New experimental techniques and new analysis ideas for probes of quark Yukawa interactions (excluding top)

António Jacques Costa,

on behalf of the ATLAS and CMS collaborations

LEVERHULME TRUST _____

The University of Manchester

Standard Model at the LHC 2024

9th May 2024

Introduction

- Couplings of Higgs field to quarks and leptons Yukawa couplings are a potential source of the fermion masses
- Interaction so far only observed for 3rd generation of fermions (top, bottom and tau) and evidence found for coupling with muons
- Measurement of Yukawa couplings probe Standard Model expectation
- There is no guarantee all Higgs fermion couplings behave in a similar way
- Deviations could give insight into origin of the fermion mass hierarchy
- Of utmost importance to measure all Higgs couplings to fermions with best possible precision!

Heavy quark Yukawa couplings

- Probability of Higgs boson decays to bottom/charm quarks of 58.2%/3.9% in Standard Model
- Standard Model Higgs Yukawa coupling to charm quarks is rather small ($y_c = \sqrt{2} m_c (\mu = m_H) / \nu \simeq 0.2 \text{ x y}_b$)
- One of largest contributions to Γ_H (by SM expectations) yet to be established experimentally
- Both decay modes are susceptible to **significant modifications** in some **new physics** scenarios (e.g. two Higgs doublet models, EFTs)
- ${\sf H} o bar{b}$ analyses in precision measurement phase of cross-section and Yukawa coupling
- H $ightarrow c ar{c}$ analyses in search phase, improving sensitivity to decay and coupling

Probe options

• Different probes of the Hbb/cc̄ coupling have been proposed and investigated by the ATLAS and CMS experiments

• Inclusive $H \rightarrow b\overline{b}/c\overline{c}$ decays

- Direct access to coupling
- Usually targeting VH production (V = W, Z boson)
 - Enhanced Signal over Background ratio w.r.t to inclusive Higgs production
 - Built around the use of **b/c-jet tagging algorithms**

Leptonic mode

- W/Z boson decays into leptons allow for a convenient trigger strategy
- Suppression of multi-jet backgrounds

All hadronic mode

- W/Z boson decays into quarks, increasing statistics
- Dominant multi-jet background

Probe options II

- Exclusive $H \rightarrow J/\psi \gamma$ decays (other rare decay modes can also probe lighter quark couplings)
 - Rare decay but experimentally clean probe (Phys. Rev. D 88 (2013) 053003)
 - Direct amplitude sensitive to the magnitude and sign of the Higgs-charm coupling
 - Indirect amplitude constitutes dominant contribution to the Higgs boson width
 - Production rate is dominated by the indirect contribution, hindering the sensitivity to the coupling

Probe options III

- Loop induced gluon-gluon fusion and quark initiated Higgs boson production
 - Higgs production with quark contribution, e.g., via gg→ Hg, gb/gc→ Hb/Hc, bb/cc→ Hg (Phys. Rev. Lett. 118 (2017) 121801)
 - Sensitivity to coupling via total production **differential cross-section measurements**
 - p_T^H shape and normalisation will be changed in case of Yukawa couplings different to SM prediction
 - Normalisation effects coupled to Higgs width changes
 - Obtained constraints on Hbb (Hcc) coupling not as stringent (comparable) as the ones set by inclusive Higgs decays searches
 - Subject to different assumptions and sources of uncertainty
 - Complementary **sensitivity to the sign** of the coupling modifiers

Drives sensitivity up to p_T^V of 250-400 GeV (where p_T^V is p_T of associated vector boson produced)

VH Production: "Boosted" leptonic regime

António Jacques Costa | University of Manchester

9

VH Production: "Boosted" hadronic regime

Hadronic channel

- Targets $V(qq)H(b\overline{b}/c\overline{c})$ production
- Vector boson tagged via dedicated taggers

Hadronically decaying W/Z boson tagging

- First ATLAS hadronic VH, H(bb) analysis (<u>PhysRevLett.132.131802</u>) made use of a cut-based tagger, exploiting jet mass, number of tracks and substructure variables as energy correlation function ratios
- Performance improvements found in DNN/GNN and transformers architectures using jet constituents' energy and kinematics

VH Production: Jet Heavy Flavour Tagging

- Bottom or charm Higgs candidate jets identified via jet flavour tagging algorithms
- Taggers optimised separately for resolved or boosted regime
- Targeting both Higgs to bottom and charm decays
- DNN/CNN-based taggers being used in most of latest analyses
- Further improvements found in graph and transformer neural network architectures, by better exploiting jet internal structure

VH Production: Event selection

Key aspects

- Categorisation of events for optimised selections and signal sensitivity
- Data-driven methods/control regions to estimate ttbar, W/Z+jets and multijet backgrounds
- Flavour tagging discriminants used along with jet mass and transverse momentum to **discriminate VH production from backgrounds** via BDTs/NNs

VH Production: Main uncertainties

$V(lep/had)H(b\overline{b})$

- Starting to be dominated by systematic uncertainties in resolved regime
- Statistical uncertainties still very relevant in boosted regime

V(lep)H(cc̄)

• Statistical and systematic uncertainties of the same magnitude

Leading systematic uncertainties

- Background modelling: ttbar, W/Z+jets, multijet
- Signal modelling
- Jet flavour tagging uncertainties
- Jet energy scale and resolution uncertainties
- Statistical uncertainty from limited size of MC samples

 \rightarrow More data will improve results directly and indirectly (better modelling, reduced uncertainties)

arXiv:2312.07562	
CMS V(lep)H(bb)	$\Delta \mu$
Background (theory)	+0.043 - 0.043
Signal (theory)	+0.088 - 0.059
MC sample size	+0.078 - 0.078
Simulation modeling	+0.059 - 0.059
b tagging	+0.050 - 0.046
Jet energy resolution	+0.036 - 0.028
Int. luminosity	+0.032 - 0.027
Jet energy scale	+0.025 - 0.025
Lepton ident.	+0.008 - 0.007
Trigger ($\vec{p}_{\rm T}^{\rm miss}$)	+0.002 - 0.001
ATLAS boosted V(had)H Uncertainty source	(bb)
Signal modeling	
MC statistical uncertainty	
Instrumental (pileup, luminosit	y)
Large-R jet	
Top-quark modeling	
Other theory modeling	
$H \rightarrow b\bar{b}$ tagging	_
Multijet estimate (TF uncertain	nty)
Multijet modeling (TF vs BD)	()
Total systematic uncertainty	
Signal statistical uncertainty	
Z + jets normalization	
Total statistical uncertainty	
Total uncertainty	

Eur. Phys. J. C (2021) 81:178

ATLAS resolved V(lep)H(bb)

Source of uncertainty	VH
Total	0.177
Statistical	0.115
Systematic	0.134

Statistical uncertainties

Data statistical	0.108
$t\bar{t} \ e\mu$ control region	0.014
Floating normalisations	0.034

Experimental uncertainties

 $\frac{\delta\mu}{+0.10}$ -0.02

 $^{+0.13}_{-0.13}$ $^{+0.012}$

-0.004+0.13 -0.14 +0.14

-0.15+0.05 -0.03 +0.52

-0.23+0.52 -0.41 +0.14

-0.18+0.80

-0.61+0.60 -0.60

 $^{+0.42}_{-0.20}$ +0.63

-0.63 +1.02

-0.88

Jets		0.043	
$E_{\rm T}^{\rm miss}$		0.015	
Leptons		0.004	
	b-jet	s	0.045
<i>b</i> -tagging	<i>c</i> -jet	s	0.035
	light	-flavour jets	0.009
Pile-up	Pile-up		0.003
Luminosity			0.016
Theoretical and modelling uncertainties			
Signal		0.072	
Z + jets		0.032	
W + jets		0.040	
tī		0.021	
Single top quark		0.019	
Diboson		0.033	
Multi-jet			0.005
		7	
MC statistica	ıl		0.031

$H(b\overline{b})$ Overview

VH(bb) analyses			
	Analysis	Fitted signal strength $\mu_{VH} (H \rightarrow b\bar{b})$	
	ATLAS resolved V(lep)H(bb)	$1.02^{+0.18}_{-0.17} = 1.02^{+0.12}_{-0.11}$ (stat.) $^{+0.14}_{-0.13}$ (syst.)	
	ATLAS boosted V(lep)H(bb)	$0.72^{+0.39}_{-0.36} = 0.72^{+0.29}_{-0.28}$ (stat.) $^{+0.26}_{-0.22}$ (syst.)	
	ATLAS resolved+boosted V(lep)H(bb)	$1.00^{+0.18}_{-0.17} = 1.02^{+0.12}_{-0.11}$ (stat.) $^{+0.14}_{-0.13}$ (syst.)	
	CMS resolved+boosted V(lep)H(bb)	$1.15_{-0.20}^{+0.22}$	
	ATLAS boosted V(had)H(bb)	$1.4^{+1.0}_{-0.9} = 1.4^{+0.6}_{-0.6}(\text{stat.})^{+0.8}_{-0.7}(\text{syst.})$	

• Moving towards precision measurements

• SXTS and differential cross-section measurements being undertaken

STXS Measurements

• Simplified Template Cross-Sections (STXS) involve categorisation of events in bins designed to separate different production modes

STXS Measurements II

• Some WH contribution in ZH bins via 0 lepton channel

Differential Cross-section Measurements

- Current statistics and understanding of systematic uncertainties allow for differential cross-section measurements to be undertaken
- ATLAS performed such measurement in the 0 lepton channel (Z(vv)H(bb))
 - Remaining channels constrain the SM background via one-binned regions
- **Detector effects corrected** for via profilelikelihood unfolding procedure
- Impacted by **usual systematic uncertainties**, with some reduced contraints due to one-binned regions
- Results also affected by migration of events from outside fiducial phase-space

$H(c\overline{c})$ Overview

H(cc̄) analyses			
Analysis		Observed (Expected) 95% CL limit on $\mu_{VH \ (H \rightarrow c \bar{c})}$	
	ATLAS resolved V(lep)H(cc̄) H(bb̄)	$26.0 \times SM (31^{+12}_{-8} \times SM)$	
	CMS resolved+boosted V(lep)H(cc̄)	$14.4 \times SM (7.6^{+3.4}_{-2.3} \times SM)$	
	CMS boosted ggF H(cc̄)	47.0 × SM (39 × SM)	

• Improving sensitivity

- Use of MVA techniques in analysis design and jet flavour tagging methods bringing significant enhancements in sensitivity
- Boosted regime can further exploit such tools to bring additional relevant contributions

κ Framework

- Measure deviations of Higgs couplings from SM
- Inspired by leading order diagrams of Higgs couplings
- Assumes Higgs boson resonance at 125 GeV and narrow width approximation

κ_c Interpretation

• V(lep)H($c\bar{c}$) analyses sensitive to exclude some parts of κ_c parameter space (parametrisation below used)

• $\mu = \frac{\kappa_c^2}{[(1-BR_{Hcc})+BR_{Hcc}*\kappa_c^2]}$ (other coupling modifiers set to 1, no BSM contributions to Higgs width)

κ_c and κ_b Interpretation

- V(lep)H(bb) and V(lep)H(cc̄) combined likelihood parametrised in terms of both κ_c and κ_b
- Other coupling modifiers set to their SM predictions
- Gluon-initiated ZH production has no explicit parametrisation as function of κ_c
 - Only taken into account for κ_b
 - Only has an impact for large values of κ_b ($\kappa_b \gtrsim 10$)
- Non Drell-Yan-like qq \rightarrow VH production also neglected given the low values of κ_c that the combination probes
- Observed best fit value (κ_b, κ_c) = (-1.02, 0)
- Difference in value of the log-likelihood between best-fit value and $(\kappa_b, \kappa_c) = (+1.02, 0)$ is 0.02
 - Analysis has little power to constrain the sign of κ_b
 - Small likelihood asymmetry coming from b-quark loop contributions to gg \rightarrow ZH production

κ_c and κ_b Interpretation II

- Precision measurements of p_T^H cross-section in $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$ channels provide complimentary information on couplings
- Individual analyses **dominated by statistical uncertainty**
- Statistical combination between them and in addition with V(lep)H(bb) and V(lep)H(cc) analyses allows for improved constraints
- Results for shape and normalisation effects considered shown here, different assumptions on backup

Probing lighter quark Yukawas

- Rare exclusive decays of the Higgs boson into a meson and a photon allow access to coupling to lighter flavour quarks (up, down, strange) in addition to bottom and charm quarks
- Also used as probe of potential **flavour-violating Higgs boson interactions**
- Dedicated triggers, different production modes, event selection with BDTs and background modelling enhancements improving sensitivity

Summary

- Different probes sensitive to Higgs quark Yukawa couplings are available
 - Leading sensitivity to heavy quark Yukawa couplings currently via Higgs production in association with W/Z bosons
 - Loop induced ggF and quark initiated Higgs production and exclusive Higgs boson decays into meson+photon provide complimentary information on these couplings and give insight into lighter quark couplings
- Machine-learning improvements in analysis design and jet tagging techniques leading to continuous enhancements in sensitivity
 - Exploited both in **resolved** and **merged** jet topologies
 - Possible tagging of Higgs candidates and/or W/Z bosons
 - MVA discrimination of **Higgs signal** with respect to **backgrounds**
- Main uncertainties related to modelling, flavour tagging and jet contributions or statistics
- Different suite of measurements currently possible, from STXS bins to coupling modifiers

Backup

Vector boson DNN tagger

Variable	Description	
D_2, C_2	Energy correlation ratios	
$ au_{21}$	N-subjettiness	j10⁻¹
$R_2^{\rm FW}$	Fox-Wolfram moment	Ē
$\mathcal{P}^{}$	Planar flow	10 ⁻²
<i>a</i> ₃	Angularity	10 ⁻³
Α	Aplanarity	
$Z_{\rm cut}, \sqrt{d_{12}}$	Splitting scales	10 ⁻⁴
$Kt\Delta R$	k_t -subjet ΔR	50

- **bias in background jet-mass** distribution from bein around the **W boson mass**
- Achieved via sequential training of jet classification DNN and jet mass inferring adversarial NN (ANN)
 - Classification DNN first optimised
 - DNN fixed, ANN optimised
 - Combined optimisation of both algorithms

Lund jet planes

 $\Delta R_{ij} = \sqrt{\Delta y_{ij}^2 + \Delta \phi_{ij}^2}, \qquad z = \frac{p_{\rm T}'}{p_{\rm T}^i + p_{\rm T}^j},$ $k_t = p_{\rm T}^j \Delta R_{ij}$

• Lund jet plane represents two-dimensional space built from the opening angle and the momentum fraction of a given gluon emission with respect to its emitter

LundNet Performance

ATL-PHYS-PUB-2023-017

 $\Delta R_{ij} = \sqrt{\Delta y_{ij}^2 + \Delta \phi_{ij}^2},$

- Sequence of jet emissions coming from the full declustering of large radius jet can be represented as a graph
- GNN inputs include ln(1/ΔR), ln(k), ln(1/z) and number of tracks
- Algorithm **decorrelated from jet mass** to prevent **bias in background jet-mass** distribution from being around the **W boson mass**
- Achieved via combined training of jet classification GNN and jet mass inferring adversarial NN (ANN)

 $k_t = p_T^J \Delta R_{ij}$

Comparison of different jet taggers

GN1 Architecture

GN2X Performance

κ_c and κ_b Interpretation

CMS Higgs to meson + photon searches

CMS Higgs + photon XS measurement

- Gluon initiated contribution disappears according to Furry's theorem
- Sensitive to Higgs quark Yukawas
- Cut-based analysis, **statistical and systematic uncertainties** with similar magnitude
- Other coupling modifiers set to their SM predictions

Process	σ upper limits obs. (exp.) [fb]	κ_q limits obs. (exp.) at 95% C.L.
$u\bar{u} \rightarrow H + \gamma \rightarrow e\mu\nu_e\nu_\mu\gamma$	86 (67)	$ \kappa_u \le 16000 \ (13000)$
$d\bar{d} \rightarrow H + \gamma \rightarrow e\mu\nu_e\nu_\mu\gamma$	72 (58)	$ \kappa_d \le 17000 \ (14000)$
$s\bar{s} \rightarrow H + \gamma \rightarrow e\mu\nu_e\nu_\mu\gamma$	66 (49)	$ \kappa_s \le 1700 \ (1300)$
$c\bar{c} \rightarrow H + \gamma \rightarrow e\mu\nu_e\nu_\mu\gamma$	88 (66)	$ \kappa_c \le 190 \ (110)$

Truth flavour jet tagging

- Accepting/rejecting ("direct tagging") events based on jet flavour tagging discriminants significantly reduces available background (e.g., V+light flavour jets processes) statistics due to enhanced rejection factors in latest algorithms
- ATLAS has implemented a "truth-flavour tagging" approach in recent V(lep)H(bb) and V(lep)H(cc) analyses
 - Consists in applying **tagging (in-)efficiency** of the Higgs candidate jets **as event weights**
 - Efficiency maps usually parametrised as function of jet p_T and η
- Leads to **reduction of background statistical uncertainties**, since all available events are used
- Some systematic uncertainties can arise from differences to direct tagging approach (e.g. due to close-by jets) still resulting in better sensitivity

Eur. Phys. J. C (2022) 82:717

Source of uncertainty		$\mu_{VH(c\bar{c})}$
Total		21.5
Statistical		16.2
Systematics		14.0
Truth-flavour tagging	ΔR correction	3.0
	Residual non-closure	1.4

Truth flavour jet tagging with GNNs

- Efficiency maps fail to capture all kinematic correlations, and can be affected by binning choices
- A GNN can potentially solve these problems, capturing high-dimensional correlations between the jets and leading to smooth output efficiency distributions
- GNN inputs include jet, event and jet-pair variables, trained with ttbar events and large radius jets

Truth flavour jet tagging with GNNs II

Flavoured Jets

- b-quark fragments into **b-hadron** carrying around **80% of the jet energy**
- **High** b-hadron **decay product multiplicities** (around 5 charged particles per decay)
- Most b-hadrons (≈ 90%) decay into c-hadrons
- b(c)-hadron **decay vertex often displaced** from the PV(SV) by a few mm
- Tracks from both of these vertices often have large impact parameters
- c-quark fragments into c-hadron carrying around 55% of the jet energy
- 2 to 3 times **lower** c-hadron **decay product multiplicities** than for b-hadrons (around 2 charged particles/decay)
- c-hadron decay vertex often displaced from the PV by a few mm
- Tracks from this vertex can often have large impact parameters

- Light quark hadronises into many light hadrons sharing the jet energy
- Tracks from this vertex can often have impact parameters consistent with zero
- Long-lived light hadrons can be produced, but more likely to decay cms away from PV