

The University of Manchester

LEVERHULME TRUST

New techniques for studying CP violation

Andrew Pilkington, SM@LHC conference, Rome, 7th May 2024

Why do we need additional sources of CP violation?

- We live in a matter-dominated Universe
- Sakarov conditions for producing this baryon asymmetry in early Universe:
 - Baryon number violation
 - C- and CP- violating interactions
 - Thermal inequilibrium
- The electroweak/Higgs sector of the Standard Model fails to provide a complete answer:
- CP-violation in quark sector is way too small
- The EW phase transition is a second-order phase transition.

- Assume there is new physics at some high energy scale, Λ, that provides the additional sources of CP-violation (and possibly the requisit first-order phase transition)
- At lower energy scales, the effects of this physics can be expressed as operators in an
 effective Lagrangian:

$$\mathcal{L}_{\text{SMEFT}} \approx \mathcal{L}_{\text{SM}}^{(4)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} O_{j}^{(8)}.$$
 Extensions to the SM induce anomalous interactions

• Additional sources of CP-violation included via CP-odd operators.

Subset of CP-odd operators that affect HVV, VVV, VVVV interactions

Interference considerations

Considering only dimension-6 operators, the scattering amplitude is

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2\operatorname{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6}) + |\mathcal{M}_{d6}|^2$$

- Ideally, we should construct observables sensitive to the interference term:
 - $\mathcal{M}_{SM}^* \mathcal{M}_{d_6}$ should be the leading correction to the SM, proportional to $1/\Lambda^2$.
 - $|\mathcal{M}_{d6}|^2$ should be subleading as proportional to $1/\Lambda^4$.
 - Leading dimension-8 terms are missing and also proportional to $1/\Lambda^4$.
- The interference term is CP-odd and produces asymmetries in CP-odd observables ...but integrates to zero for CP-even observable.

CP-sensitive observables: differential cross sections

- Increasingly common to measure differential cross sections as a function of CP-odd observables, for both Higgs boson production and diboson/VBF/VBS processes.
- Advantages: model-independent, easily unfolded and therefore easy to reinterpret.
- Disadvantages: sensitivity, i.e. how to optimise the phase-space?

CP-sensitive observables: matrix-element inspired

- Alternative approach is to use discriminants based on matrix-element information.
- Advantages: optimal in terms of sensitivity for a given analysis.
- Disadvantages: more complicated (i.e. time-consuming); often not unfolded; when unfolded difficult to reinterpret using tools like Rivet.

The long view: need global fit for CP-violating operators

- Best sensitivity will be via a global fit to CP-sensitive observables:
 - not currently done
 - requires model-independent measurements that are easy to reinterpret.

Alternative approach: CP-odd observables from ML

CP-asymmetries arise from the interference between SM and CP-odd amplitudes:

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2\operatorname{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6}) + |\mathcal{M}_{d6}|^2$$

- Neural networks (NN) offer an easy way to understand these asymmetries.
 - generate interference-only contribution to process (e.g Madgraph5 + SMEFTSim)
 - split sample into positive-weights and negative-weights.
 - train NN to distinguish between the two samples (binary classification)
 - easy to include Standard-Model contribution in NN (multiclass)
- Options with trained network:
 - \circ construct observable from NN classifications, i.e. $O_{NN} = P_+ P_-$.
 - improve differential cross section measurements.

8

- Analysis carried out in the *Higgs Mass* region of the ATLAS inclusive 4/ measurement (JHEP 07, 005 (2021) for H→2e2µ events.
- Simple CP-odd variable (PRD 86, 095031 [2012]): $\Phi_{4\ell} = \frac{\mathbf{q}_1 \cdot (\hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2)}{|\mathbf{q}_1 \cdot (\hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2)|} \times \cos^{-1}(\hat{\mathbf{n}}_1 \cdot \hat{\mathbf{n}}_2),$
- NN trained using the interference induced by the $\mathcal{O}_{\Phi \widetilde{W} B}$ operator in the Warsaw basis.

What has the network learned?

- Origin of extra sensitivity investigated using feature importance techniques, i.e. change in accuracy / loss evaluated after decorrelating input variables in the trained network.
- Clear interplay between Φ_{41} and m_{71} (e⁺e⁻ or $\mu^+\mu^-$ pair with mass closest to Z pole).

Multiclass models

- Multiclass = including the SM prediction as a third class in the training $(P_+ + P_- + P_{sm} = 1)$.
- Optimises the separation of the interference contributions for a process, by accounting for any kinematic differences between the SM and the interference.

CP-odd observable	$c_{\Phi \widetilde{W} B} / \Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{B}}/\Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{W}} / \Lambda^2 \; [\text{TeV}^{-2}]$
$\Phi_{4\ell}$	[-6.2, 6.2]	[-1.4, 1.4]	[-30,30]
$\Phi_{4\ell},m_{12}$	[-1.9, 1.9]	[-0.85, 0.85]	[-3.7, 3.7]
O_{NN} (binary)	[-1.5, 1.5]	[-0.75, 0.75]	[-3.0, 3.0]
O_{NN} (multi-class)	[-1.4, 1.4]	[-0.71, 0.71]	[-2.7, 2.7]

Sensitivity to specific operators established using the Profile Likelihood method, after normalising the MC samples to the number of events observed in the ATLAS analyses.

Main observations:

- NN-based observables offer the best sensitivity.
- Multiclass models improve sensitivity w.r.t binary classification, i.e. networks learn the difference between the SM and the interference contributions.
- Double-differential analysis of Φ₄₁ and m₇₁ captures most of the sensitivity gained by NN

Subtleties: decay channel considerations

- Difference in sign and magnitude of interference depending on channel (2e2µ, 4e, 4µ)
 - Mispairing of leptons in 4e and 4µ channels when both pairs are off-shell.
 - Additional diagrams in the 4e/4µ channels.
- \rightarrow Channels need to be measured independently.

VBF Higgs production

- Analysis carried out in the VBF_1 region of the ATLAS H→ττ analysis (ATLAS-CONF-2021-044)
- Classic CP-odd variable: $\Delta \phi_{jj} = \phi(j_1) \phi(j_2)$
- NN trained using the interference induced by the $\mathcal{O}_{\Phi \widetilde{W}}$ operator in the Warsaw basis.

CP-odd observable	$c_{\Phi \widetilde{W} B} / \Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{B}}/\Lambda^2 \ [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{W}}/\Lambda^2 \; [{\rm TeV}^{-2}]$
$\Delta \phi_{jj}$	[-21, +21]	[-149, +149]	[-0.60, +0.60]
O_{NN} (binary)	[-11,+11]	[-43, +43]	[-0.66, +0.66]
O_{NN} (multi-class)	[-10, +10]	[-36, +36]	[-0.42, +0.42]

Main conclusions:

- multiclass training more important
- matching NN sensitivity using differential cross sections will be trickier

Both of these features arise because VBF is a multiscale process.

Higgs-without-Higgs: VVV interactions at LHC

Two operators affect weak-boson self-interactions:

- $\mathcal{O}_{\widetilde{W}}$ can only be measured in VVV interactions
- $\mathcal{O}_{\phi \widetilde{WB}}$ can be measured in HVV and VVV interactions, but notoriously hard to constrain

Higgs-without-Higgs: inclusive Wy production

- Analysis carried out in the fiducial region of the CMS inclusive Wy measurement [PRD 105 (2022) 052003]
- Signed $\Delta \phi_{iv}$ is sensitive to the CP-odd interference
- O_{NN} (multiclass) exploits other kinematics to improve sensitivity.

Process	CP-odd observable	$c_{\Phi \widetilde{W} B} / \Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\widetilde{W}}/\Lambda^2 \; [\text{TeV}^{-2}]$
	$\Delta \phi_{l\gamma}$	$\left[-0.165, 0.165\right]$	$\left[-0.255, 0.255 ight]$
inclusive $W\gamma$	O_{NN} (multi-class)	[-0.049, 0.049]	[-0.056, 0.056]
	$\Delta \phi_{l\gamma} \text{ vs } \phi_l - \phi_{\text{miss}} $	$\left[-0.154, 0.154 ight]$	[-0.219, 0.219]
	$\Delta \phi_{l\gamma} \text{ vs } E_{\mathrm{T}}^{\mathrm{miss}}$	[-0.163, 0.163]	[-0.206, 0.206]

For this process difficult to recover the NN sensitivity using a 2D differential measurement.

Tool for scoping future colliders: example FCC-ee

Neural networks offer a simple approach to constructing optimised CP-sensitive observables:

- distinguishes between the positive and negative interference contributions
- exploits differences in kinematics between the interference and Standard-Model
- Origin of CP-asymmetries can be easily explored and used to improve differential cross section measurements
- Full explanation of this method is available for Higgs [PLB 832 (2022) 137246] and diboson/VBS [PRD 107 (2023) 016008] final states.

- Madgraph5_aMC@NLO used to generate events at leading order in pQCD.
- SMEFTSim 3.0 used to include the anomalous interactions from the EFT operators.
- For each process:
 - SM events simulated and validated within the fiducial regions of recent ATLAS or CMS analyses.
 - Normalisation factors applied to cover missing higher-order effects.
 - Interference-only events generated for each EFT operator.

Process	CP-odd observable	$c_{\Phi \widetilde{W} B} / \Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\Phi \widetilde{B}}/\Lambda^2 ~[{\rm TeV}^{-2}]$	$c_{\Phi \widetilde{W}} / \Lambda^2 \; [\text{TeV}^{-2}]$	$c_{\widetilde{W}}/\Lambda^2 \; [\text{TeV}^{-2}]$
	$\Delta \phi_{jj}$	[-3.7, 3.7]	[-43, 43]	-	-
EW ZZjj	$\Phi_{4\ell}$	[-51, 51]	[-64, 64]	-	-
	O_{NN} (multi-class)	[-3.0, 3.0]	[-12, 12]	-	-
	$\Delta \phi_{jj}$	-	-	[-35, 34]	[-1.83, 1.83]
EW $W^{\pm}W^{\pm}jj$	$\Delta \phi_{\ell\ell}$	-	-	[-105, 105]	[-14, 14]
	O_{NN} (multi-class)	-	-	[-17, 17]	[-0.76, 0.76]
$\gamma\gamma \rightarrow WW$	$\Delta \phi_{\ell\ell}$	[-32,32]	[-14, 14]	[-48,48]	[-19, 19]
	O_{NN} (multi-class)	[-11,11]	[-13, 13]	[-43, 43]	[-11, 11]

NN-constructed observables improve sensitivity for all processes that were studied.