale uncertainty	
CMS_scale_met_7TeV	MET_scale	single overall met energy scale uncertainty	
CMS_eff_b_7TeV	custom	efficiency uncertainty for b jets in 7 and 8 TeV analyses	
CMS_vhtt_7TeV_emt_fakeshape_fakes_bin_3	custom	shape uncertainties from the lepton-jet misidentification probabilities	
CMS_vhtt_7TeV_emt_fakeshape_fakes_bin_2	custom	shape uncertainties from the lepton-jet misidentification probabilities	
CMS_vhtt_7TeV_emt_fakeshape_fakes_bin_1	custom	shape uncertainties from the lepton-jet misidentification probabilities	
CMS_trigger_m_7TeV	custom	muon trigger efficiency uncertainty in 7 TeV analysis	
CMS_trigger_e_7TeV	custom	electron trigger efficiency uncertainty in 7 TeV analysis	
CMS_hww_fakes_em_8TeV	custom	uncertainty on misidentified W+jets and QCD background estimated from the control region with relaxed lepton selection requirements	S
CMS_hww_fakes_em_7TeV	custom	uncertainty on misidentified W+jets and QCD background estimated from the control region with relaxed lepton selection requirements	s
CMS_htt_zttNorm_8TeV	custom	inclusive normalisation uncertainty applied for ztt and ttbar backgrounds processes	
CMS_htt_zttNorm_7TeV	custom	inclusive normalisation uncertainty applied for ztt and ttbar backgrounds processes	
CMS_htt_ttbarNorm_8TeV	custom	inclusive normalisation uncertainty applied for ztt and ttbar backgrounds processes	
CMS_htt_ttbarNorm_7TeV	custom	inclusive normalisation uncertainty applied for ztt and ttbar backgrounds processes	
CMS_htt_mm_zttLikelihood_8TeV	custom	uncertainty on the di-tau invariant mass reconstruction method	
CMS_vhtt_7TeV_emt_fakeshape_fakes_bin_4	custom	shape uncertainties from the lepton-jet misidentification probabilities	
CMS_htt_mm_zttLikelihood_7TeV	custom	uncertainty on the di-tau invariant mass reconstruction method	
CMS_htt_mm_zmm_extrap_vbf_7TeV	custom	extrapolation uncertainty for Z -> mu mu background	
CMS_htt_mm_zmm_extrap_boost_8TeV	custom	extrapolation uncertainty for Z -> mu mu background	
CMS_htt_mm_zmm_extrap_boost_7TeV	custom	extrapolation uncertainty for Z -> mu mu background	
CMS_htt_mm_zmmNorm_8TeV	custom	uncertainty on Z -> mu mu background estimation	
CMS_htt_mm_zmmNorm_7TeV	custom	uncertainty on Z -> mu mu background estimation	

Simple Model vs Combination

Simple parametric statistical model

ATLAS Run-1 Higgs model

-

Linearized Simplified Likelihoods

Maintains information on NP correlation schemes \rightarrow combinations of SLLS models also possible!

N. Berger arXiv:2301.05676

Implemented in fastprof (compatible with pyHF or RooFit models): <u>https://github.com/fastprof-hep/fastprof</u>

 $N_{\rm constraints}$