

Phenomenology of multi-Higgs final states \cong double

Matthias Kerner Institute for Theoretical Physics, KIT SM@LHC — Rome, 9. May 2024

Introduction

Higgs boson pair production is sensitive to Higgs self-interaction λ

Gluon Fusion @ NLO — SM vs. HTL

Matthias Kerner, SM@LHC 9.5.24 — Phenomenology of multi-Higgs final states

Gluon Fusion @ NNLO

NNLO HTL predictions

de Florian, Mazzitelli `13 Grigo, Melnikov, Steinhauser `14

de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev `16

00000000

can be combined with exact m_t dependence at NLO Grazzini, Heinrich, Jones, Kallweit, MK, Lindert, Mazzitelli `18

3 methods to approximate NNLO m_t dependence:

1) NNLO_{NLO-i}

rescale NLO by $K_{\text{NNLO}} = \text{NNLO}_{\text{HEFT}}/\text{NLO}_{\text{HEFT}}$

2) NNLO_{B-proj}

project all real radiation contributions to Born configuration, rescale by LO/LO_{HEFT}

3) NNLO_{FTapprox}

calculate NNLO_{\mathsf{HEFT}} and for each multiplicity rescale by

 $\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFT}}^{(0)}(ij \to HH + X)}$

 $\sqrt{s} = 14 \text{ TeV}$

0.20

K-factor after inclusion of m_t dependence

Gluon Fusion @ N³LO + N³LL

going even higher in perturbation theory:

Matthias Kerner, SM@LHC 9.5.24 — Phenomenology of multi-Higgs final states

Mass Scheme Uncertainties

So far, all results used OS renormalization of m_t ,

but also other schemes, e.g. $\overline{\text{MS}}$ valid \rightarrow additional mass scheme uncertainty

Matthias Kerner, SM@LHC 9.5.24 — Phenomenology of multi-Higgs final states

Mass Scheme Uncertainties

HH mass scheme uncertainties:

Similar effects for (off-shell) H production:

$$\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=400 \text{ GeV}} = 0.1609(4)^{+0\%}_{-13\%} \text{ fb/GeV}$$
$$\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=1200 \text{ GeV}} = 0.000435(4)^{+0\%}_{-35\%} \text{ fb/GeV}$$

$$\sigma(gg \to H^*)\Big|_{Q=125 \text{ GeV}} = 42.17^{+0.4\%}_{-0.5\%} \text{ pb}$$

$$\sigma(gg \to H^*)\Big|_{Q=600 \text{ GeV}} = 1.97^{+0.0\%}_{-15.9\%} \text{ pb}$$

Is there any preferred scheme choice?

• Leading contributions in high-energy expansion $(\sqrt{\hat{s}} = m_{HH} \gg m_t)$ at NLO

Jones, Spira (Les Houches 2019); Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 20; based on Davies, Mishima, Steinhauser, Wellmann 18 $OS: F_{\text{box},i}^{\text{NLO}} = 2F_{\text{box},i}^{\text{LO}} \log \frac{m_t^2}{s} + \frac{m_t^2}{s}c_{1,i} + \mathcal{O}\left(\frac{1}{s^2}\right) \qquad \overline{MS}: F_{\text{box},i}^{\text{NLO}} = 2F_{\text{box},i}^{\text{LO}} \left[\log \left(\frac{\mu_t^2}{s}\right) + \frac{4}{3}\right] + \frac{\overline{m}_t^2(\mu_t)}{s}c_{1,i} + \mathcal{O}\left(\frac{1}{s^2}\right) \rightarrow \text{preferred choice } \mu_t^2 = s$

- Matching to HTL at low energies: preferred choice $\mu_t = m_t$
- Better convergence using OS scheme in H* @ NNLO J. Mazzitelli 16

\rightarrow Need NNLO predictions with full m_t dependence

Towards NNLO QCD with m_t **-dependence**

Full NNLO QCD predictions with m_t -dependence out of reach,

but can be approximated using expansions!

NLO EW corrections to $gg \rightarrow HH$

NLO EW corrections needed in addition to QCD corrections

Recently, huge progress:

• partial results (Yukawa-/Higgs- interactions):

Bizoń, Haisch, Rottoli 18,24; Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao 19; Mühlleitner, Schlenk, Spira 22; Xiao Zhang et.al. Higgs 2023; MK et.al. Loops & Legs 2024

• approximate results:

Top-Yukawa corrections in the high-energy limit [Davies, Mishima, Schönwald, Steinhauser, Zhang, 22] EW corrections in large- m_t limit [Davies, Schönwald, Steinhauser, Zhang, 23]

• full EW corrections [Bi, Huang, Huang, Ma, Yu 23]

NLO \hat{E} corrections to $gg \rightarrow HH$

Method: Auxiliary Mass Flow (AMFlow) Liu, Ma, Wang 17; Liu, Ma, Tao et.al. 20; Liu, Ma 22

Solve Loop Integrals

$$I \propto \lim_{\eta \to 0^+} \int \prod_{l=1}^{L} d^d k_i \prod_{i=1}^{N} \frac{1}{[q_i^2 - (m_i^2 - i\eta)]^{\nu_i}}$$

via differential equations in $x = -i\eta$

$$\partial_x I = MI$$

• Start from boundary point $x = -i\infty$ \rightarrow easy to calculate

(massive vacuum graphs) × (massless graphs)

• Transfer to x=0 using power-log expansions Moriello 19

0.010 و

- NLO

EFT Studies

- - UV completion can be strongly coupled

Heinrich, Jones, MK, Luisoni, Scyboz 19, 20 De Florian, Fabre, Heinrich, Mazzitelli, Scyboz 21 Heinrich, Lang, Scyboz 22, 23

- $\Delta \mathcal{L}_{\text{HEFT}} = -m_t \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{v^2} \right) \bar{t} t c_{hhh} \frac{m_h^2}{2v} h^3 + \frac{\alpha_s}{8\pi} \left(c_{ggh} \frac{h}{v} + c_{gghh} \frac{h^2}{v^2} \right) G^a_{\mu\nu} G^{a,\mu\nu}$
- **SMEFT**: Higgs doublet $\Phi(x)$ transforms linea
 - Canonical expansion in $1/\Lambda$

$$\Delta \mathcal{L}_{\text{Warsaw}} = \frac{C_{H,\square}}{\Lambda^2} (\phi^{\dagger} \phi) \square (\phi^{\dagger} \phi) + \left(\frac{C_{uH}}{\Lambda^2} \phi^{\dagger} \phi \bar{q}_L \phi^c t_R + \mho^2\right)$$

- Chromomagnetic operator sub-leadi
 → loop counting Buchalla, Heinrich, Müller-S
- Chromomagnetic and 4-top operatc
 Scheme conversion relates both types of operators

Di Noi, Gröber, Heinrich, Lang, Vitti 23; Heinrich, Lang 23 value pairs of $(C_{Qt}^{(1)}, C_{tG}^{NDR})$ within the circle are mapped

$$C_{tG}^{\text{BMHV}} = C_{tG}^{\text{NDR}} - \frac{\sqrt{2}m_t g_s}{16\pi^2 v} \left(C_{Qt}^{(1)} + \left(c_F - \frac{c_A}{2} \right) C_{Qt}^{(8)} \right)$$

EFT Studies

Heinrich, Lang, Scyboz 22

Naive conversion HEFT \rightarrow SMEFT:

VBF HH + 2-jet production

	$\sigma^{(14 \text{ TeV})} \text{ [fb]}$
LO	$2.079^{+0.177}_{-0.152}$
NLO	$2.065^{+0.022}_{-0.018}$
NNLO	$2.056 {}^{+0.003}_{-0.005}$
$N^{3}LO$	$2.055{}^{+0.001}_{-0.001}$

- sensitivity to couplings λ and c_{2V}
- known with high accuracy using VBF approximation

 \rightarrow no color exchange between quark-lines

- N³LO QCD Dreyer, Karlberg 18
- NNLO QCD + NLO EW Dreyer, Karlberg, Lang, Pellen 20

Triple-H Production

$\mu_0 = Q/2$	$14 { m TeV}$	$27 { m TeV}$	$100 { m TeV}$
LO	$0.0605^{+34\%}_{-24\%}$	$0.295^{+28\%}_{-20\%}$	$3.88^{+21\%}_{-16\%}$
$\mathrm{NLO}_{\mathrm{Bi}}$	$0.0983^{+18\%}_{-15\%}$	$0.473^{+16\%}_{-14\%}$	$5.75^{+15\%}_{-12\%}$
$\mathrm{NLO}_{\mathrm{dBi}}$	$0.0982^{+18\%}_{-15\%}$	$0.471^{+17\%}_{-14\%}$	$5.72^{+15\%}_{-12\%}$
NNLO _{Bi}	$0.114^{+5\%}_{-8\%}$	$0.540^{+5\%}_{-7\%}$	$6.47^{+5\%}_{-6\%}$
$\mathrm{NNLO}_{\mathrm{dBi}}$	$0.113^{+5\%}_{-8\%}$	$0.534^{+5\%}_{-7\%}$	$6.36^{+5\%}_{-6\%}$
$NNLO_{Best}$	$0.103^{+5\%}_{-8\%}$	$0.501^{+5\%}_{-7\%}$	$5.56^{+5\%}_{-6\%}$

800

Q [GeV]

1000

1200

400

600

- NLO FT_{approx} Maltonia, Vryonidoua, Zaro 14
- NNLO HTL de Florian, Mazzitelli 16
- NNLO HTL \otimes NLO FT_{approx} de Florian, Fabre, Mazzitelli 19

1400

Summary

Theory Predictions for gg \rightarrow HH Production

• $(N^{3}LO + N^{3}LL) \otimes NLO_{m_{t}}$

remaining scale-dependence 1% 3% uncertainty due to m_t -effects beyond NLO

- 10-20% Mass-Scheme Uncertainties
 m_t effects at NNLO required
 possibly in reach, using expansions
- -4% EW NLO Corrections O(10%) differential corrections
- EFT predictions in HEFT and SMEFT

 γ₅-scheme dependence of chromomagnetic and 4-top operators