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Why do we need additional sources of CP violation?

e We live in a matter-dominated Universe

e  Sakarov conditions for producing this baryon asymmetry in early Universe:
o Baryon number violation
o C- and CP- violating interactions

o Thermal inequilibrium

e The electroweak/Higgs sector of the Standard Model fails to provide a complete answer:
o  CP-violation in quark sector is way too small

o  The EW phase transition is a second-order phase transition.



Effective field theory approach

Assume there is new physics at some high energy scale, A, that provides the additional
sources of CP-violation (and possibly the requisit first-order phase transition)

At lower energy scales, the effects of this physics can be expressed as operators in an

effective Lagrangian:

Extensions to the SM induce
anomalous interactions

®
Loyt ~ L<4>+Z L 0(6) Z € S_o®.

Additional sources of CP-violation included via CP-odd operators.
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Interference considerations

Considering only dimension-6 operators, the scattering amplitude is
2 2 2
IM|” = [Msml|” + 2Re(M;MMd6) + Mgl

Ideally, we should construct observables sensitive to the interference term:
o MMy Should be the leading correction to the SM, proportional to 1/N2.
o |Mqgsl? should be subleading as proportional to 1/A%.

o Leading dimension-8 terms are missing and also proportional to 1/A%,

The interference term is CP-odd and produces asymmetries in CP-odd observables

...but integrates to zero for CP-even observable.



CP-sensitive observables: differential cross sections
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e Increasingly common to measure differential cross sections as a function of CP-odd
observables, for both Higgs boson production and diboson/VBF/VBS processes.

e Advantages: model-independent, easily unfolded and therefore easy to reinterpret.

e Disadvantages: sensitivity, i.e. how to optimise the phase-space?



CP-sensitive observables: matrix-element inspired
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Alternative approach is to use discriminants based on matrix-element information.
Advantages: optimal in terms of sensitivity for a given analysis.

Disadvantages: more complicated (i.e. time-consuming); often not unfolded; when
unfolded difficult to reinterpret using tools like Rivet.



The long view: need global fit for CP-violating operators
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e Best sensitivity will be via a global fit to CP-sensitive observables:

o not currently done

o requires model-independent measurements that are easy to reinterpret.



Alternative approach: CP-odd observables fr

e CP-asymmetries arise from the interference between SM and CP-odd amplitudes:
2 2 2
IM|= = [Msm|” + 2R6(M§MMd6) + | Mas|

e Neural networks (NN) offer an easy way to understand these asymmetries.
o generate interference-only contribution to process (e.g Madgraph5 + SMEFTSim)
o split sample into positive-weights and negative-weights.
o train NN to distinguish between the two samples (binary classification)

o easy to include Standard-Model contribution in NN (multiclass)

e  Options with trained network:
o construct observable from NN classifications, i.e Onxy = Py — P_.

o improve differential cross section measurements.

based on: PLB 832 (2022) 137246 and PRD 107 (2023) 016008
see also: PRD 102 (2020) 056022 and JHEP 05 (2021) 147 8



Inclusive H—4l
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Analysis carried out in the Higgs Mass region of the ATLAS inclusive 4/ measurement

(JHEP 07, 005 (2021) for H—2e2p events.

Simple CP-odd variable (PRD 86, 095031 [2012]):  d.,, — M| x cos™!(fy - fiz),
a1 - (A1 x fp)

NN trained using the interference induced by the O operator in the Warsaw basis.
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What has the network learned?
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e  Origin of extra sensitivity investigated using feature importance techniques, i.e. change in
accuracy / loss evaluated after decorrelating input variables in the trained network.

e Clear interplay between ®, and m,, ( e*e” or py*u" pair with mass closest to Z pole).
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Multiclass models
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Limits on CP-odd operators for H—2e2p

CP-odd observable |cg i 5 /A% [TeV 2] |cp5 /A% [TeV 2] |y /A [TeV 2]

D [-6.2,6.2] [-1.4,1.4] [-30,30]

Dyp, ma2 [-1.9,1.9] [-0.85,0.85] [-3.7,3.7]

Onn (binary) [-1.5,1.5] [-0.75,0.75] -3.0,3.0]
[ ]

Onn (multi-class) 14,14 [-0.71,0.71] [-2.7,2.7]

Sensitivity to specific operators established using the Profile Likelihood method, after normalising
the MC samples to the number of events observed in the ATLAS analyses.

Main observations:
o NN-based observables offer the best sensitivity.

e  Multiclass models improve sensitivity w.r.t binary classification, i.e. networks learn the
difference between the SM and the interference contributions.

e Double-differential analysis of ®, and m,, captures most of the sensitivity gained by NN
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Subtleties: decay channel consideratio
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e Difference in sign and magnitude of interference depending on channel (2e2y, 4e, 4p)
o Mispairing of leptons in 4e and 4p channels when both pairs are off-shell.
o Additional diagrams in the 4e/4p channels.

— Channels need to be measured independently.
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VBF Higgs production
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Analysis carried out in the VBF_1 region of the ATLAS H—1T analysis

(ATLAS-CONF-2021-044)

Classic CP-odd variable: A¢;; = ¢(j1) — ¢(jz2)

NN trained using the interference induced by the Ocp'vT/ operator in the Warsaw basis.
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VBF Higgs production

CP-odd observable |cgiw 5 /A% [TeV ] |cp5/A” [TeV ]| ey /A® [TeV 2]
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Higgs-wit ggs: VVV interactions at LHC

PLB 817 (2021) 136311
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Higgs-without-Higgs: inclusive Wy production
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Higgs-without-Higgs: inclusive Wy production

Process | CP-odd observable |cyg5/A* [TeV™?] ey /A* [TeV 2

Ay [-0.165,0.165] [-0.255,0.255]
inclusive Wv| Onn (multi-class) [-0.049,0.049] [-0.056,0.056]
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Tool for scoping future colliders: example FCC-ee
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Summary and outlook

Neural networks offer a simple approach to constructing optimised CP-sensitive observables:

° distinguishes between the positive and negative interference contributions
° exploits differences in kinematics between the interference and Standard-Model
° Origin of CP-asymmetries can be easily explored and used to improve differential

cross section measurements

° Full explanation of this method is available for Higgs [PLB 832 (2022) 137246] and
diboson/VBS [PRD 107 (2023) 016008] final states.

20


https://www.sciencedirect.com/science/article/pii/S037026932200380X#!
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.016008

Simulation details

e Madgraph5_aMC@NLO used to generate events at leading order in pQCD.

SMEFTSim 3.0 used to include the anomalous interactions from the EFT operators.

e For each process:

o SM events simulated and validated within the fiducial regions of recent ATLAS or CMS

analyses.

o Normalisation factors applied to cover missing higher-order effects.

o Interference-only events generated for each EFT operator.
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out-Higgs: electroweak boson scattering

Process CP-odd observable |c 5 /A% [TeV 2] |c5/A” [TeV 2] |cpqm /A [TeV 2] e /A® [TeV 2]
Ao, [-3.7,3.7] [-43,43] - =
EW ZZjj [ [-51,51] [-64,64] -
Onn (multi-class) [-3.0,3.0] [-12,12] - -
Ao - - [-35,34] [-1.83,1.83]
EW WEwj; A - [-105,105] [-14,14]
Onn (multi-class) - - [-17,17] [-0.76,0.76]
vy = WW A [-32,32] [-14,14] [-48,48] [-19,19]
Onw (multi-class) [-11,11] [-13,13] [-43,43] [-11,11]

NN-constructed observables improve sensitivity for all processes that were studied.
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