

Why search for di-Higgs?

- The precision measurement of the Higgs boson properties is one of the primary targets @LHC lacksquare
- The **Higgs boson** so far behaves in a **very SM-like** manner, its couplings consistent with the BEH mechanism \bullet

- Is the Higgs boson elementary or composite?
- Can the invisible Higgs boson width be associated with DM?
- Is it possible to measure the Higgs field potential directly?
- Does the Higgs boson interact with itself?

More profound questions still unanswered

Why search for di-Higgs?

- The precision measurement of the Higgs boson properties is one of the primary targets @LHC lacksquare
- The **Higgs boson** so far behaves in a **very SM-like** manner, its couplings consistent with the BEH mechanism \bullet

- Is the Higgs boson elementary or composite?
- Can the invisible Higgs boson width be associated with DM?
- Is it possible to measure the Higgs field potential directly?
- Does the Higgs boson interact with itself?

More profound questions still unanswered

Why search for di-Higgs?

- The precision measurement of the Higgs boson properties is one of the primary targets @LHC
- The **Higgs boson** so far behaves in a **very SM-like** manner, its couplings consistent with the BEH mechanism ullet

- ► Is the Higgs boson elementary or composite?
- Can the invisible Higgs boson width be associated with DM?
- ► Is it possible to measure the Higgs field potential directly?
- Does the Higgs boson interact with itself?
- The SM description of the **Higgs potential** is encoded with two parameters: m_h , λ_3^{SM}
- Given the Higgs boson mass m_h and VEV v, the Higgs self-coupling λ_3^{SM} is fully determined

$$\mathcal{L} \subset -\frac{m_h^2}{2}h^2 - \lambda_3^{SM}vh^3 - \lambda_4^{SM}h^4$$

• For a **closure test** of the SM a direct measurement of the Higgs self coupling is necessary \rightarrow the best way is to look for **HH production**

More profound questions still unanswered

$$\lambda_{3}^{SM} = 4\lambda_{4}^{SM} = \frac{m_{h}^{2}}{v^{2}} \simeq 0.13$$

H[•]

The di-Higgs production

$$\sigma^{SM}(pp \to HH) \sim \frac{1}{1000} \cdot \sigma^{SM}(pp \to H)$$

• The di-Higgs cross section depends on the production mode, but it's ~1000 times rarer than single-Higgs

The di-Higgs production

Elena Vernazza - Laboratoire Leprince-Ringuet

• The di-Higgs cross section depends on the production mode, but it's ~1000 times rarer than single-Higgs

$$\sim \frac{1}{1000} \cdot \sigma^{SM} (\mathsf{pp} \to \mathsf{H})$$

The di-Higgs production

Elena Vernazza - Laboratoire Leprince-Ringuet

• The di-Higgs cross section depends on the production mode, but it's ~1000 times rarer than single-Higgs

- Given the current luminosity and the harsh experimental conditions, a good sensitivity is achieved with
 - Large branching ratio (H→bb)
 - Very good selection purity $(H \rightarrow \tau\tau, H \rightarrow \gamma\gamma)$

	bb	WW	ττ	ZZ	ΥY
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005

- - Large branching ratio $(H \rightarrow bb)$
 - Very good selection purity $(H \rightarrow \tau\tau, H \rightarrow \gamma\gamma)$
 - ► Run 1

Only few channels covered

• Given the current luminosity and the harsh experimental conditions, a good sensitivity is achieved with

	bb	WW	ττ	ZZ	ΥY
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.000

- - Large branching ratio $(H \rightarrow bb)$
 - Very good selection purity $(H \rightarrow \tau\tau, H \rightarrow \gamma\gamma)$
 - ► Run 1 Only few channels covered
 - Early Run 2

At least one $H \rightarrow bb$ or multileptons

• Given the current luminosity and the harsh experimental conditions, a good sensitivity is achieved with

≥1 HH→bb						
	bb	WW	ττ	ZZ	ΥY	
bb	34%					
WW	2.5%	4.č%				
ττ	7.3%	2.7%	0.39%			
ZZ	3.1%	1.1%	0.33%	0.069%		
ΥY	5.25%	0.10%	0.028%	0.012%	0.0005	
Multileptons						

- Given the current luminosity and the harsh experimental conditions, a good sensitivity is achieved with
 - Large branching ratio $(H \rightarrow bb)$
 - Very good selection purity $(H \rightarrow \tau\tau, H \rightarrow \gamma\gamma)$
 - Run 1 Only few channels covered
 - Early Run 2

At least one $H \rightarrow bb$ or multileptons

Full Run 2

several new final states and production modes investigated by ATLAS and CMS

Not a single golden channel but many (at least three) silver bullets

	bb	WW	ττ	ZZ	ΥY
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.000

• Many different final states covered by both CMS and ATLAS: the ones covered in this presentation are χ

 $HH \rightarrow b\bar{b}b\bar{b}$

- <u>Phys. Rev. Lett. 129, 081802</u> (resolved)
- <u>CMS-PAS-B2G-21-001</u> (VBF boosted)
- <u>Submitted to JHEP</u> (VHH)
- <u>Submitted to Eur. Phys. J. C</u> (ZZ/ZH) 🛠
- $HH \rightarrow bb\tau\tau$
 - Phys. Lett. B 842 (2023) 137531
- $HH \rightarrow bb\gamma\gamma$
 - Phys. Lett. B 842 (2023) 137531
- $HH \rightarrow bbVV$ / Multileptons
 - JHEP 07 (2023) 095 (4W/WWττ/4τ, ≥2I)
 - JHEP 06 (2023) 130 (bbZZ, 4l)
 - <u>CMS-PAS-HIG-21-005</u> (bbWW, ≥1I)
 - <u>CMS-PAS-B2G-21-001</u> (yyWW)
 - <u>CMS-PAS-HIG-22-012</u> (γγττ) 🛧

Limits on di-Higgs production

Elena Vernazza - Laboratoire Leprince-Ringuet

• The most stringent upper limits on the di-Higgs cross section come from the combination of different final states

• The limits on di-Higgs production cross section show a strong dependence on the k_{λ} and $k_{2\nu}$

Phys. Lett. B 843 (2023) σ_{ggF+VBF}(HH) [fb] Observed limit (95% CL) ATLAS Expected limit (95% CL) $\sqrt{s} = 13 \text{ TeV}, 126 - 139 \text{ fb}^{-1}$ $(\mu_{HH} = 0 \text{ hypothesis})$ $HH \rightarrow b\bar{b}\tau^{+}\tau^{-} + b\bar{b}\gamma\gamma + b\bar{b}b\bar{b}$ 104 Expected limit $\pm 1\sigma$ Expected limit $\pm 2\sigma$ Theory prediction SM prediction ঠ্ন 10³ 10² bbγγ $b\bar{b}\tau^+\tau^$ bbbb Combined 10¹∟ −10 -5 10 5 $\mathbf{0}$ 15 K_{λ} <u>ATLAS</u> -1.24 < k_λ < 6.49 *

* Assuming other couplings to SM value

Di-Higgs production (ATLAS+CMS) - SM@LHC 2024

• The limits on di-Higgs production cross section show a strong dependence on the k_{λ} and $k_{2\nu}$

Phys. Lett. B 843 (2023) σ_{VBF}(HH)[fb] Observed limit (95% CL) ATLAS Expected limit (95% CL) $\sqrt{s} = 13 \text{ TeV}, 126 - 139 \text{ fb}^{-1}$ $(\mu_{HH} = 0 \text{ hypothesis})$ $HH \!\rightarrow\! b\bar{b}\tau^+\tau^- + b\bar{b}\gamma\gamma + b\bar{b}b\bar{b}$ 10³ Expected limit ±1 σ Expected limit ±20 Theory prediction \overleftrightarrow SM prediction 10² 10 bbγγ $b\bar{b}\tau^+\tau$ 4b boosted bbbb not included Combined 100 3 K_{2V} <u>ATLAS</u> -2.1 < k_{2v} < 7.8 *

* Assuming other couplings to SM value

Di-Higgs production (ATLAS+CMS) - SM@LHC 2024

• The limits on di-Higgs production cross section show a strong dependence on the k_{λ} and k_{2v}

• The limits on di-Higgs production cross section show a strong dependence on the k_{λ} and $k_{2\nu}$

	Н
k _{2v}	
••••	
	н

How to improve sensitivity?

How to improve sensitivity?

HH Multilepton (ATLAS)

- - Targeting HH \rightarrow 4V, HH \rightarrow VV $\tau\tau$, HH \rightarrow 4 τ , HH \rightarrow $\gamma\gamma$ VV, HH \rightarrow bbZZ

• Search for HH production in multilepton decay with a holistic way, performed for the first time by ATLAS

How to improve sensitivity?

$ZZ/ZH \rightarrow 4b$ (CMS) NEW

- Search for ZZ/ZH production in the 4b final state as a validation of $HH \rightarrow 4b$
 - Four VS Three (FvT) re-weighting: 3 b-tagged jets CR (17× more stats) corrections applied to 4 b-tagged jets SR
 - Synthetic dataset produced with hemisphere mixing to increase statistics

How to improve sensitivity?

$HH \rightarrow \gamma \gamma \tau \tau (CMS)$ NEW

- Search for HH production in the γγττ final state, covered for the first time by CMS

 - The main challenge comes from limited statistics

Di-Higgs production (ATLAS+CMS) - SM@LHC 2024

How to improve sensitivity?

VBF HH \rightarrow 4b (ATLAS) (NEW)

• Search for HH production in 4b final state via ggF and VBF in resolved and boosted regimes

VBF HH \rightarrow 4b (ATLAS) (NEW)

• Search for HH production in 4b final state via ggF and VBF in resolved and boosted regimes

Jet clustering with Anti-kT (AK) algorithm

VBF HH \rightarrow 4b (ATLAS) (NEW)

Search for HH production in 4b final state via ggF and VBF in resolved and boosted regimes

How to improve sensitivity?

Combination H+HH

Single-Higgs

- Constrain H couplings to fermions and vector bosons
- Access to k_{λ} via NLO EW corrections

CMS-PAS-HIG-23-006

Elena Vernazza - Laboratoire Leprince-Ringuet

CMS-PAS-HIG-23-006 Phys. Lett. B 843 (2023)

- Constraints on kt and ky are driven by **Single-Higgs**
- Constraints on k_{λ} and $k_{2\nu}$ are driven by **Di-Higgs**

 $k_{2v} = 0$ excluded at > 5 σ for any value of k_v

How to improve sensitivity?

Run 3 and beyond

Run 3 as an opportunity

- Improved trigger strategy both for ATLAS and CMS \bullet
 - HH→4b and HH→bbττ triggers [<u>CMS-DP-2023-050</u>] [<u>ATLAS-TauTrigger</u>]
 - Data parking allows for lower object thresholds [CERN-EP-2024-068]
- Improved object identification Deep/Graph Neural Network Taggers \bullet

Run 3 and beyond

Run 3 as an opportunity

- Improved trigger strategy both for ATLAS and CMS
 - HH→4b and HH→bbττ triggers [<u>CMS-DP-2023-050</u>] [<u>ATLAS-TauTrigger</u>]
 - Data parking allows for lower object thresholds [CERN-EP-2024-068]
- Improved object identification Deep/Graph Neural Network Taggers

Elena Vernazza - Laboratoire Leprince-Ringuet

Fowards HL-LHC

- Largest impact from higher luminosity
- Access new production/decay modes
- Benefit from phase-2 upgrades (forward region for VBF)
- HH production expected to reach 4σ significance
- ► 50% precision on the Higgs self-coupling (based on partial Run 2 \rightarrow sensitivity already improved a lot!)

Conclusions

- \bullet
- Innovative analyses techniques enabled sensitivities well beyond the most optimistic expectations
 - Upper limit on HH cross section by each experiment: $\sigma_{HH} < 2-3 \times \sigma^{SM}_{HH}$
 - Self coupling constrained to approximately: $-1 < k_{\lambda} < 6$
 - Excluded the absence of VVHH at > 5σ : $k_{2v} \neq 0$
- The LHC Run-3 is underway and constitutes a huge opportunity to further improve sensitivity
 - Important trigger improvements introduced for HH searches \bullet
 - Test-bench for new ideas and analysis strategies
- Remarkable progress in the field opens to excellent prospects for the HL-LHC
 - Direct the effort towards measuring di-Higgs production and Higgs boson self-interaction

Multiple directions to be taken ...

Probing the **Higgs boson self-interaction** is one of the **primary targets** of Higgs Physics for the coming years A spectacular improvement in the experimental HH programme has been achieved during the LHC Run 2

All roads lead to Remo HH

Higgs self-coupling beyond SM

- **trilinear coupling** λ_3^{SM} (Higgs boson self-interaction)
 - Investigate **alternative hypotheses** for the Higgs potential \bullet
 - Deviations from the SM potential could point to a **vacuum metastability** (second minimum) ullet
- BSM deviations of these parameters may lead to differences in HH production rates and kinematics •
- Test possible **coupling modifiers** with respect to SM: k_{λ} , k_{ν} , $k_{2\nu}$, k_{t} lacksquare

Elena Vernazza - Laboratoire Leprince-Ringuet

• Searching for di-Higgs production is a crucial way of testing the EWSB mechanism: direct access to the

HH Multilepton (ATLAS)

- Search for HH production in multilepton decay with a **holistic way**, performed for the **first time by ATLAS** • Multileptonic channels (ML): **BDT score** for final discriminant

 - $\gamma\gamma$ + leptons channels ($\gamma\gamma$ +ML): $m_{\gamma\gamma}$ distribution for final discriminant

HH Multilepton (CMS)

- Search for HH production in multilepton decay by CMS, targeting $HH \rightarrow 4V$, $HH \rightarrow VV\tau\tau$, $HH \rightarrow 4\tau$
 - Di-photon and bb4l channels not included in the analyses
 - Wider interpretation in terms of k_{λ} , k_{2V} , EFT benchmarks, search for Spin-0 and Spin-2 resonances

$ZZ/ZH \rightarrow 4b$ (CMS)

- Search for ZZ/ZH production in the 4b final state as a validation of $HH \rightarrow 4b$
 - Sideband to validate QCD multijet background
 - Cross section of ZZ(ZH) is 31(7) times larger than HH

Elena Vernazza - Laboratoire Leprince-Ringuet

Di-Higgs production (ATLAS+CMS) - SM@LHC 2024

$ZZ/ZH \rightarrow 4b$ (CMS)

- Search for ZZ/ZH production in the 4b final state as a validation of $HH \rightarrow 4b$
 - Background modelling in 3 b-tagged jets CR
 - Application to 4 b-tagged jets SR

1. Jet Combinatorial model

4b-tag SR has larger multiplicity than 3b-tag CR

2. Kinematic re-weighting

different kinematic dependence of the b-tagging efficiency

Elena Vernazza - Laboratoire Leprince-Ringuet

JCM

FvT

Di-Higgs production (ATLAS+CMS) - SM@LHC 2024

28

$HH \rightarrow \gamma \gamma \tau \tau (CMS)$

- Search for HH production in the γγττ final state, covered for the first time by CMS
 - BDT score to define categories with different signal purities: Cat 0 and Cat 1

<u>CMS-PAS-HIG-22-012</u>

$HH \rightarrow \gamma \gamma \tau \tau resonant (CMS)$

- resonant hypotheses with Narrow Width Approximation (NWA)

 - $X \rightarrow HH$ (Spin-0 and Spin-2)

CMS-PAS-HIG-22-012

Elena Vernazza - Laboratoire Leprince-Ringuet

Search for HH production in the γγττ final state, covered for the first time by CMS: investigation of several

• Category optimisation to allow good background modelling while keeping high sensitivity on upper limit

VBF HH \rightarrow 4b (ATLAS)

- Search for HH production in 4b final state via **ggF** and **VBF** in resolved and boosted regimes
 - Optimization of analysis selection to target VBF category
 - BDT score distribution used for final discriminant

ATLAS-CONF-2024-003

VBF HH \rightarrow 4b resonant (ATLAS)

- resonant hypotheses with high benefit from boosted regime
 - Narrow Width Approximation (NWA)
 - \bullet

Elena Vernazza - Laboratoire Leprince-Ringuet

• Search for HH production in 4b final state via **ggF** and **VBF** in resolved and boosted regimes: investigation of

Broad width assumption based on Composite Higgs Model ($\Gamma_X = 20\%$ of M_X) \rightarrow for the first time in HH

Boosted HH→4b (CMS)

- Lorentz boosted

Elena Vernazza - Laboratoire Leprince-Ringuet

• Search for HH production in 4b final state focused on a phase space region where both Higgs bosons are **highly**

Run 3 and beyond

Elena Vernazza - Laboratoire Leprince-Ringuet

Di-Higgs production (ATLAS+CMS) - SM@LHC 2024

