Jet fragmentation at the LHC (low- $p_{\rm T}$)

Ezra D. Lesser (CERN) 7 May 2024

Standard Model at the LHC // Rome, Italy

لوووو 9

9 9 CERN

• More **nonperturbative**

• More **perturbative**

- More nonperturbative
- Sensitive to QCD and its backgrounds (e.g., "underlying event")

- More **perturbative**
- Sensitive to rare SM processes (e.g., $H \rightarrow b\overline{b}$)

CÈRN

Parton Distribution Functions (PDFs)

CERN

Parton Distribution Functions (PDFs)

How much of jet fragmentation is perturbatively calculable?

CERN

- How much of jet fragmentation is **perturbatively calculable**?
- What can experiments teach us about each stage of jet formation and fragmentation?

How much of jet fragmentation is perturbatively calculable?

• What can experiments teach us about each stage of jet formation and fragmentation?

• Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$

- Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$
- Previous measurements have put limits on intrinsic charm at the level of a few percent

- Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$
- Previous measurements have put limits on intrinsic charm at the level of a few percent
- Measure charm jets produced in association with a Z boson

- Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$
- Previous measurements have put limits on intrinsic charm at the level of a few percent
- Measure charm jets produced in association with a Z boson
- Purely gluon-like? \rightarrow should disappear as $x \rightarrow 1$

E.D. Lesser

• Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$

• Largest difference expected between **no-IC** and **IC** at large y(Z)

• Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$

- Largest difference expected between **no-IC** and **IC** at large y(Z)
- Significant tension with no-IC model at large y(Z)

PRL 128 (2022) 082001

• What is the **initial state** of the collision?

CERN

• What is the **initial state** of the collision?

• How does QCD turn quarks and gluons into jets?

Probing parton emissions

• Invariant jet mass, $m_{\rm jet} = \sqrt{E_{\rm jet}^2 - p_{\rm jet}^2} \approx \sqrt{Q_{\rm parton}^2}$

Probing parton emissions

• Invariant jet mass, $m_{\rm jet} = \sqrt{E_{\rm jet}^2 - p_{\rm jet}^2} \approx \sqrt{Q_{\rm parton}^2}$ \bigotimes Small $m_{\rm iet}$ Large $m_{\rm iet}$

CERN

ALI-PREL-564892

30

Jet angularities:

$$\lambda_{\alpha} = \sum_{i \in jet} \dots$$

CERN

31

Jet angularities:

$$\lambda_{\alpha} = \sum_{i \in jet} \frac{p_{T,i}}{p_{T,jet}} \dots$$

Jet angularities:

$$\lambda_{\alpha} = \sum_{i \in jet} \frac{p_{\mathrm{T},i}}{p_{\mathrm{T},jet}} \left(\frac{\Delta R_{i}}{R_{jet}}\right)^{\alpha}$$

Jet angularities:

$$\lambda_{\alpha} = \sum_{i \in jet} \frac{p_{T,i}}{p_{T,jet}} \left(\frac{\Delta R_i}{R_{jet}}\right)^{\alpha}$$
$$= \sum_{i \in jet} z_i \theta_i^{\alpha}$$

34

"Where is the $p_{\rm T}$ inside the jet?"

Jet angularities:

$$\alpha = \sum_{i \in jet} \frac{p_{T,i}}{p_{T,jet}} \left(\frac{\Delta R_i}{R_{jet}}\right)$$
$$= \sum_{i \in jet} z_i \theta_i^{\alpha}$$

"Where is the $p_{\rm T}$ inside the jet?"

ER
From mass to angularities

Jet angularities: $\lambda_{\alpha} = \sum_{i \in jet} \frac{p_{T,i}}{p_{T,jet}} \left(\frac{\Delta R_i}{R_{jet}}\right)^{\alpha}$ $= \sum_{i \in jet} z_i \theta_i^{\alpha}$

How to separate?

- Mass effects
- Quark vs. gluon fragmentation

37

"Where is the $p_{\rm T}$ inside the jet?"

E.D. Lesser

https://alice-figure.web.cern.ch/node/26561

⁷ May 2024

Understanding the jet life cycle

Test parton fragmentation in perturbative QCD

CERN

Understanding the jet life cycle

Test parton fragmentation in perturbative QCD

Probe hadron fragmentation in nonperturbative QCD

Studying jet constituents

• What hadrons are produced inside of jets?

Studying jet constituents

• What hadrons are produced inside of jets?

Charm quark fragmentation

Charm quark fragmentation

CERN

Charm quark fragmentation

CERN

 $\dot{p}_{jet} \cdot \dot{p}_B$

 p_{jet}

 $\vec{p}_{\rm B}$

 \vec{p}_{jet}

Z =

Bottom-tagged jets

JHEP 12 (2021) 131

Peak at large z welldescribed by models at medium jet $p_{\rm T}$

 $\vec{p}_{\rm B}$

7 May 2024

PRL 118 (2017) 192001

Phys. Lett. B 825 (2021) 136842

Similarity between mid- and forwardrapidity jets

CMS: "data show a relatively large degree of surrounding jet activity, indicative of J/ψ production inside of parton showers."

Phys. Lett. B 825 (2021) 136842

p_{jet}

CERN

E.D. Lesser

https://alice-figure.web.cern.ch/node/26481

 Jet fragmentation is an excellent probe for QCD at all energy scales

- Jet fragmentation is an excellent probe for QCD at all energy scales
- Still many open questions which we can address with Run 3 data

- Jet fragmentation is an excellent probe for QCD at all energy scales
- Still many open questions which we can address with Run 3 data
 - Need inter-collaboration cooperation to address uncertainties

- Jet fragmentation is an excellent probe for QCD at all energy scales
- Still many open questions which we can address with Run 3 data
 - Need inter-collaboration cooperation to address uncertainties
 - Push experimental tests of pQCD with higher precision calculation

- Jet fragmentation is an excellent probe for QCD at all energy scales
- Still many open questions which we can address with Run 3 data
 - Need inter-collaboration cooperation to address uncertainties
 - Push experimental tests of pQCD with higher precision calculation
 - Systematically probe nonperturbative effects such as hadronization

Backup

What's in a proton?

• Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$

What's in a proton?

• Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$

New ATLAS result!

https://arxiv.org/abs/2403.15093

iet
What's in a proton?

• Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$

What's in a proton?

• Intrinsic valence-like charm? *i.e.*, ϵ term: $|p^+\rangle \propto |uud\rangle + \epsilon |uudc\bar{c}\rangle$

E.D. Lesser

• New ATLAS result!

Models within uncertainties

$$x_{\rm F}({\rm c}) = \frac{2|p_z({\rm c})|}{\sqrt{s}}$$

 $q_i \xrightarrow{x}$

 v^+

7 May 2024

75

7 May 2024