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Introduction
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Higgs boson pair production is sensitive to Higgs self-interaction   

→ direct relation to Higgs potential 

→ test mechanism of EW symmetry breaking
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Figure 3: Total cross sections at the LO and NLO in QCD for HH production channels, at the
√

s =14 TeV LHC as a function of the
self-interaction coupling λ. The dashed (solid) lines and light- (dark-)colour bands correspond to the LO (NLO) results and to the scale and
PDF uncertainties added linearly. The SM values of the cross sections are obtained at λ/λSM = 1.
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current experimental limits on self-coupling :  
     → talk by Elena Vernazza
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     progress in theory predictions
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Figure 5: Higgs boson pair invariant mass distribution mhh at
p

s = 14 TeV and
p

s = 100 TeV for absolute values (left panels) and normalised to the corresponding

total cross section (right panels).

boson pair invariant mass distribution mhh at
p

s = 14 TeV and
p

s = 100 TeV, com-

paring the full NLO result to various approximations. In particular, we compare to

the “basic HEFT” approximation at
p

s = 14 TeV, showing that it fails to describe

the distribution. Comparing the results at 14 TeV and 100 TeV, we observe that the

di↵erences of the full NLO result to the Born-improved HEFT and also to the FTapprox

result are amplified at 100 TeV, as expected, as the HEFT approximation does not

have the correct high energy behaviour. This scaling behaviour will be discussed more

in detail below. We also see that the K-factor is far from being uniform for the mhh

distribution, while the “basic HEFT” results suggest a uniform K-factor.

– 21 –

HTL 

HTL 
HTL 

Gluon Fusion @ NLO — SM vs. HTL
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heavy-top limit (HTL) mt → ∞

NLO QCD SM 
using numerical methods for 2-loop amplitude 
Borowka, Greiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke `16 
Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira, Streicher `18 

LO (full SM)
Glover, van der Bij `88

since process loop-induced: higher-order corrections challenging 
simplification:

NLO QCD HTL (Born-improved) 
Plehn, Spira, Zerwas `96, `98;  
Dawson, Dittmaier, Spira `98

HTL only justified for
mHH ≪ 2mt

K-factor  2≈

K-factor 1.7

σLO ≈ 20 fb

K-factor decreases 
for large mHH

wrong shape 
in basic HTL

dσB.i.−HTL
NLO =

dσHTL
NLO
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Gluon Fusion @ NNLO
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NNLO HTL predictions 
de Florian, Mazzitelli `13 
Grigo, Melnikov, Steinhauser `14 
de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev `16 
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Figure 2: Higgs boson pair invariant mass distribution at NNLO for the di↵erent approximations,
together with the NLO prediction, at 14TeV (left) and 100TeV (right). The lower panels show the
ratio with respect to the NLO prediction, and the filled areas indicate the NLO and NNLOFTapprox

scale uncertainties.

harder and the softer Higgs boson (pT,h1 and pT,h2, Figs. 6 and 7), and the azimuthal separation
between the two Higgs bosons (��hh, Fig. 8). For the sake of clarity, we only show the scale
uncertainty bands corresponding to the NLO and NNLOFTapprox predictions.

We start our discussion from the invariant-mass distribution of the Higgs boson pair, re-
ported in Fig. 2. We observe that the NNLOB-proj and NNLONLO-i approximations predict a
similar shape, with very small corrections at threshold, an approximately constant K-factor for
larger invariant masses, and only a small di↵erence in the normalization between them, which
increases in the 100TeV case. The NNLOFTapprox, on the other hand, presents a di↵erent shape,
in particular with larger corrections for lower invariant masses, a minimum in the size of the
corrections close to the region where the maximum of the distribution is located, and a slow
increase towards the tail. The di↵erent behavior of the NNLOFTapprox in the region close to
threshold is more evident at 100TeV, where the increase is about 30% in the first bin. Naively
we could expect that if this region is dominated by soft parton(s) recoiling against the Higgs
bosons, the Born projection and FTapprox should provide similar results. We have investigated
the origin of this di↵erence, and we find that in the region Mhh ⇠ 2Mh the cross section is actu-
ally dominated by events with relatively hard radiation recoiling against the Higgs boson pair
(for example, at

p
s = 100TeV, the average transverse momentum of the Higgs boson pair in

the first Mhh bin is pT,hh ⇠ 100GeV at NLO). In this region the exact loop amplitudes behave
rather di↵erently as compared to the amplitudes evaluated in the HEFT: As the production
threshold is approached, they go to zero faster than in the mass-dependent case, thus explain-
ing the di↵erences we find. Within the NNLOFTapprox, the corrections to the Mhh spectrum
range between 10% and 20% at 14TeV. The scale uncertainty is substantially reduced in the

10

p
s 13 TeV 14 TeV 27 TeV 100 TeV

NLO [fb] 27.78 +13.8%
�12.8% 32.88 +13.5%

�12.5% 127.7 +11.5%
�10.4% 1147 +10.7%

�9.9%

NLOFTapprox [fb] 28.91 +15.0%
�13.4% 34.25 +14.7%

�13.2% 134.1 +12.7%
�11.1% 1220 +11.9%

�10.6%

NNLONLO�i [fb] 32.69 +5.3%
�7.7% 38.66 +5.3%

�7.7% 149.3 +4.8%
�6.7% 1337 +4.1%

�5.4%

NNLOB�proj [fb] 33.42 +1.5%
�4.8% 39.58 +1.4%

�4.7% 154.2 +0.7%
�3.8% 1406 +0.5%

�2.8%

NNLOFTapprox [fb] 31.05 +2.2%
�5.0% 36.69 +2.1%

�4.9% 139.9 +1.3%
�3.9% 1224 +0.9%

�3.2%

Mt unc. NNLOFTapprox ±2.6% ±2.7% ±3.4% ±4.6%

NNLOFTapprox/NLO 1.118 1.116 1.096 1.067

Table 1: Inclusive cross sections for Higgs boson pair production for di↵erent centre-of-mass
energies at NLO and NNLO within the three considered approximations. Scale uncertain-
ties are reported as superscript/subscript. The estimated top quark mass uncertainty of the
NNLOFTapprox predictions is also presented. The uncertainties due to the qT -subtraction and
the numerical evaluation of the virtual NLO contribution are both at the per mille level.

NNLOFTapprox, i.e. by about a factor of three. This reduction of the scale uncertainties is
stronger as we increase the collider energy, being close to a factor of five at 100TeV.

As is well known, scale uncertainties can only provide a lower limit on the true perturbative
uncertainties. In particular, from Table 1 we see that the di↵erence between the NNLO and
NLO central predictions is always larger than the NNLO scale uncertainties (although within
the NLO uncertainty bands). In any case, the strong reduction of scale uncertainties, together
with the moderate impact of NNLO corrections, suggests a significant improvement in the
perturbative convergence as we move from NLO to NNLO.

It is also worth mentioning that the three approximations have a di↵erent behaviour withp
s. For instance at 100TeV, the increase with respect to the NLO prediction for the NNLOB-proj

and NNLONLO-i approaches is 23% and 17%, respectively, values that are close to the ones for
14TeV (20% and 18%, respectively). By contrast, the NNLOFTapprox result increases the NLO
prediction by 7% at 100TeV, i.e. the correction is smaller by almost a factor of two than
at 14TeV (12%), which also means a larger separation with respect to the other two NNLO
approximations. The smaller size of the NNLO corrections in the FTapprox at higher energies
is also consistent with the observed reduction of scale uncertainties.

As was mentioned already in Section 2.2, the NNLOFTapprox result is expected to be the most
accurate one among the approximations studied in this work, and therefore it is considered to
be our best prediction. In order to estimate the remaining uncertainty associated with finite top
quark mass e↵ects at NNLO, we start by considering the accuracy of the FTapprox approximation
at NLO. At 14TeV the NLO FTapprox result (see Table 1) overestimates the full NLO total cross

8

can be combined with exact  dependence at NLO 
Grazzini, Heinrich, Jones, Kallweit, MK, Lindert, Mazzitelli `18 

mt

3 methods to approximate NNLO   dependence:mt

1) NNLONLO-i 
rescale NLO by KNNLO = NNLOHEFT/NLOHEFT 

2) NNLOB-proj 
project all real radiation contributions  
to Born configuration, rescale by LO/LOHEFT 

3) NNLOFTapprox 
calculate NNLOHEFT and for each multiplicity 
rescale by  

A(n)
HEFT(ij ! HH +X), we apply the reweighting

R(ij ! HH +X) =
ABorn

Full (ij ! HH +X)

A(0)
HEFT(ij ! HH +X)

, (4)

where ABorn
Full stands for the lowest order (loop-induced) squared amplitude for the corresponding

partonic subprocess, computed in the full theory.† We note that, contrary to what happens in
the Born-projected approach, here the reweighting is defined using amplitudes that correspond
to the same subprocess under consideration. Therefore, the kinematics is always preserved and
there is no need to define a Born projection. Moreover, for amplitudes that are of tree-level
type in the HEFT (as it is the case for the double-real emission contributions), this reweighting
simply implies using the exact loop-induced amplitudes with full top mass dependence. The
reweighting procedure defined by Eq. (4) agrees at NLO with the so-called FTapprox introduced
in Ref. [22], therefore we will use the same notation.

Given that the performance of the Born-projection and FT approximations was already
studied in Ref. [17] at NLO, we directly present NNLO predictions in Section 3. We point
out that, based on the ingredients entering each of the approximations, the NNLOFTapprox is
expected to be the most advanced prediction for Higgs boson pair production via gluon fusion.
By contrast, the NNLOB-proj is expected to be the less accurate, since it is based on a simple
Born level reweighting procedure. Nevertheless, and for comparison purposes, we always present
results for the three approximations described above.

2.3 Numerical stability

Before presenting our quantitative predictions, we briefly discuss the numerical stability of our
results. From the computational point of view, the most challenging of the three approaches to
incorporate mass e↵ects at NNLO is the NNLOFTapprox procedure, as it involves loop-induced
double-real contributions in the full theory. In particular the dominant gg ! hhgg amplitude
comprises computationally very challenging six-point loop integrals with internal masses. In
fact, these contributions have to be evaluated in the numerically intricate NNLO unresolved
limits and to the best of our knowledge, the present calculation is the first application of a
six-point one-loop amplitude integrated over its IR divergent unresolved limits in an NNLO
calculation.

Thanks to the numerical stability of the applied algorithms in OpenLoops together with
Collier, the bulk of the phase-space points remains stable in double precision when approach-
ing qT ! 0, even close to the dipole singularity, i.e. in the NNLO double-unresolved limits.
On average the runtime per phase space point for the gg ! hhgg amplitude is ⇠ 1 sec. In
principle OpenLoops provides a rescue system, such that remaining numerically unstable
phase-space points can be reevaluated in higher numerical precision based on reduction with

†Strictly speaking, the reweighting is applied to the finite part of the loop amplitudes. However, at one-loop
level this procedure reproduces the loop structure of the full theory.

5

K-factor 1.2

K-factor after inclusion of  dependencemt
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Gluon Fusion @ N3LO + N3LL
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Figure 6: The invariant mass mhh distributions with finite top quark mass corrections at

four center-of-mass energies
p
s = 13, 14, 27, 100 TeV. The error bands are from the 7-point

scale variations. The grey, green, red hatched and blue bands correspond to the NLOmt ,

(NNLO +NNLL)⌦NLOmt
, N3LO⌦NLOmt and (N3LO +N3LL)⌦NLOmt

predictions,

respectively. The bottom panel shows the ratios to the NLOmt distribution.
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p
s 13 TeV 14 TeV 27 TeV 100 TeV

NLOmt 27.56+13.9%
�12.7% 32.64+13.5%

�12.47% 126.1+11.5%
�10.4% 1119+10.7%

�9.9%

(NNLO+NNLL)⌦NLO
mt

33.33+3.0%
�3.3% 39.42+3.0%

�3.4% 150.8+2.7%
�3.4% 1320+2.4%

�3.4%

N3LO⌦NLOmt 33.43+0.50%
�2.8% 39.56+0.50%

�2.7% 151.7+0.46%
�2.3% 1333+0.51%

�1.8%

(N3LO +N3LL)⌦NLO
mt

33.47+0.88%
�0.85% 39.60+0.85%

�0.87% 151.9+0.63%
�0.94% 1335+0.35%

�1.0%

Table 2: The inclusive total cross sections (in unit of fb) of Higgs pair production at
p
s = 13, 14, 27, 100 TeV after taking into account the NLO full top quark mass dependence.

The quoted relative uncertainties are from the 7-point scale variations.

applicable in phenomenological studies.

4 Summary

We have improved the (di↵erential) cross section calculation of the Higgs boson pair pro-

duction via gluon-gluon fusion with the threshold resummation up to N3LL in the infinite

top quark mass approximation. Such a resummation calculation has been consistently

matched to the known N3LO results. We first study the theoretical uncertainties at var-

ious perturbative orders due to the ambiguities in the resummation formalism. Though

such resummation scheme uncertainties are in anyway sub-dominant at N3LO+N3LL, we

argue that the N2 and N2 schemes should give us the best predictions. With the N2 scheme,

the residual renormalisation and factorisation scale uncertainties are less than one percent,

which are a factor of 2 smaller than N3LO and a factor of 4 smaller than NNLO+NNLL,

while the central values are almost identical to N3LO. This further consolidates the ob-

servation that the asymptotic convergence in the strong coupling constant ↵s series has

reached at the fourth order [51, 52]. Such a conclusion holds for both the inclusive total

cross sections and the di↵erential invariant mass mhh distributions.

Our results have been finally combined with the full top quark mass dependent calcu-

lation at NLO QCD. Such combinations are essential for phenomenological applications.

The new state-of-the-art predictions of the di-Higgs hadroproduction cross sections have

been reported after taking into account the finite top quark mass corrections.

Regarding the prospects for the future, it is clear that how to reduce the large top-

quark mass scheme uncertainty remains an open question. In addition, the NNLO QCD

and NLO electroweak calculations in the SM would be quite desirable, which are however

quite technically challenging. The top-quark mass scheme uncertainty is expected to be

reduced if the full NNLO QCD calculation in the SM was available. The minor percent level

bottom-quark-loop contributions would turn out to be interesting too given the subpercent

level scale uncertainty we have reached in this paper.

– 26 –

Ajjath, Shao `22

Chen, Li, Shao, Wang 19

(N3LO + N3LL)  NLO⊗ mt

most accurate prediction:

going even higher in perturbation theory:

N3LO

N3LL threshold resummation

requires: - triangle contributions up to 3 loop (similar to H @ N3LO) 
- box contributions up to 2 loop 

Banerjee, Borowka, Dhani, Gehrmann, Ravindran 18

→  1% remaining scale ( ) uncertainty μR, μF

• 3% -effects beyond NLO 
•  mass-scheme  
• EW corrections

mt

𝒪(10%)
additional uncertainties:

Matthias Kerner — Top quark mass effects in Higgs physics               Radcor 2017 — September 28, 2017 19

Challenges (far) ahead

future plans to extend the calculation

•effects of top width 
•bottom quark mass effects 
→ large mass ratios 
→ numerical integration  
    might be challenging 

•combine with parton shower

} requires reduction with  
full mh and mt dependence 
→ more complicated coefficients

next slides

https://arxiv.org/search/hep-ph?searchtype=author&query=Banerjee%2C+P
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Mass Scheme Uncertainties
and Q according to Section 3.1.414. Since the scale dependence on µt is a monotonously falling

function, we evaluated the di↵erential cross section for four choices of the top mass, mt, mt(mt),

mt(Q/4) and mt(Q), for each bin in Q.

For the three c.m. energies of 14, 27 and 100 TeV the di↵erential cross sections are presented

in Figs. 14, 15 as a function of Q = mHH for the various definitions of the top mass. The lower

panels exhibit the ratios of the di↵erential cross sections to the ones in terms of the top pole mass

(OS scheme). It is clearly visible that the scale and scheme dependence of the top mass induces

gg ! HH at NLO QCD |
p
s = 14 TeV | PDF4LHC15

d�/dm
HH

[fb/GeV]
µ
R
= µ

F
= m

HH
/2

Full NLO results for di↵erent top-quark masses

MS scheme with m
t
(m

t
)

MS scheme with m
t
(m

HH
/4)

MS scheme with m
t
(m

HH
)

OS scheme, mt = 172.5 GeV

R
a
ti
o
to

O
S

m
HH

[GeV]

Figure 14: The di↵erential Higgs-pair production cross section at NLO as a function of the invariant Higgs-pair
mass for a c.m. energy of 14 TeV for four di↵erent choices of the scheme and scale of the top mass. The lower
panel shows the ratio of all results to the default results with the top pole mass (OS scheme). PDF4LHC PDFs
have been used and the renormalization and factorization scales of ↵s and the PDFs have been fixed at our
central scale choice µR = µF = Q/2.

sizeable variations of the NLO Higgs-pair production cross section and thus contributes to the

theoretical uncertainties. For small Q values, the size pattern of the di↵erential cross section

due to the di↵erent scale and scheme choices is varying. For large values of Q, the maximum is

always given by the on-shell scheme and the minimum in terms of the MS-top mass mt(Q) with

14We do not separate the treatment of the top-Yukawa couplings and the propagator-top mass, since both
are linked by the sum rule emerging from the electroweak SU(2)⇥ U(1) symmetry, yt �

p
2mt/v = 0, which is

needed for the cancellation of divergences in electroweak corrections.

– 31 –

NLO predictions in MS scheme

So far, all results used OS renormalization of mt,  
  but also other schemes, e.g. MS valid → additional mass scheme uncertainty 

Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 19,20

large scheme uncertainties at large mHH 

(larger than  dependence)μR, μF

d�LO

dQ

���
Q=1200 GeV

= 0.0003223+0%
�56% fb/GeV (4.5)

that have been obtained for a c.m. energy of 14 TeV and using PDF4LHC15 NLO parton

densities with a NLO strong coupling normalized to ↵s(MZ) = 0.11815. Their reduction from

LO to NLO underlines that the NLO QCD corrections stabilize the theoretical prediction for

the Higgs-pair production cross section. The large size of the residual uncertainties is just

a consequence of the large NLO QCD corrections as is the case for the renormalization and

factorization scale dependences, too. Adopting the envelope for each Q-bin individually and

integrating over Q, we arrive at the impact of these uncertainties on the total cross section for

various c.m. energies,
p
s = 13 TeV : �tot = 27.73(7)+4%

�18% fb,
p
s = 14 TeV : �tot = 32.81(7)+4%

�18% fb,
p
s = 27 TeV : �tot = 127.0(2)+4%

�18% fb,
p
s = 100 TeV : �tot = 1140(2)+3%

�18% fb (4.6)

using PDF4LHC PDFs. A further reduction of these uncertainties can only be achieved by the

determination or reliable estimate of the full mass e↵ects at NNLO.

Since these uncertainties are sizeable, one may wonder why this has not been observed

already for single-Higgs boson production gg ! H. The measured value of the Higgs mass

MH = 125 GeV is small compared to the top mass so that for single on-shell Higgs production

we are close to the HTL, i.e. finite top-mass e↵ects are small and thus the related uncertainties,

too. However, going to larger virtualities Q for o↵-shell Higgs production gg ! H⇤ (or larger
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p
s = 14

TeV,

�NLO

���
Q=125 GeV

= 42.17+0.4%
�0.5% pb, �NLO

���
Q=300 GeV

= 9.85+7.5%
�0.3% pb,

�NLO

���
Q=400 GeV

= 9.43+0.1%
�0.9% pb, �NLO

���
Q=600 GeV

= 1.97+0.0%
�15.9% pb,

�NLO

���
Q=900 GeV

= 0.230+0.0%
�22.3% pb, �NLO

���
Q=1200 GeV

= 0.0402+0.0%
�26.0% pb (4.7)

using PDF4LHC PDFs. This has been known for a long time since there are sizeable e↵ects on

the virtual corrections due to the scale choice of the top mass for larger values of Q or the Higgs
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p
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�LO

���
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�1.1% pb, �LO

���
Q=300 GeV

= 4.88+23.1%
�1.1% pb,

15Note that these choices are incompatible with a consistent LO prediction, but the relative uncertainties
related to the scheme and scale choice of the top mass will be hardly a↵ected by this inconsistency. These
uncertainties are just parametric at LO.
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5 Uncertainties due to the top mass scheme

For the uncertainty related to the scheme and scale choice of
the top mass we have calculated the total NLO results for the
differential gluon-fusion cross section for the MS top mass
at different scale choices and have compared to our default
prediction using the top quark pole mass both in the loop
propagators and in the Yukawa coupling. We have used an
N3LO evolution and conversion of the pole into the MS mass
at the input scale given by the MS top mass itself. This leads,
for our choice of mt = 172.5 GeV for the top pole mass to
an MS mass of mt(mt) = 163.02 GeV. The renormalisation
of the top mass has been adjusted accordingly in our cal-
culation, and we have switched to an MS mass both in the
loop propagators and in the Yukawa coupling. We present
the top-quark scheme uncertainties at four selected values
of Q in the invariant Higgs-pair mass differential cross sec-
tion. We take the maximum and minimum differential cross
sections when the scale of the MS top quark mass is varied
in the range Q/4 and Q, compared to our default pole mass
predictions, and we obtain the following variations,

ds(gg ! HH)

dQ

���
Q=300 GeV

= 0.0298(7)+6%
�34% fb/GeV,

ds(gg ! HH)

dQ

���
Q=400 GeV

= 0.1609(4)+0%
�13% fb/GeV,

ds(gg ! HH)

dQ

���
Q=600 GeV

= 0.03204(9)+0%
�30% fb/GeV,

ds(gg ! HH)

dQ

���
Q=1200 GeV

= 0.000435(4)+0%
�35% fb/GeV,

(20)

using PDF4LHC parton densities. The top-quark scheme un-
certainty is significant over the whole range of mHH . Note
that a similar result has been observed in single Higgs pro-
duction for large Higgs masses which correspond to our tri-
angle diagram involving the triple Higgs coupling. Further-
more, this scheme uncertainty is reduced by roughly a fac-
tor of two from LO to NLO. The prediction involving the
top pole mass, that we take as our central prediction, is the
maximal prediction for high mHH values. The uncertainties
induced by the top-mass scheme and scale choice on the to-
tal cross section at NLO will be given in a forthcoming pub-
lication [53].

6 Conclusions

We have presented the calculation of the full NLO QCD
corrections to Higgs-boson pair production via gluon fu-
sion for the top-loop contributions. This has been performed
by numerical integrations of the involved virtual two-loop
corrections to the four-point functions, while the results of
the single-Higgs case have been translated to the three-point

contributions that involve the trilinear Higgs self-coupling.
The one-particle reducible contributions that appear for the
first time at NLO have been inferred from the explicit analyt-
ical one-loop results for H ! Zg , where the Z-boson mass
plays the role of the virtuality of the gluon in the dressed
Hgg

⇤ vertex. In order to isolate the ultraviolet, infrared and
collinear divergences, we have performed appropriate end-
point subtractions at the integrand level and described the
explicit construction of infrared subtraction terms that al-
low for a clean separation of the infrared singularities from
the regular rest. The real corrections have been obtained by
generating the full matrix elements with automatic tools. We
have constructed the infrared and collinear subtraction term
as the heavy-top limit of the real matrix elements involving
the fully massive LO sub-matrix element. Adding back the
full results in the heavy-top limit completed the full real cor-
rections. The final results we have obtained agree with pre-
vious calculations for the individual finite parts of the real
and virtual corrections. We find finite NLO mass effects that
are up to �30% for large invariant Higgs-pair masses, while
the total NLO top-mass effects modify the total cross section
by about �15%.

We have studied the theoretical uncertainties related to
variations of the renormalisation and factorisation scales and
have found agreement with the previously known results
finding uncertainties at the level of 10� 15%. A novel out-
come of our calculation is the additional uncertainty induced
by the scheme and scale dependence of the top mass that
can be significant, amounting to +6%/� 34% at mHH =
300 GeV and +0%/� 35% at mHH = 1200 GeV. The in-
duced uncertainty on the total cross section will be given in
a forthcoming publication [53].

In the future we plan to extend our calculation to beyond-
the-SM models as e.g. the 2HDM or MSSM.
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5 Uncertainties due to the top mass scheme

For the uncertainty related to the scheme and scale choice of
the top mass we have calculated the total NLO results for the
differential gluon-fusion cross section for the MS top mass
at different scale choices and have compared to our default
prediction using the top quark pole mass both in the loop
propagators and in the Yukawa coupling. We have used an
N3LO evolution and conversion of the pole into the MS mass
at the input scale given by the MS top mass itself. This leads,
for our choice of mt = 172.5 GeV for the top pole mass to
an MS mass of mt(mt) = 163.02 GeV. The renormalisation
of the top mass has been adjusted accordingly in our cal-
culation, and we have switched to an MS mass both in the
loop propagators and in the Yukawa coupling. We present
the top-quark scheme uncertainties at four selected values
of Q in the invariant Higgs-pair mass differential cross sec-
tion. We take the maximum and minimum differential cross
sections when the scale of the MS top quark mass is varied
in the range Q/4 and Q, compared to our default pole mass
predictions, and we obtain the following variations,
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using PDF4LHC parton densities. The top-quark scheme un-
certainty is significant over the whole range of mHH . Note
that a similar result has been observed in single Higgs pro-
duction for large Higgs masses which correspond to our tri-
angle diagram involving the triple Higgs coupling. Further-
more, this scheme uncertainty is reduced by roughly a fac-
tor of two from LO to NLO. The prediction involving the
top pole mass, that we take as our central prediction, is the
maximal prediction for high mHH values. The uncertainties
induced by the top-mass scheme and scale choice on the to-
tal cross section at NLO will be given in a forthcoming pub-
lication [53].

6 Conclusions

We have presented the calculation of the full NLO QCD
corrections to Higgs-boson pair production via gluon fu-
sion for the top-loop contributions. This has been performed
by numerical integrations of the involved virtual two-loop
corrections to the four-point functions, while the results of
the single-Higgs case have been translated to the three-point

contributions that involve the trilinear Higgs self-coupling.
The one-particle reducible contributions that appear for the
first time at NLO have been inferred from the explicit analyt-
ical one-loop results for H ! Zg , where the Z-boson mass
plays the role of the virtuality of the gluon in the dressed
Hgg

⇤ vertex. In order to isolate the ultraviolet, infrared and
collinear divergences, we have performed appropriate end-
point subtractions at the integrand level and described the
explicit construction of infrared subtraction terms that al-
low for a clean separation of the infrared singularities from
the regular rest. The real corrections have been obtained by
generating the full matrix elements with automatic tools. We
have constructed the infrared and collinear subtraction term
as the heavy-top limit of the real matrix elements involving
the fully massive LO sub-matrix element. Adding back the
full results in the heavy-top limit completed the full real cor-
rections. The final results we have obtained agree with pre-
vious calculations for the individual finite parts of the real
and virtual corrections. We find finite NLO mass effects that
are up to �30% for large invariant Higgs-pair masses, while
the total NLO top-mass effects modify the total cross section
by about �15%.

We have studied the theoretical uncertainties related to
variations of the renormalisation and factorisation scales and
have found agreement with the previously known results
finding uncertainties at the level of 10� 15%. A novel out-
come of our calculation is the additional uncertainty induced
by the scheme and scale dependence of the top mass that
can be significant, amounting to +6%/� 34% at mHH =
300 GeV and +0%/� 35% at mHH = 1200 GeV. The in-
duced uncertainty on the total cross section will be given in
a forthcoming publication [53].

In the future we plan to extend our calculation to beyond-
the-SM models as e.g. the 2HDM or MSSM.
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5 Uncertainties due to the top mass scheme

For the uncertainty related to the scheme and scale choice of
the top mass we have calculated the total NLO results for the
differential gluon-fusion cross section for the MS top mass
at different scale choices and have compared to our default
prediction using the top quark pole mass both in the loop
propagators and in the Yukawa coupling. We have used an
N3LO evolution and conversion of the pole into the MS mass
at the input scale given by the MS top mass itself. This leads,
for our choice of mt = 172.5 GeV for the top pole mass to
an MS mass of mt(mt) = 163.02 GeV. The renormalisation
of the top mass has been adjusted accordingly in our cal-
culation, and we have switched to an MS mass both in the
loop propagators and in the Yukawa coupling. We present
the top-quark scheme uncertainties at four selected values
of Q in the invariant Higgs-pair mass differential cross sec-
tion. We take the maximum and minimum differential cross
sections when the scale of the MS top quark mass is varied
in the range Q/4 and Q, compared to our default pole mass
predictions, and we obtain the following variations,
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using PDF4LHC parton densities. The top-quark scheme un-
certainty is significant over the whole range of mHH . Note
that a similar result has been observed in single Higgs pro-
duction for large Higgs masses which correspond to our tri-
angle diagram involving the triple Higgs coupling. Further-
more, this scheme uncertainty is reduced by roughly a fac-
tor of two from LO to NLO. The prediction involving the
top pole mass, that we take as our central prediction, is the
maximal prediction for high mHH values. The uncertainties
induced by the top-mass scheme and scale choice on the to-
tal cross section at NLO will be given in a forthcoming pub-
lication [53].

6 Conclusions

We have presented the calculation of the full NLO QCD
corrections to Higgs-boson pair production via gluon fu-
sion for the top-loop contributions. This has been performed
by numerical integrations of the involved virtual two-loop
corrections to the four-point functions, while the results of
the single-Higgs case have been translated to the three-point

contributions that involve the trilinear Higgs self-coupling.
The one-particle reducible contributions that appear for the
first time at NLO have been inferred from the explicit analyt-
ical one-loop results for H ! Zg , where the Z-boson mass
plays the role of the virtuality of the gluon in the dressed
Hgg

⇤ vertex. In order to isolate the ultraviolet, infrared and
collinear divergences, we have performed appropriate end-
point subtractions at the integrand level and described the
explicit construction of infrared subtraction terms that al-
low for a clean separation of the infrared singularities from
the regular rest. The real corrections have been obtained by
generating the full matrix elements with automatic tools. We
have constructed the infrared and collinear subtraction term
as the heavy-top limit of the real matrix elements involving
the fully massive LO sub-matrix element. Adding back the
full results in the heavy-top limit completed the full real cor-
rections. The final results we have obtained agree with pre-
vious calculations for the individual finite parts of the real
and virtual corrections. We find finite NLO mass effects that
are up to �30% for large invariant Higgs-pair masses, while
the total NLO top-mass effects modify the total cross section
by about �15%.

We have studied the theoretical uncertainties related to
variations of the renormalisation and factorisation scales and
have found agreement with the previously known results
finding uncertainties at the level of 10� 15%. A novel out-
come of our calculation is the additional uncertainty induced
by the scheme and scale dependence of the top mass that
can be significant, amounting to +6%/� 34% at mHH =
300 GeV and +0%/� 35% at mHH = 1200 GeV. The in-
duced uncertainty on the total cross section will be given in
a forthcoming publication [53].

In the future we plan to extend our calculation to beyond-
the-SM models as e.g. the 2HDM or MSSM.

Acknowledgements We are grateful to S. Dittmaier for providing us
with a copy of his old mathematica programs for the QCD corrections
in the HTL related to Ref. [7]. J. B. and J. S. acknowledge the support
from the Institutional Strategy of the University of Tübingen (DFG,
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For the uncertainty related to the scheme and scale choice of
the top mass we have calculated the total NLO results for the
differential gluon-fusion cross section for the MS top mass
at different scale choices and have compared to our default
prediction using the top quark pole mass both in the loop
propagators and in the Yukawa coupling. We have used an
N3LO evolution and conversion of the pole into the MS mass
at the input scale given by the MS top mass itself. This leads,
for our choice of mt = 172.5 GeV for the top pole mass to
an MS mass of mt(mt) = 163.02 GeV. The renormalisation
of the top mass has been adjusted accordingly in our cal-
culation, and we have switched to an MS mass both in the
loop propagators and in the Yukawa coupling. We present
the top-quark scheme uncertainties at four selected values
of Q in the invariant Higgs-pair mass differential cross sec-
tion. We take the maximum and minimum differential cross
sections when the scale of the MS top quark mass is varied
in the range Q/4 and Q, compared to our default pole mass
predictions, and we obtain the following variations,
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using PDF4LHC parton densities. The top-quark scheme un-
certainty is significant over the whole range of mHH . Note
that a similar result has been observed in single Higgs pro-
duction for large Higgs masses which correspond to our tri-
angle diagram involving the triple Higgs coupling. Further-
more, this scheme uncertainty is reduced by roughly a fac-
tor of two from LO to NLO. The prediction involving the
top pole mass, that we take as our central prediction, is the
maximal prediction for high mHH values. The uncertainties
induced by the top-mass scheme and scale choice on the to-
tal cross section at NLO will be given in a forthcoming pub-
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point subtractions at the integrand level and described the
explicit construction of infrared subtraction terms that al-
low for a clean separation of the infrared singularities from
the regular rest. The real corrections have been obtained by
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the total NLO top-mass effects modify the total cross section
by about �15%.

We have studied the theoretical uncertainties related to
variations of the renormalisation and factorisation scales and
have found agreement with the previously known results
finding uncertainties at the level of 10� 15%. A novel out-
come of our calculation is the additional uncertainty induced
by the scheme and scale dependence of the top mass that
can be significant, amounting to +6%/� 34% at mHH =
300 GeV and +0%/� 35% at mHH = 1200 GeV. The in-
duced uncertainty on the total cross section will be given in
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Is there any preferred scheme choice?

• Leading contributions in high-energy expansion ( ) at NLO 
Jones, Spira (Les Houches 2019); Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 20; based on Davies, Mishima, Steinhauser, Wellmann 18 

• Matching to HTL at low energies: preferred choice  
• Better convergence using OS scheme in H* @ NNLO J. Mazzitelli 16

̂s = mHH ≫ mt

μt = mt

:OS :MS

→ preferred choice μ2
t = s

values of the invariant mass of the Higgs pair, Q, and grows at large invariant mass. The Higgs
boson pair production amplitude depends on the top-quark mass both via the Yukawa coupling,
yt Ã mt, and the mass appearing in the quark propagators. After integration over the loop
momentum, the mass appearing in the quark propagators can give rise to logarithms involving
a ratio of the quark mass and the other relevant scales in the problem. As a technical exercise,
we may investigate at LO how the amplitude behaves when the Yukawa coupling is fixed to its
value in the on-shell scheme but the mass appearing elsewhere in the calculation is left scheme
dependent. We find that with the Yukawa coupling fixed, the di�erence between the schemes at
high energy is significantly reduced, see Fig. IV.10 (green curve).

The asymptotic convergence at LO of the di�erential cross section with the Yukawa cou-
pling in terms of the top pole mass, but the propagator mass in the MS scheme, towards the
di�erential cross section defined entirely in terms of the top pole mass can be understood im-
mediately from the asymptotic expansions of Ref. [42]. The amplitude may be written as the
sum of two form factors, F1 and F2, describing the scattering of incoming gluons with the same
helicity and opposite helicities, respectively. The contribution of the box diagrams to the two
form factors dominates at high energy. Expanding the LO and NLO results of Ref. [42] around
large invariant Higgs-pair mass, s, we have in the on-shell scheme and in the notation of Ref. [42],

Fbox,i = F (0)
box,i + –s(µR)

fi
F (1)
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t

s
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+ m2
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c1,i + O

3 1
s2

4
(IV.23)

where the coe�cients c0,i and c1,i do not depend on the top-quark mass. The overall factor of m2
t

for the box contribution originates entirely from the Yukawa couplings and examining F (0)
box,i, we

find that the form factors are independent of the propagator top mass in the high-energy limit.
Therefore, for a fixed Yukawa coupling, we expect the results in di�erent schemes to asymptote.
Transforming the top pole-mass mt into the MS mass mt(µt) the explicit expressions above are
modified to [1009]

F (0)
box,i = m2

t (µt)
s

c0,i + O

3 1
s2

4
(i = 1, 2)

F (1)
box,i = 2F (0)

box,i

C

log µ2
t

s
+ 4

3

D

+ m2
t (µt)
s

c1,i + O

3 1
s2

4
(IV.24)

This underlines that, in order to absorb the large logarithmic terms log m
2
t

s
, the scale choice

µt =
Ô

s is the preferred central scale choice of the Yukawa couplings at large values of s. Since
for this scale choice the form factors are independent of the scale and scheme of the propagator
top mass, it is expected that the form factors will approach each other only for a running top
Yukawa coupling at a large scale µt = Ÿ

Ô
s with a coe�cient Ÿ not too far from unity.

Another interesting feature of Fig. IV.10 is the bump visible at Q ≥ 2 TeV, which exists
due to an interplay of di�erent form factors. The first form factor, F1, dominates near to the
Higgs pair production threshold, whilst at high energy F2 dominates. At LO the contribution
from the two form factors is equal at Q ¥ 1750 GeV. We find that the MS calculation with
the Yukawa coupling fixed to its on-shell value asymptotes more slowly to the on-shell scheme
result for form factor F2. This leads to a bump in the ratio plot around the Q value at which
latter form factor begins to dominate.
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mediately from the asymptotic expansions of Ref. [42]. The amplitude may be written as the
sum of two form factors, F1 and F2, describing the scattering of incoming gluons with the same
helicity and opposite helicities, respectively. The contribution of the box diagrams to the two
form factors dominates at high energy. Expanding the LO and NLO results of Ref. [42] around
large invariant Higgs-pair mass, s, we have in the on-shell scheme and in the notation of Ref. [42],

Fbox,i = F (0)
box,i + –s(µR)
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s
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s
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4
(IV.23)

where the coe�cients c0,i and c1,i do not depend on the top-quark mass. The overall factor of m2
t

for the box contribution originates entirely from the Yukawa couplings and examining F (0)
box,i, we

find that the form factors are independent of the propagator top mass in the high-energy limit.
Therefore, for a fixed Yukawa coupling, we expect the results in di�erent schemes to asymptote.
Transforming the top pole-mass mt into the MS mass mt(µt) the explicit expressions above are
modified to [1009]

F (0)
box,i = m2

t (µt)
s

c0,i + O

3 1
s2

4
(i = 1, 2)

F (1)
box,i = 2F (0)
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+ 4
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D
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t (µt)
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c1,i + O

3 1
s2

4
(IV.24)

This underlines that, in order to absorb the large logarithmic terms log m
2
t

s
, the scale choice

µt =
Ô

s is the preferred central scale choice of the Yukawa couplings at large values of s. Since
for this scale choice the form factors are independent of the scale and scheme of the propagator
top mass, it is expected that the form factors will approach each other only for a running top
Yukawa coupling at a large scale µt = Ÿ

Ô
s with a coe�cient Ÿ not too far from unity.

Another interesting feature of Fig. IV.10 is the bump visible at Q ≥ 2 TeV, which exists
due to an interplay of di�erent form factors. The first form factor, F1, dominates near to the
Higgs pair production threshold, whilst at high energy F2 dominates. At LO the contribution
from the two form factors is equal at Q ¥ 1750 GeV. We find that the MS calculation with
the Yukawa coupling fixed to its on-shell value asymptotes more slowly to the on-shell scheme
result for form factor F2. This leads to a bump in the ratio plot around the Q value at which
latter form factor begins to dominate.
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Towards NNLO QCD with -dependencemt

Introduction NLO QCD NNLO QCD Conclusion

gg ! HH at NNLO QCD

Split the amplitude into parts:

1PR

expand mH ,
rest exact

“(gg ! H)2” w/
off-shell gluon

Talk: M. Vitti

nlnh{CA,CF}

expand mH ,
small-t exp.

[Davies, Schönwald,

Steinhauser ‘23]

nh{C2
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F}

expand mH ,
small-t exp.

In progress
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expand mH ,
small-t exp. (!)

massless
t-channel cut

TO DO
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24

Full NNLO QCD predictions with -dependence out of reach, 
but can be approximated using expansions!

mt

small-t expansion valid 
for pT ≲ 200 GeV



Matthias Kerner, SM@LHC 9.5.24 — Phenomenology of multi-Higgs final states 9

NLO EW corrections to gg → HH

Recently, huge progress: 

• partial results (Yukawa-/Higgs- interactions): 
Bizoń, Haisch, Rottoli 18,24; Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao 19;  
Mühlleitner, Schlenk, Spira 22; Xiao Zhang et.al. Higgs 2023; MK et.al. Loops & Legs 2024 

• approximate results: 
Top-Yukawa corrections in the high-energy limit [Davies, Mishima, Schönwald, Steinhauser, Zhang, 22] 
EW corrections in large-  limit [Davies, Schönwald, Steinhauser, Zhang, 23] 

• full EW corrections  [Bi, Huang, Huang, Ma, Yu 23]

mt

NLO EW corrections needed in addition to QCD corrections
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NLO EW corrections to gg → HH
4

With the 1.8⇥ 104 reweighted events, we can compute
the K-factor quite accurately for most bins, except for
those with very large MHH or pT . For each of these bins,
we compute an additional 400 reweighted events and use
them to determine the corresponding K-factor.
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FIG. 2. Invariant mass distribution of the Higgs pair with
p
s = 14 TeV. The upper plot shows absolute predictions,

and the lower panel displays the di↵erential K-factor with
error bars representing statistical errors.
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FIG. 3. Transverse momentum distribution of one of the two
Higgs bosons with

p
s = 14 TeV. The upper plot shows abso-

lute predictions, and the lower panel displays the di↵erential
K-factor with error bars representing statistical errors.

In Fig. 2, we present the MHH distribution. A signif-
icant positive correction of approximately +15% is ob-
served in the first bin. In fact, we find that the EW
correction for phase space points near the HH produc-
tion threshold can exceed +70%. As MHH increases, the
K-factor decreases dramatically initially and then slows

down as it moves away from the threshold. The pattern
is similar for the pT distribution in Fig. 3, where the
correction is positive initially and subsequently becomes
negative. In regions of either large MHH or large pT , we
find the NLO EW correction to be approximately �10%.
We explicitly checked phase space points with

p
ŝ close to

14 TeV and found the corrections to be as substantial as
�30% at the matrix element squared level. However, the
gluon luminosity is highly suppressed in this region, and
thus, it does not contribute significantly to (di↵erential)
cross sections.
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FIG. 4. Rapidity distribution of one of the two Higgs bosons
with

p
s = 14 TeV. The upper plot shows absolute predic-

tions, and the lower panel displays the di↵erential K-factor
with error bars representing statistical errors.

In Fig. 4, we display the rapidity distribution of one of
the two Higgs bosons. A nearly flat K-factor is observed,
approximately 0.96, similar to the total cross section.
Summary. — Double Higgs production is considered

the golden channel to probe the Higgs self-coupling, with
NLO EW corrections representing the most substantial
source of theoretical uncertainties. In this Letter, we, for
the first time, compute the complete NLO EW correc-
tions for the production of double Higgs bosons in the
dominant gluon-gluon fusion channel at the LHC. The
NLO EW corrections are approximately �4% at the to-
tal cross-section level, proving to be insensitive to the
choice of parameters. For the di↵erential cross sections,
the EW corrections can be significant in certain phase
space regions. Specifically, for dimensionful observables,
EW corrections reach up to +15% at the beginning of
the spectrum and �10% in the tail. For dimensionless
observable, the rapidity distribution, the NLO EW cor-
rections are flat and approximately �4%.
Our work has substantially reduced the theoretical un-

certainties associated with this crucial process. Upon

Full EW corrections  Bi, Huang, Huang, Ma, Yu 23

2

trated in Fig. 1.

FIG. 1. Representative Feynman diagrams for gg ! HH at
LO (a) and NLO EW corrections (b-f).

The amplitude for g(p1)g(p2) ! H(p3)H(p4), M =
"1µ"2⌫Mµ⌫ with "iµ denoting gluon polarizaiton vector,
satisfies the current conservation relations p1µMµ⌫ =
p2⌫Mµ⌫ = 0. We have the following decomposition with
each term satisfying the same relations:
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2
, Tµ⌫

i
contain other

tensor structures which only have two degrees of freedom,
and Fi are gauge invariant form factors. As �µ⌫

5
appears

only from the two-loop order onward, its contribution
vanishes for NLO EW calculations when multiplied by
the LO amplitude. The contribution from �µ⌫

0
vanishes

due to current conservation relations. The remained ten-
sors Tµ⌫

1
and T

µ⌫
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can be chosen as [11]
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where pT =
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(t̂û�m
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H
)/ŝ represents the transverse mo-

mentum of one of the Higgs with

ŝ = (p1 + p2)
2
, t̂ = (p1 � p3)

2
, û = (p2 � p3)

2
. (4)

Since T1 ·T2 = D�4 and T1 ·T1 = T2 ·T2 = D�2, where
D represents the generic spacetime dimension used to
regularize potential divergences, we define the projectors
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such that

F1 = P
µ⌫

1
Mµ⌫ , F2 = P

µ⌫

2
Mµ⌫ . (7)

Because �µ⌫

5
contributes nothing to NLO EW correc-

tions, an even number of �5 terms is required in each
contribution to the form factors. Additionally, we ob-
serve that terms containing �5 make no contribution in
diagrams involving two fermion loops. Consequently, the
even number of �5 terms can only arise in a single fermion
loop, making the choice of the simplest näıve �5 scheme
unambiguous in this context.

Utilizing the CalcLoop package [37], the form fac-
tors are expressed as linear combinations of scalar Feyn-
man integrals, which are categorized into 3 (116) inte-
gral families based on the type of propagators at the
1-loop (2-loop) level. The loop integrals in each fam-
ily are then further reduced to a more manageable basis,
referred to as master integrals, using Blade [38] which
employs the block-triangular form [39, 40] to enhance ef-
ficiency of solving integration-by-parts relations [41] (For
other reduction packages on the market, see Refs. [42–
54]). As the final physical result is finite and insensitive
to a small dimensional regulator ✏ with D = 4 � 2✏,
we set ✏ = 1/1000 from the beginning to the end of
the calculation, aligning with the approach proposed in
Refs. [55, 56]. This choice avoids dealing with Laurent
expansion with respect to ✏ in intermediate steps, thereby
significantly reducing computational resources. By com-
puting the cross-section at another point, for instance,
✏ = �1/1000, we not only verify the cancellation of di-
vergences but also further mitigate the error caused by
the finite ✏ e↵ect.

Master integrals are evaluated by numerically solving
di↵erential equations with respect to kinematical vari-
ables ŝ and t̂ [57–64] with boundary conditions provided
by the AMFlow method [55, 56, 65–68], as described in
Ref. [69]. Singularities in the master integrals occur
when intermediate particles go on-shell, corresponding top
ŝ = 2mH ,mW +mt, 2mt, 2mt+mZ or 2mt+mH in the

physical region. Analytical continuation is executed by
introducing an infinitesimal positive imaginary part to ŝ

across these singularities. Armed with this information,
we can compute master integrals at any phase space point
starting from the nearest computed point by solving the
di↵erential equations with the assistance of the di↵eren-
tial solver in AMFlow [55]. To validate our approach, we
compared the results of all master integrals obtained in
this manner against direct evaluations using the AMFlow

method at several phase space points. We observed at
least 20 digits of agreement, ensuring the robustness and
accuracy of our calculations.
For the renormalization of masses and fields, we em-

ploy the on-shell scheme, while the renormalization of
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LO (a) and NLO EW corrections (b-f).

The amplitude for g(p1)g(p2) ! H(p3)H(p4), M =
"1µ"2⌫Mµ⌫ with "iµ denoting gluon polarizaiton vector,
satisfies the current conservation relations p1µMµ⌫ =
p2⌫Mµ⌫ = 0. We have the following decomposition with
each term satisfying the same relations:

Mµ⌫ = F1T
µ⌫

1
+ F2T

µ⌫

2
+�µ⌫

0
+�µ⌫

5
, (1)

where �µ⌫

5
is linearly dependent on the Levi-Civita ten-

sor, �µ⌫

0
depends on either p

µ

1
or p

⌫

2
, Tµ⌫

i
contain other

tensor structures which only have two degrees of freedom,
and Fi are gauge invariant form factors. As �µ⌫

5
appears

only from the two-loop order onward, its contribution
vanishes for NLO EW calculations when multiplied by
the LO amplitude. The contribution from �µ⌫

0
vanishes

due to current conservation relations. The remained ten-
sors Tµ⌫

1
and T

µ⌫

2
can be chosen as [11]

T
µ⌫

1
= g

µ⌫ � p
⌫

1
p
µ

2

p1 · p2
, (2)

T
µ⌫

2
= g

µ⌫ +
1

p
2

T
(p1 · p2)

⇥
2 (p1 · p2) p⌫3 p

µ

3

� 2 (p1 · p3) p⌫3 p
µ

2
� 2 (p2 · p3)pµ3 p⌫1 +m

2

H
p
⌫

1
p
µ

2

⇤
, (3)

where pT =
q

(t̂û�m
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serve that terms containing �5 make no contribution in
diagrams involving two fermion loops. Consequently, the
even number of �5 terms can only arise in a single fermion
loop, making the choice of the simplest näıve �5 scheme
unambiguous in this context.

Utilizing the CalcLoop package [37], the form fac-
tors are expressed as linear combinations of scalar Feyn-
man integrals, which are categorized into 3 (116) inte-
gral families based on the type of propagators at the
1-loop (2-loop) level. The loop integrals in each fam-
ily are then further reduced to a more manageable basis,
referred to as master integrals, using Blade [38] which
employs the block-triangular form [39, 40] to enhance ef-
ficiency of solving integration-by-parts relations [41] (For
other reduction packages on the market, see Refs. [42–
54]). As the final physical result is finite and insensitive
to a small dimensional regulator ✏ with D = 4 � 2✏,
we set ✏ = 1/1000 from the beginning to the end of
the calculation, aligning with the approach proposed in
Refs. [55, 56]. This choice avoids dealing with Laurent
expansion with respect to ✏ in intermediate steps, thereby
significantly reducing computational resources. By com-
puting the cross-section at another point, for instance,
✏ = �1/1000, we not only verify the cancellation of di-
vergences but also further mitigate the error caused by
the finite ✏ e↵ect.

Master integrals are evaluated by numerically solving
di↵erential equations with respect to kinematical vari-
ables ŝ and t̂ [57–64] with boundary conditions provided
by the AMFlow method [55, 56, 65–68], as described in
Ref. [69]. Singularities in the master integrals occur
when intermediate particles go on-shell, corresponding top
ŝ = 2mH ,mW +mt, 2mt, 2mt+mZ or 2mt+mH in the

physical region. Analytical continuation is executed by
introducing an infinitesimal positive imaginary part to ŝ

across these singularities. Armed with this information,
we can compute master integrals at any phase space point
starting from the nearest computed point by solving the
di↵erential equations with the assistance of the di↵eren-
tial solver in AMFlow [55]. To validate our approach, we
compared the results of all master integrals obtained in
this manner against direct evaluations using the AMFlow

method at several phase space points. We observed at
least 20 digits of agreement, ensuring the robustness and
accuracy of our calculations.
For the renormalization of masses and fields, we em-
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-4% correction w.r.t  
 differentially

σLO

𝒪(10%)

Method: Auxiliary Mass Flow (AMFlow) 
Liu, Ma, Wang 17; Liu, Ma, Tao et.al. 20; Liu, Ma 22 

via differential equations in  
                 
• Start from boundary point  
→ easy to calculate 
(massive vacuum graphs) x (massless graphs)  

• Transfer to x=0 using power-log expansions 
Moriello 19  

x = − iη
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EFT Studies

2 Description of the EFT framework and the calculation

2.1 EFT descriptions of Higgs-boson pair production

In this section, we introduce our conventions and contrast the SMEFT and HEFT

descriptions at Lagrangian level.

In Standard Model E↵ective Field Theory (SMEFT) [26–28], a low energy descrip-

tion of unknown interactions at a new physics scale ⇤ is constructed as an expansion

in inverse powers of ⇤, with operators Oi of canonical dimension larger than four and

corresponding Wilson coe�cients Ci,

LSMEFT = LSM +
X

i

C(6)
i

⇤2
O

dim6
i

+ O(
1

⇤3
) . (2.1)

In SMEFT it is assumed that the physical Higgs boson is part of a doublet transforming

linearly under SU(2)L⇥U(1). The SMEFT Lagrangian is usually given in the so-called

Warsaw basis [27], where the terms relevant to the process gg ! hh read

�LWarsaw =
CH,⇤
⇤2

(�†�)⇤(�†�) +
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ctR + h.c.

◆
+

CHG

⇤2
�†�Ga

µ⌫
Gµ⌫,a .

(2.2)

The dipole operator ŌuG is not included here because it can be shown that it carries

an extra loop suppression factor 1/(4⇡)2 relative to the other contributions if weak

coupling to the heavy sector is assumed [11, 29, 30]. In the case of a UV completion

where the coupling to the heavy sector is strong, SMEFT would not be the appropriate

description of the full theory at low energies anyway.

Higgs E↵ective Field Theory (HEFT) [31–36] instead is based on an expansion

in terms of loop orders, which also can be formulated in terms of chiral dimension

(d�) counting [37–39]. The expansion parameter is given by f 2/⇤2
'

1
16⇡2 , where f

is a typical energy scale at which the EFT expansion is valid (such as the pion decay

constant in chiral perturbation theory),

Ld� = L(d�=2) +
1X

L=1

X

i

✓
1

16⇡2

◆L

c(L)
i

O(L)
i

. (2.3)

The HEFT Lagrangian relevant to Higgs-boson pair production in gluon fusion can

be parametrised by five a priori independent anomalous couplings as follows [11]

�LHEFT = �mt
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ct
h

v
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h2

v2
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m2
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v
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(2.4)
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Heinrich, Jones, MK, Luisoni, Scyboz 19, 20 
De Florian, Fabre, Heinrich, Mazzitelli, Scyboz 21 
Heinrich, Lang, Scyboz 22, 23

• Higgs h(x) is EW singlet 
→  can be polynomial in h/v → independent couplings ct, ctt,… 

• UV completion can be strongly coupled
ℒ

SMEFT: • Higgs doublet  transforms linearly under SU(2)L 

• Canonical expansion in 1/  

• Chromomagnetic operator sub-leading (assuming renormalizable, weakly coupled UV completion) 
→ loop counting  

• Chromomagnetic and 4-top operators depend on -scheme 
Scheme conversion relates both types of operators

Φ(x)
Λ

γ5

Buchalla, Heinrich, Müller-Salditt, Pandler 22

Loops & Legs 2024 Gudrun Heinrich14

Subleading operators in SMEFT
in a renormalisable, weakly coupling UV completion

an odd number of �5 matrices can be explicitly brought into the form
P

�
µ1 . . . �

µn�5

with n < 4 through anti-commutation and therefore vanish. In addition, the analytic

calculation of the 4-top contributions in FeynCalc is repeated in the Breitenlohner-

Maison-t’Hooft-Veltman (BMHV) scheme [84, 85], with the symmetric definition for

chiral vertices

�
µPL/R ! PR/L�

µPL/R , (2.9)

and the translation between the Lagrangian parameters obtained in Ref. [54] is verified.

For convenience, the explicit form of the translation is also presented in Eq. (2.22).

2.1 Amplitude structure of chromomagnetic operator insertions

The contribution of the chromomagnetic operator to the amplitude leads to the diagram

types shown in Fig. 2. At first sight, the diagrams are at one-loop order, such that,
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h
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g
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h

h

(b)

g

g

h

h

(c)

g
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h

h

(d)

Figure 2: Feynman diagrams involving insertions of the chromomagnetic operator.

The gray squares denote insertions of the (loop-suppressed) chromomagnetic operator.

together with the explicit dimensional factor, the prefactor of the Wilson coe�cient

appears at O ((g2
s
L)⇤�2). However, the chromomagnetic operator belongs to the class

of operators that, in generic UV completions, can only be generated at loop level [65, 66].

Hence, the implicit loop factor of its Wilson coe�cient promotes the order in power

counting to MtG ⇠ O ((g2
s
L)L⇤�2), which is in that sense subleading with regards to

the leading Born diagrams of Fig. 1.

The diagrams of type (a), (b) and (d) are UV divergent even though they consti-

tute the leading order contribution of CtG to the gluon fusion process. However, this

behaviour is well known [86] and leads to a renormalisation of C
0
HG

= µ
2✏
�
CHG + �

Ci

CHG

�

(µ being the renormalisation scale) which in the MS scheme takes the form [17, 86]

�
CtG

CHG
=

(4⇡e
��E)✏

16⇡2✏

4
p

2gsmt

v
TF CtG . (2.10)

With this renormalisation term the finiteness of the amplitude is restored, and it can

be numerically evaluated using standard integral libraries.

– 8 –

2.2 Amplitude structure involving four-top operators

Four-top operators appear first at two-loop order in gluon-fusion Higgs- or di-Higgs

production. Thus, their contribution is of the same order in the power counting as

the one of the chromomagnetic operator, i.e. M4-top ⇠ O ((g2
s
L)L⇤�2). Following

the reasoning of Ref. [87] in single Higgs production, we separate the contribution

into di↵erent diagram classes, which are shown in Fig. 3. The ordering in columns is
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Figure 3: Feynman diagrams involving insertions of 4-top operators. The gray dots

denote insertions of 4-top operators.

chosen in order to group in underlying Born topologies (i.e. triangles and boxes), the

rows combine the type of one-loop correction (if applicable). The first column is thus

analogous to single Higgs production as in Ref. [87], with one Higgs splitting into two,

however we do not include bottom quark loops (and loops of other light quarks), since

we apply a more restrictive flavour assumption in which the bottom quark remains

massless and diagrams with bottom loops vanish in an explicit calculation, either due

to the bottom-Yukawa coupling being zero or due to vanishing scaleless integrals.

The categories of diagrams in Fig. 3 can be structured in the following way: (a) and

(b): loop corrections to top propagators, (c) and (d): loop corrections to the Yukawa

interaction, (e): loop correction to the tthh vertex, (f) and (g): loop corrections to

– 9 –
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Effect of different gamma5-schemes
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Figure 2: Di↵erential cross sections for the invariant mass mhh of the Higgs-boson

pair for benchmark point 1 of Table 2. Top row: ⇤ = 1 TeV, middle row: ⇤ = 2 TeV,

bottom row: ⇤ = 4 TeV. Left: LO, right: NLO. (All the subfigures show the corrected

distributions after the update of the code, LO was not a↵ected.)

For benchmark point 1, the characteristic shape in HEFT features an enhanced

low-mhh region. From Fig. 2 we see that this shape is not preserved in SMEFT as ⇤

increases. Disregarding the fully linearised option, which is simply not a valid option for

this benchmark point, we see that the distribution develops a dip for ⇤ = 2 TeV; as the

– 12 –

Invariant mass distributions at NLO QCD (
p

s = 13 TeV)
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VBF HH + 2-jet production
3

FIG. 2: Three-loop diagrams contributing at N3LO to VBF
Higgs pair production.

pressed as
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Z 1

0
dz
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nfX
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j
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⇤

⇥
h
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+
NS,j(y)C

+
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, (7)
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�
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where i = 2, L and F
Z

1 = 1
2x (F

Z

2 � F
Z

L
). The vector and

axial-vector coupling constants vZ
i

and a
Z

i
are given by

v
Z

j
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2
, a

Z

j
=

⇢
1
2 � 4

3 sin
2
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� 1
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3 sin
2
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For the charged current case, the structure functions can
be written as

F
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x
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where we have again F
W

±

1 = 1
2x (F

W
±

2 � F
W

±

L
), and the

couplings are simply a
W

j
= v

W

j
= 1p

2
.

We can calculate corrections up to N3LO by making
use of the known three-loop coe�cient functions [36–
40], whose parameterized expressions have been imple-
mented in HOPPET v1.2.0-struct-func-devel [41]. Exam-
ples of three-loop diagrams included in this calculation
are shown in figure 2.

FIG. 3: Total cross section as a function of the renormaliza-
tion and factorization scales for each order in the perturbative
expansion.

To calculate the variation of the cross section with dif-
ferent choices of factorization and renormalization scales,
we compute the scale dependence to third order in the
coe�cient functions as well as in the PDFs.
We start by evaluating the running coupling for ↵s

↵s(Q) ' ↵s(µR) + ↵
2
s
(µR)�0 ln

⇣
µ
2
R

Q2

⌘

+ ↵
3
s
(µR)


�
2
0 ln

2
⇣
µ
2
R

Q2

⌘
+ �1 ln

⇣
µ
2
R

Q2

⌘�
, (12)

where we defined �0 = (33� 2nf )/12⇡ and �1 = (153�
19nf )/24⇡2. The coe�cient functions can then easily be
expressed as an expansion in ↵s(µR). To evaluate the
dependence of the PDFs on the factorization scale µF ,
we can integrate the DGLAP equation, using

f(x,Q) = f(x, µF )�
Z

LFQ

0
dL

d

dL
f(x, µ) . (13)

Expressing the PDF in terms of an expansion in ↵s(µR)
evaluated at µF , it then straightforward to evaluate equa-
tion (4) for any choice of the renormalization and factor-
ization scales up to N3LO.
To estimate the theoretical uncertainty due to miss-

ing higher order corrections, we calculate the envelope of
seven di↵erent scale choices, taking

µR = ⇠R µ0 , µF = ⇠F µ0 , ⇠R,F 2 { 1
2 , 1, 2} , (14)

where we keep 1
2  µR/µF  2 and µ0 is the central

scale choice. We set the central renormalization and fac-
torization scales to the vector boson virtuality of the cor-
responding sector, Q1 or Q2.

• sensitivity to couplings  and c2V 
• known with high accuracy using VBF approximation 

                          → no color exchange between quark-lines 

- N3LO QCD Dreyer, Karlberg 18 
- NNLO QCD + NLO EW Dreyer, Karlberg, Lang, Pellen 20 

λ

4

FIG. 4: Total cross section as a function of energy for each
order in perturbative QCD.

For the numerical integration, we use the phase space
parameterization of VBFNLO [42]. Unless otherwise spec-
ified the center-of-mass energy is set to the expected en-
ergy of the HE-LHC, which is 27 TeV. For all simulations,
we use the PDF4LHC15 nnlo mc set [43] with a four-loop
evolution of the strong coupling, starting from an initial
condition ↵s(MZ) = 0.118. We set the mass of the Higgs
boson to mH = 125 GeV. The electroweak parameters
are set to the PDG values [44], with mW = 80.379 GeV,
mZ = 91.1876 GeV and GF = 1.16637 · 10�5 GeV�2.
The narrow-width approximation is used for the final
state Higgs bosons, while Breit-Wigner distributions are
used for internal bosons, taking �W = 2.085 GeV,
�Z = 2.4952 GeV, and �H = 4.030 · 10�3 GeV.

III. TOTAL CROSS SECTION

We start by providing results for the inclusive cross
section.

In figure 3, we show the dependence of the total cross
section on the renormalization and factorization scales for
each order in QCD. One can clearly observe the conver-

�(14 TeV) [fb] �(27 TeV) [fb] �(100 TeV) [fb]

LO 2.079+0.177
�0.152 8.651+0.411

�0.382 87.104+1.023
�1.633

NLO 2.065+0.022
�0.018 8.471+0.046

�0.024 84.026+0.781
�0.860

NNLO 2.056+0.003
�0.005 8.412+0.014

�0.021 83.000+0.340
�0.269

N3LO 2.055+0.001
�0.001 8.407+0.005

�0.003 82.901+0.097
�0.035

TABLE I: Total cross sections at LO, NLO, NNLO and N3LO
for VBF Higgs pair production for di↵erent center-of-mass
energies. The uncertainties are obtained from a seven-point
scale variation.

gence of the perturbative expansion, with each order in
↵s reducing the fluctuations due to changes in the choice
of scale. We see that at N3LO there is almost no resid-
ual dependence on the scale, with predictions having an
almost constant cross section over a broad range of scale
values.
We show the dependence of the total cross section as a

function of center-of-mass energy in figure 4. Here we see
that at even very high energies, the third order correc-
tions are fully contained within the NNLO scale variation
bands, with an almost constant K-factor. One should
note that this is somewhat dependent on the choice of
central scale, and less dynamical scales such as an mh or
pt,HH based prescription will lead to third order correc-
tions that can deviate from the NNLO uncertainty bands
in certain kinematic regions or at su�ciently high ener-
gies.
We detail the precise value of the cross section and its

scale variation uncertainties in table I. Values are given
for three reference center-of-mass energies: the 14 TeV
LHC, the 27 TeV HE-LHC and the 100 TeV FCC. For
each of these energies, we provide inclusive cross sections
at each order in perturbative QCD, along with the corre-
sponding scale variation envelope. We can observe that
while the corrections are at the level of a few permille
only, the scale uncertainty bands are reduced by more
than a factor four when going from NNLO to N3LO.
A comment is due on the impact of contributions be-

yond those included in the DIS limit. There are a number
of corrections to the Born diagrams shown in figure 1 be-
yond those due to the radiation of additional partons.
These should be included where possible for precise phe-
nomenological predictions.
In particular, the s-channel production mode, while

suppressed to a few permille after VBF cuts, contributes
to about 16% to the total cross section for 27 TeV col-
lisions, and can therefore not be neglected. It can be
calculated to NLO using the MadGraph5 aMC@NLO frame-
work [45] and can be straightforwardly included.
Furthermore, NLO electroweak corrections are cur-

rently unknown and expected to be sizeable. They can
be estimated from dominant light quark induced chan-
nels using Recola(Collier)+MoCaNLO [46–49] for the di-
Higgs and single-Higgs VBF process, comparing the lat-
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Figure 4: Differential distributions for pp ! jjHH at the LHC with centre-of-mass energy of
14TeV: (a) invariant mass of the two Higgs bosons (top left), (b) transverse momentum of
the two Higgs bosons (top right), (c) invariant mass of the two hardest jets (bottom left), and
(d) rapidity difference between the two hardest jets (bottom right). The upper panel shows the
absolute contributions at NNLO QCD + NLO EW and the LO prediction. The lower panel
shows the relative corrections. The bands denote the envelope of the QCD scale variation.
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Triple-H Production 

Figure 1: Diagrams that contribute to the LO triple Higgs production in the gluon fusion channel
(modulo permutations of the final state bosons). We identify the pentagon P (left), box B (second
from left) and triangles T4 and T3 (right) diagrams, respectively.

the results presented in Ref. [17]. Then, in Section 4 we present the phenomenological results
for triple Higgs production at the LHC and future hadron colliders. We estimate the dependence
on the reweighting method by comparing the Born-improved result with a modified prescription
(introduced in Ref. [19]), that we call dynamically Born-improved. Finally, we combine our result
with the one presented in Ref. [16] to report our best prediction, and in Section 5 we present our
conclusions.

2 The Amplitude at LO

In this section we will examine the structure of the LO amplitude and cross-section. The Born
amplitudes needed for the numerical calculation were obtained usingRecola2 [20]. For the parton
distribution functions we adopted the MMHT2014 [21] set interfaced via LHAPDF [22], while the
CUBA [23] library was used to perform the numerical integration. The values implemented for the
physical input parameters are GF = 1.16656⇥10�5 GeV�2 for the Fermi constant, mH = 125 GeV,
mt = 173.2 GeV and �H = �t = 0 for the masses and widths of the Higgs boson and the top
quark, respectively, and ↵S(mZ) = 0.135 for the strong coupling constant at LO, as provided by
the MMHT2014 set. Throughout this work, the on-shell top quark mass scheme is used. All the
plots in this section correspond to a collider centre of mass (CM) energy of 100 TeV, although we
explicitly checked that all our conclusions also hold at 14 and 27 TeV.

For triple Higgs production, the relevant diagrams (modulo permutations of the final state
particules) are shown in Figure 1. We can split them in four di↵erent categories: pentagons (P),
boxes (B) and two triangle contributions (T1 and T2), each one of these with a specific dependence
on the parameters 3 = �3/�SM and 4 = �4/�SM that parametrise departures of the self couplings
from the SM expectations,

M = P + 3 B + 
2

3
T3 + 4 T4. (1)

As in the case of double Higgs production [24], there are only two independent helicity configura-
tions of the initial gluons, that we call

M++ = M��, “Spin 0”,

M+� = M�+, “Spin 2”,

according to the value of total spin along the collision axis.

The Spin 2 configuration vanishes in the limitmt ! 1, while the Spin 0 configuration remains.
We observe in Figure 2 that the contribution from the Spin 2 piece is rather small (below 5%

2
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(modulo permutations of the final state bosons). We identify the pentagon P (left), box B (second
from left) and triangles T4 and T3 (right) diagrams, respectively.
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the MMHT2014 set. Throughout this work, the on-shell top quark mass scheme is used. All the
plots in this section correspond to a collider centre of mass (CM) energy of 100 TeV, although we
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µ0 = Q 14 TeV 27 TeV 100 TeV

LO 0.0462+31%

�22%
0.235+26%

�19%
3.29+20%

�15%

NLOBi 0.0833+18%

�15%
0.408+16%

�13%
5.12+14%

�11%

NLOdBi 0.0831+18%

�15%
0.407+16%

�13%
5.09+14%

�12%

NNLOBi 0.105+8%

�9%
0.503+7%

�8%
6.11+6%

�7%

NNLOdBi 0.104+8%

�9%
0.498+7%

�8%
6.02+6%

�7%

µ0 = Q/2 14 TeV 27 TeV 100 TeV

LO 0.0605+34%

�24%
0.295+28%

�20%
3.88+21%

�16%

NLOBi 0.0983+18%

�15%
0.473+16%

�14%
5.75+15%

�12%

NLOdBi 0.0982+18%

�15%
0.471+17%

�14%
5.72+15%

�12%

NNLOBi 0.114+5%

�8%
0.540+5%

�7%
6.47+5%

�6%

NNLOdBi 0.113+5%

�8%
0.534+5%

�7%
6.36+5%

�6%

NNLOBest 0.103+5%

�8%
0.501+5%

�7%
5.56+5%

�6%

Table 1: Results for the inclusive cross-section (in fb) of triple Higgs boson production for di↵erent
collider energies, calculated at di↵erent orders and with the di↵erent reweighting procedures. The
results are shown for central scale values of Q (top) and Q/2 (bottom). The dependence on ⇠ in
the dBi⇠ reweight procedure is below the per-mill level and therefore omitted. The last row shows
our best available prediction for the di↵erent collider energies. The uncertainties correspond to
the scale variation.

section level can only be a lower bound on the expected finite top mass e↵ects, and from the
results obtained at NLO within the FTapprox (which are ⇠ 10% smaller than the dBi prediction)
it is clear that they are expected to be much larger. What we can conclude from this exercise
therefore, is that the systematic uncertainties related to the choice of the reweighting procedure
(among the choices presented here) is expected to be marginal compared to the full size of the
finite-mt e↵ects.

In order to provide the best possible estimate of the triple-Higgs production cross section, it
becomes necessary to include the partial finite-mt e↵ects obtained in Ref. [16] within the FTapprox.
To this end, we use the predictions presented therein and in Ref. [45] for the total cross section,
and encode the finite mass e↵ects in the parameter �t defined by

�
NLO

FTapprox
= �

NLO

dBi
(1 + �t) , (18)

and we define our best prediction as

�
NNLO

Best
= �

NNLO

dBi
+ �t�

NLO

dBi
. (19)

This procedure is similar to the prescription that was implemented in Ref. [45] for double-Higgs
production. The values that we obtain for �t at the di↵erent collider energies are �t = -0.107,

12

• NLO FTapprox Maltonia, Vryonidoua, Zaro 14 

• NNLO HTL de Florian, Mazzitelli 16 
• NNLO HTL  NLO FTapprox de Florian, Fabre, Mazzitelli 19⊗

Figure 6: Invariant mass distribution of the triple Higgs system in the dBi approximation up to
di↵erent orders (up) and corresponding K factor (down). The results are shown for a collider
center of mass energy of 100 TeV (left) and 27 TeV (right). The shaded bands correspond to the
uncertainty from the variation of scales from the central value of µ0 = Q/2.

In Figure 6 we see the cross-section computed in the dinamically Born improved approximation
up to di↵erent orders, as well as the K factor defined as usual, K = d� / d�LO . As seen also
within the soft-virtual approximation [17], the cross-section begins to stabilise only from NNLO.
The K factors are rather flat at the peak of the invariant mass distribution, with values around
1.7 and 1.8 for collider CM energies of 100 and 27 TeV respectively, while the NNLO K factors
present a suppression in the tail. Due to this suppression, the entire NNLO band falls inside the
scale variation of the NLO, suggesting that the perturbative series is more stable in this region.
The total scale uncertainty is reduced from 37% to 27% and to 11% when going from LO to NLO
to NNLO, at 100 TeV with a central scale choice of µ0 = Q/2. For 27 TeV the reduction is similar,
from 48% to 30% and then to 12%.

To measure the e↵ect of the reweighting, we can compare the di↵erent approximations Bi, dBi0
and dBi1/2 and observe the corresponding e↵ect on the invariant mass distribution. In Figure 7
we see that, although at NLO the three approximations are almost completely compatible, at
NNLO there is a significant decrease in the tail of the distribution when using a dBi⇠ instead of
the Bi approximation, a discrepancy that is even bigger than the scale variation in this region. We
also notice that the dependence on ⇠ of the dBi⇠ approximation is phenomenologically negligible.
We know that for double Higgs production the Bi approximation overestimates the tail of the
distribution at NLO respect to the exact calculation [41–43]. If this e↵ect holds also for triple
Higgs production, we can expect the dBi approximation to provide more reliable predictions, as it
predicts a smaller tail of the distribution just by reweighting each contribution by the associated
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Summary

Theory Predictions for gg → HH Production 

• (N3LO + N3LL)  NLO  

remaining scale-dependence 1% 
3% uncertainty due to -effects beyond NLO  

• 10-20% Mass-Scheme Uncertainties 
 effects at NNLO required 

possibly in reach, using expansions  

• -4% EW NLO Corrections 
 differential corrections  

• EFT predictions in HEFT and SMEFT  
-scheme dependence of chromomagnetic and 4-top operators 

⊗ mt

mt

mt

𝒪(10 %)

γ5


