Mixed QCD-EW corrections to neutral- and charged-current Drell-Yan processes

Alessandro Vicini
University of Milano, INFN Milano

Roma SM@LHC, May 9th 2024
based on: R.Bonciani, L.Buonocore, S.Devoto, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, AV, arXiv:2106.1I953 T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV: 220I.0I754, 2205.03345, 2405.00612

Outline of the talk

- Precision Physics with the Drell-Yan processes at hadron colliders
- Precision predictions for the Drell-Yan processes in the Standard Model

Lepton-pair Drell-Yan production at hadron colliders

Lepton-pair transverse momentum distribution

- A crucial role in QCD tests and precision EW measurements (m_{W} in particular) is played by the $p_{\perp}^{\ell^{+} \ell^{-}}$distribution
- The impressive experimental precision is a formidable test of the theory predictions, QCD in first place
- At per mille level higher-order QCD resummation matched with fixed order corrections
non-perturbative QCD effects and heavy quarks corrections
EW corrections

At CERN the EWWG has a subgroup scrutinising the predictions of this observable by different collaborations

Charge asymmetry in charged-current Drell-Yan

- An important role in the determination of the proton structure is played by the charge-asymmetry rapidity distribution
\triangleright needed to improve the flavour separation
\triangleright precise results at parton level for this quantity make its contribution to the PDF fit more significant
\rightarrow importance of NNLO and N3LO calculations
\triangleright in a fiducial volume the rapidity and transverse momentum dependencies are connected by kinematics
\rightarrow impact on the m_{W} determination

$\left|\eta_{\mu}\right|$

5

on-shell gauge boson production as a PDF benchmark

Relevance of Neutral Current Drell-Yan measurements: searches for New Physics signals

mass window [GeV]	stat. unc.	
140fb	stat. unc.	
$\mathbf{6 0}<\mathrm{m}_{\mu \mu}<900$	1.4%	0.2%
$\mathbf{9 0 0}<\mathrm{m}_{\mu \mu}<1300$	3.2%	0.6%

At the end of High-Luminosity LHC we will be able to test the TeV region with data at per mille level i.e.
to test the SM at the level of its quantum corrections

Is the SM prediction under control at the $\mathrm{O}(0.5 \%)$ level in the TeV region of the $m_{\ell \ell}$ distribution ?

Do we precisely know what is the SM, so that we can significantly claim to observe a discrepancy?

Testing the Standard Model with the W -boson mass

The W boson mass can be predicted
in terms of the input parameters of the model,
including the quantum effects Standard Model or beyond

$$
m_{W}^{2}=\frac{m_{Z}^{2}}{2}\left(1+\sqrt{1-\frac{4 \pi \alpha}{G_{\mu} \sqrt{2} m_{Z}^{2}}(1+\Delta r)}\right)
$$

Testing the Standard Model with the W -boson mass

The W boson mass can be predicted
in terms of the input parameters of the model,
including the quantum effects Standard Model or beyond

$$
m_{W}^{2}=\frac{m_{Z}^{2}}{2}\left(1+\sqrt{1-\frac{4 \pi \alpha}{G_{\mu} \sqrt{2} m_{Z}^{2}}(1+\Delta r)}\right)
$$

The W boson mass can be determined from the data fitting the kinematic distributions of charged-current Drell-Yan

Testing the Standard Model with the W -boson mass

The W boson mass can be predicted in terms of the input parameters of the model, including the quantum effects Standard Model or beyond

$$
m_{W}^{2}=\frac{m_{Z}^{2}}{2}\left(1+\sqrt{1-\frac{4 \pi \alpha}{G_{\mu} \sqrt{2} m_{Z}^{2}}(1+\Delta r)}\right)
$$

The W boson mass can be determined from the data fitting the kinematic distributions of charged-current Drell-Yan

A discrepancy between the Standard Model and experimental values may hint about the presence of New Physics: new BSM particles contributing to Δr could explain the difference

Testing the Standard Model with the W -boson mass

The W boson mass can be predicted
in terms of the input parameters of the model,
including the quantum effects Standard Model or beyond

$$
m_{W}^{2}=\frac{m_{Z}^{2}}{2}\left(1+\sqrt{1-\frac{4 \pi \alpha}{G_{\mu} \sqrt{2} m_{Z}^{2}}(1+\Delta r)}\right)
$$

Challenging theoretical calculations are needed for both the theoretical predictions and the distributions used to fit the data

A discrepancy between the Standard Model and experimental values may hint about the presence of New Physics: new particles contributing to Δr could explain the difference

The W boson mass: theoretical prediction

Sirlin, 1980, 1984; Marciano, Sirlin, 1980, 198।;
van der Bij,Veltman, 1984; Barbieri, Ciafaloni, Strumia 1993;
Djouadi, Verzegnassi 1987; Consoli, Hollik, Jegerlehner, 1989;
Chetyrkin, Kühn, Steinhauser, 1995;
Barbieri, Beccaria, Ciafaloni, Curci,Viceré, 1992, I993; Fleischer, Tarasov, Jegerlehner, I993;
Degrassi, Gambino, AV, 1996; Degrassi, Gambino, Sirlin, I997;
Freitas, Hollik, Walter, Weiglein, 2000, 2003;
Awramik, Czakon, 2002;Awramik, Czakon, Onishchenko,Veretin, 2003; Onishchenko,Veretin, 2003

$$
\begin{aligned}
& m_{W}=w_{0}+w_{1} d H+w_{2} d H^{2}+w_{3} d h+w_{4} d t+w_{5} d H d t+w_{6} d a_{s}+w_{7} d a^{(5)} \\
& d t=\left[\left(M_{t} / 173.34 \mathrm{GeV}\right)^{2}-1\right] \\
& d a^{(5)}=\left[\Delta \alpha_{\text {had }}^{(5)}\left(m_{Z}^{2}\right) / 0.02750-1\right] \\
& d H=\ln \left(\frac{m_{H}}{125.15 \mathrm{GeV}}\right) \\
& d h=\left[\left(m_{H} / 125.15 \mathrm{GeV}\right)^{2}-1\right] \\
& d a_{s}=\left(\frac{\alpha_{s}\left(m_{z}\right)}{0.1184}-1\right)
\end{aligned}
$$

parametric uncertainties $\delta m_{W}^{p a r}= \pm 0.005 \mathrm{GeV}$ due to the $\left(\alpha, G_{\mu}, m_{Z}, m_{H}, m_{t}\right)$ values

Relevance of new high-precision measurement of EW parameters

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{Eff}}=\sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_{d}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{\Lambda} \mathcal{L}_{5}+\frac{1}{\Lambda^{2}} \mathcal{L}_{6}+\cdots \\
& \quad \mathcal{L}_{d}=\sum_{i} C_{i}^{d} \mathcal{O}_{i} \quad\left[\mathcal{O}_{i}\right]=d \xrightarrow[\substack{\text { Effects } \\
\text { suppressed by }}]{ }\left(\frac{\boldsymbol{q}}{\Lambda}\right)^{d-4} \\
& \boldsymbol{\Lambda} \text { : Cut-off of the EFT }
\end{aligned}
$$

$$
M_{W}^{2}=M_{Z}^{2} c^{2}\left[1-\frac{c^{2}}{c^{2}-s^{2}}\left(\frac{1}{2} C_{\phi D}+2 \frac{s}{c} C_{\phi W B}+\frac{s^{2}}{c^{2}} \Delta_{G_{\mu}}\right) \frac{v^{2}}{\Lambda^{2}}\right]
$$

A precise measurement of m_{W} and $\sin ^{2} \theta_{e f f}$ constrains several dim-6 operators contributing to Higgs and gauge interaction vertices.
Today still one of the strongest constraints

Theoretical predickions for the Drell-Yan processes

Lepton-pair Drell-Yan production at hadron colliders

The factorisation theorems guarantee the validity of the above picture up to power correction effects
The interplay of QCD and EW interactions appears both in the partonic cross section and in the proton PDFs

The Drell-Yan cross section in a fixed-order expansion

The Drell-Yan cross section in a fixed-order expansion

$$
\sigma\left(h_{1} h_{2} \rightarrow \ell \bar{\ell}+X\right)=\sigma^{(0,0)}
$$

The resummation of QCD and QED corrections is another crucial topic \rightarrow see P.Torrielli's talk

Mixed QCD-EW corrections to the Drell-Yan processes
Strong boost of the activities in the theory community in the last 4 years! (references not covering the Monte Carlo developments)
\rightarrow mathematical and theoretical developments and computation of universal building blocks

- 2-loop virtual Master Integrals with internal masses

U. Aglietti, R. Bonciani, arXiv:0304028, arXiv:0401193, R. Bonciani, S. Di Vita, P. Mastrolia, U. Schubert, arXiv:1604.08581, M.Heller, A.von Manteuffel, R.Schabinger arXiv:1907.00491, S.Hasan, U.Schubert, arXiv:2004.14908, M.Long,R,Zhang,W.Ma, Y,Jiang,L.Han,,Z.Li,S.Wang, arXiv:2111.14130

- New methods to solve the Master Integrals
M.Hidding, arXiv:2006,05510, D.X.Liu, Y.-Q. Ma, arXiv:2201.11669, T.Armadillo, R.Bonciani, S.Devoto, N.Rana,AV, arXiv: 2205.03345
- Altarelli-Parisi splitting functions including QCD-QED effects
D. de Florian, G. Sborlini, G. Rodrigo, arXiv:1512.00612
- renormalization
G.Degrassi, AV, hep-ph/0307122, S.Dittmaier,T.Schmidt,J.Schwarz, arXiv:2009.02229 S.Dittmaier, arXiv:2101.05154

```
-> on-shell Z and W production as a first step towards full Drell-Yan
    - pole approximation of the NNLO QCD-EW corrections
    S.Dittmaier, A.Huss, C.Schwinn, arXiv:1403.3216, 1511.08016, 2401.15682
```

 - analytical total cross section including NNLO QCD-QED and NNLO QED corrections
 D. de Florian, M.Der, I.Fabre, arXiv:1805.12214
 - ptZ distribution including QCD-QED analytical transverse momentum resummation
 L. Cieri, G. Ferrera, G. Sborlini, arXiv:1805. 11948
 - fully differential on-shell Z production including exact NNLO QCD-QED corrections
 m.Detto, M.Jaquier, K.Melnikov, R.Roentsch, arxiv:1909.08428
 - total Z production cross section in fully analytical form including exact NNLO QCD-EW corrections
 R. Bonciani, F. Buccioni, R.Mondini, AV, arXiv:1611.00645, R. Bonciani, F. Buccioni, N.Rana, ITTiscari, AV, arXiv:1911.06200, R. Bonciani, F. Buccioni, N.Rana, AV, arXiv:2007.06518, arXiv:2111.12694
 - fully differential on-shell Z and W production including exact NNLO QCD-EW corrections
 F. Buccioni, F. Caola, M.Delto, M.J.aquier, K.Melnikov, R.Roentsch, arXiv:2005.10221, A. Behring, F. Bucioni, F. Caola, M.Deelto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:2009.10386, 2103.02671,
 Mixed QCD-EW corrections to the Drell-Yan processes
Strong boost of the activities in the theory community in the last 4 years! (references not covering the Monte Carlo developments)

\rightarrow complete Drell-Yan

- neutrino-pair production including NNLO QCD-QED corrections
L. Cieri, D. de Florian, M.Der, J.Mazzielli, arXi:2005.01315
- 2-loop NC and CC amplitudes
M.Heller, A.von Manteuffel, R.Schabinger, arXiv:2012.05918, T.Armadillo, R.Bonciani, S.Devoto, N.Rana,AV, arXiv: 2201.01754, 2405.00612
- NNLO QCD-EW corrections to charged-current DY (2-loop contributions in pole approximation). L.Buonocore, M.Grazzini, S.Kallweit, C.Savoini, F.Tramontano, arXiv:2102.12539
- NNLO QCD-EW corrections to neutral-current DY
R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, C.Savoini, N.Rana, F.Tramontano, AV, arXiv:2102.12539, F. Buccioni, F. Caola, H.A.Chawdhry, F.Devoto, M.Heller, A.V.Manteuffel, K.Melnikov, R.Roentsch, C.Signorile-Signorile, arXiv:2203.11237
- initial-state corrections
L. Cieri,G.Ferrera, G.Sborlini,, arXiv:1805.11948, A.Autieri, L. Cieri,G.Ferrera, G.Sborlini,, arXiv:2302.05403
- initial and final state corrections
L.Buonocore, L'Rottoli, P.Torrielli, arXiv:2404.15112

QCD results: lepton-pair invariant mass

Thanks to the N3LO-QCD results for the Drell-Yan cross section, scale variation band at the few per mille level at any Q The PDFs are not yet at N3LO

This is promising, in view of the program of searches for deviation from the SM in the TeV range What about NNLO QCD-EW and NNLO-EW corrections?

Phenomenology of Neutral Current Drell-Yan including exact NNLO QCD-EW corrections

R.Bonciani, L.Buonocore, S.Devoto, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano,AV, arXiv:2I06.II953, Phys.Rev.Lett. I28 (2022) I, 0 I 2002 and work in preparation

Non-trivial distortion of the rapidity distribution (absent in the naive factorised approximation)
Large effects below the \mathbf{Z} resonance (the factorised approximation fails) \rightarrow impact on the $\sin ^{2} \theta_{\text {eff }}$ determination
$\mathrm{O}(-1.5 \%)$ effects above the resonance
Alessandro Vicini - University of Milano
\rightarrow ongoing precision studies in the CERN EWWG Roma SM@LHC, May 9th 2024

Phenomenology of Neutral Current Drell-Yan including exact NNLO QCD-EW corrections

R.Bonciani, L.Buonocore, S.Devoto, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, AV, arXiv:2I06.II953, Phys.Rev.Lett. I28 (2022) I, 0 I 2002 and work in preparation

Negative mixed NNLO QCD-EW effects (-3\% or more) at large invariant masses, absent in any additive combination \rightarrow impact on the searches for new physics

Charged Current Drell-Yan: NNLO QCD-EW results with approximated 2-loop virtual corrections

Exact LO, NLO (QCD+EW), NNLO QCD corrections

 are combined with mixed QCD-EW correctionsPartonic subprocesses with I and 2 additional partons are evaluated exactly at NLO and LO respectively

The 2-loop virtual corrections to $q \bar{q}^{\prime} \rightarrow \ell \nu_{\ell}$ treated in pole approximation

Accurate description of the charged lepton p_{\perp}^{ℓ} spectrum, dominated by the (exact) real radiation effects
resonant configurations

The factorisation of QCD and EW corrections is not accurate at large p_{\perp}^{ℓ}

The lepton-pair transverse mass might receive large non-negligible 2-loop virtual corrections at large mass, poorly described in pole approximation

$$
\rightarrow \text { new results! }
$$

[^0]

Evaluation of the exact NNLO QCD-EW corrections

Neutral-Current Drell-Yan

The Neutral Current Drell-Yan cross section in the SM: perturbative expansion

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow \ell \bar{\ell}+X\right)= & \sigma^{(0,0)}+ \\
& \alpha_{s} \sigma^{(1,0)}+\alpha \sigma^{(0,1)}+ \\
& \alpha_{s}^{2} \sigma^{(2,0)}+\alpha \alpha_{s} \sigma^{(1,1)}+\alpha^{2} \sigma^{(0,2)}+ \\
& \alpha_{s}^{3} \sigma^{(3,0)}+\ldots \\
\sigma\left(h_{1} h_{2} \rightarrow l \bar{l}+X\right)= & \sum_{i, j=q \bar{q}, g, \gamma} \int d x_{1} d x_{2} f_{i}^{h_{1}}\left(x_{1}, \mu_{F}\right) f_{j}^{h_{2}}\left(x_{2}, \mu_{F}\right) \hat{\sigma}(i j \rightarrow l \bar{l}+X)
\end{aligned}
$$

$\sigma^{(1,1)}$ requires the evaluation of the xsecs of the following processes, including photon-induced

0 additional partons	$q \bar{q} \rightarrow l \bar{l}, \gamma \gamma \rightarrow l \bar{l}$	including virtual corrections of $\mathcal{O}\left(\alpha_{s}\right), \mathcal{O}(\alpha), \mathcal{O}\left(\alpha \alpha_{s}\right)$
	$q \bar{q} \rightarrow l \bar{l} g, q g \rightarrow l \bar{l} q$	including virtual corrections of $\mathcal{O}(\alpha)$
I additional parton	$q \bar{q} \rightarrow l \bar{l} \gamma, q \gamma \rightarrow l \bar{l} q$	including virtual corrections of $\mathcal{O}\left(\alpha_{s}\right)$
2 additional partons	$q \bar{q} \rightarrow l \bar{l} g \gamma, q g \rightarrow l \bar{l} q \gamma, q \gamma \rightarrow l \bar{l} q g, g \gamma \rightarrow l \bar{l} q \bar{q}$	
	$q \bar{q} \rightarrow l \bar{l} q \bar{q}, q \bar{q} \rightarrow l \bar{l} q^{\prime} \bar{q}^{\prime}, q q^{\prime} \rightarrow l \bar{l} q q^{\prime}, q \bar{q}^{\prime} \rightarrow l \bar{l} q \bar{q}^{\prime}, q q \rightarrow l \bar{l} q q \quad$ at tree level	

Different kinds of contributions at $\mathcal{O}\left(\alpha \alpha_{s}\right)$ and corresponding problems

double-real contributions
amplitudes are easily generated with OpenLoops
IR subtraction
care about the numerical convergence when aiming at 0.1% precision

real-virtual contributions

amplitudes are easily generated with OpenLoops or Recola
I-loop UV renormalisation and IR subtraction
care about the numerical convergence when aiming at 0.1% precision

double-virtual contributions
 generation of the amplitudes
 γ_{5} treatment
 2-loop UV renormalization solution and evaluation of the Master Integrals subtraction of the IR divergences
 numerical evaluation of the squared matrix element

General structure of the inclusive cross section and the q_{T}-subtraction formalism

$$
d \sigma=\sum_{m, n=0}^{\infty} d \sigma^{(m, n)} \quad d \sigma^{(1,1)}=\mathscr{H}^{(1,1)} \otimes d \sigma_{L O}+\left[d \sigma_{R}^{(1,1)}-d \sigma_{C T}^{(1,1)}\right]_{q_{T} / Q>r_{c u t}}
$$

IR structure associated to the QCD-QED part derived from NNLO-QCD results via abelianisation (de Florian, Rodrigo, Sborlini, 2016, de Florian, Der , Fabre, 2018)
the q_{T}-subtraction formalism has been extended to the case of final-state emitters (heavy quarks in QCD, leptons in EW) (Catani, Torre, Grazzini, 2014, Buonocore,Grazzini, Tramontano 2019.)

General structure of the inclusive cross section and the q_{T}-subtraction formalism

$$
d \sigma=\sum_{m, n=0}^{\infty} d \sigma^{(m, n)} d \sigma^{(1,1)}=\mathscr{H}^{(1,1)} \bigotimes d \sigma_{L O}+\left[d \sigma_{R}^{(1,1)}-d \sigma_{C T}^{(1,1)}\right]_{q_{T} / Q>r_{c u t}}
$$

IR structure associated to the QCD-QED part derived from NNLO-QCD results via abelianisation (de Florian, Rodrigo, Sborlini, 2016, de Florian, Der , Fabre, 2018)
the q_{T}-subtraction formalism has been extended to the case of final-state emitters (heavy quarks in QCD, leptons in EW) (Catani, Torre, Grazzini, 2014, Buonocore,Grazzini, Tramontano 2019.)
the gauge-boson phase space is split into $q_{T}=0$ and $q_{T}>0$ regions
for ISR, if $q_{T}>0$ the emitted parton is always resolved and the process under study receives only NLO corrections which can be handled with Gatani-Seymour dipoles

the final state consists of a pair phofon) massive leptons (treated as bare) to regulate the collinear (mass) singularities

The double virtual amplitude: generation of the amplitude
$\mathscr{M}^{(0,0)}(q \bar{q} \rightarrow l \bar{l})=$

$\mathscr{M}^{(1,1)}(q \bar{q} \rightarrow l \bar{l})=\quad \mathrm{O}(1000)$ self-energies $+\mathrm{O}(300)$ vertex corrections $+\mathrm{O}(\mathrm{I} 30)$ box corrections + lloop \times Iloop (before discarding all those vanishing for colour conservation, e.g. no fermonic triangles)


```
O
```

```
O
```


Structure of the double virtual amplitude

$$
2 \operatorname{Re}\left(\mathscr{M}^{(1,1)}\left(\mathscr{M}^{(0,0)}\right)^{\dagger}\right)=\sum_{i=1}^{N_{M I}} c_{i}(s, t, m ; \varepsilon) \mathscr{J}_{i}(s, t, m ; \varepsilon)
$$

Structure of the double virtual amplitude

$$
2 \operatorname{Re}\left(\mathscr{M}^{(1,1)}\left(\mathscr{M}^{(0,0)}\right)^{\dagger}\right)=\sum_{i=1}^{N_{M I}} c_{i}(s, t, m ; \varepsilon) \mathscr{J}_{i}(s, t, m ; \varepsilon)
$$

The coefficients c_{i} are rational functions of the invariants, masses and of ε
Their size can rapidly "explode" in the GB range
\rightarrow careful work to identify the patterns of recurring subexpressions, keeping the total size in the $\mathrm{O}(\mathrm{I}-10 \mathrm{MB})$ range Abiss Mathematica package

Structure of the double virtual amplitude

$$
2 \operatorname{Re}\left(\mathscr{M}^{(1,1)}\left(\mathscr{M}^{(0,0)}\right)^{\dagger}\right)=\sum_{i=1}^{N_{M I}} c_{i}(s, t, m ; \varepsilon) \mathscr{J}_{i}(s, t, m ; \varepsilon)
$$

The coefficients c_{i} are rational functions of the invariants, masses and of ε
Their size can rapidly "explode" in the GB range
\rightarrow careful work to identify the patterns of recurring subexpressions, keeping the total size in the $\mathrm{O}(1-10 \mathrm{MB})$ range Abiss Mathematica package

The Feynman Integrals \mathscr{F}_{i} are one of the major challenges in the evaluation of the virtual corrections
$\mathscr{J}\left(p_{i} \cdot p_{j} ; \vec{m}\right)=\int \frac{d^{n} k_{1}}{(2 \pi)^{n}} \int \frac{d^{n} k_{2}}{(2 \pi)^{n}} \frac{1}{\left[k_{1}^{2}-m_{0}^{2}\right]^{\alpha_{0}}\left[\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2}\right]^{\alpha_{1}} \ldots\left[\left(k_{1}+k_{2}+p_{j}\right)^{2}-m_{j}^{2}\right]^{\alpha_{j}} \ldots\left[\left(k_{2}+p_{l}\right)^{2}-m_{l}^{2}\right]^{\alpha_{l}}}$

The complexity of the solution grows with the number of energy scales (masses and invariants) upon which it depends

The double virtual amplitude: reduction to Master Integrals

The complexity of the MIs depends on the number of energy scales Mls relevant for the QCD-QED corrections, with massive final state

Bonciani, Ferroglia,Gehrmann, Maitre, Studerus., arXiv:0806.230I, 0906.367I
Mls with Ior 2 internal mass relevant for the EW form factor
Aglietti, Bonciani, hep-ph/0304028, hep-ph/0401193

$\left(\mathcal{T}_{2}\right)$

($\left.\mathcal{T}_{14}\right)$

cfr. also Heller, von Manteuffel, Schabinger, arXiv:1907.0049I for a representation of the MIs in terms of GPLs arXiv:2012.05918 for a description of the 2-loop virtual amplitude

$\left.k_{1}+k_{2}\right)^{2}\left(k_{1}-p_{1}+p_{3}\right)^{2}$
2-masses MIs

Evaluation of the Master Integrals by series expansions
T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345

The Master Integrals satisfy a system of differential equations.
The Mls are replaced by formal series with unknown coefficients \rightarrow eqs for the unknown coefficients of the series.
The package DiffExp by M.Hidding, arXiv:2006.055I0 implements this idea, for real valued masses, with real kinematical vars.
But we need complex-valued masses of W and Z bosons (unstable particles) \rightarrow we wrote a new package (SeaSyde)

Evaluation of the Master Integrals by series expansions

T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345

The Master Integrals satisfy a system of differential equations.
The Mls are replaced by formal series with unknown coefficients \rightarrow eqs for the unknown coefficients of the series.
The package DiffExp by M.Hidding, arXiv:2006.055I0 implements this idea, for real valued masses, with real kinematical vars. But we need complex-valued masses of W and Z bosons (unstable particles) \rightarrow we wrote a new package (SeaSyde)

We implemented the series expansion approach, for arbitrary complex-valued masses, working in the complex plane of each kinematical variable, one variable at a time

Complete knowledge about the singular structure of the MI can be read directly from the differential equation matrix

The solution can be computed with an arbitrary number of significant digits, but not in closed form \rightarrow semi-analytical

Evaluation of the Master Integrals by series expansions

T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345

The Master Integrals satisfy a system of differential equations.
The MIs are replaced by formal series with unknown coefficients \rightarrow eqs for the unknown coefficients of the series.
The package DiffExp by M.Hidding, arXiv:2006.055I0 implements this idea, for real valued masses, with real kinematical vars. But we need complex-valued masses of W and Z bosons (unstable particles) \rightarrow we wrote a new package (SeaSyde)

We implemented the series expansion approach, for arbitrary complex-valued masses, working in the complex plane of each kinematical variable, one variable at a time

Complete knowledge about the singular structure of the MI can be read directly from the differential equation matrix

The solution can be computed with an arbitrary number of significant digits, but not in closed form \rightarrow semi-analytical

Alessandro Vicini - University of Milano

Roma SM@LHC, May 9th 2024

Numerical evaluation of the hard coefficient function

The interference term $2 \operatorname{Re}\left\langle\mathscr{M}^{(1,1), \text { fin }} \mid \mathscr{M}^{(0,0)}\right\rangle$ contributes to the hard function $H^{(1,1)}$
After the subtraction of all the universal IR divergences, it is a finite correction
It has been published in arXiv:220I.0I754 and is available as a Mathematica notebook
Several checks of the Mls performed with Fiesta, PySecDec and AMFlow
A numerical grid has been prepared for all the 36 Mls , with GiNaC and SeaSyde (T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345) , covering the whole $2 \rightarrow 2$ phase space in ($s, t)$ (3250 points), in $\mathrm{O}(\mathrm{I} 2 \mathrm{~h})$ on one 32 -cores machine
\rightarrow values at arbitrary phase space points obtained with excellent accuracy via interpolation, with negligible evaluation time
in units $\frac{\alpha}{\pi} \frac{\alpha_{s}}{\pi} \sigma_{0}$

Exack 2-loop virtual QCD-EW corrections

bo
Charged-Current Drell-Yan

2-loop virtual QCD-EW corrections to the Charged-Current Drell-Yan in the SM

(a)
(d)

(a)

(b)

(c)

(e)

(f)
(c)

(b)

(e)
(f)

The Charged-Current process is mediated by a W exchange
For a general lepton-pair invariant mass, there is no general gauge invariant separation of initial- and final-state photonic corrections, at variance with the NC DY case

We consider a massive final-state lepton, yielding mass logarithms instead of collinear poles in dim.reg.

The presence of two weak bosons with different masses (W and Z) is a new challenge for the solution of the Feynman integrals

Large number of terms \rightarrow increased automation level

Subtraction of the IR divergences from the 2-loop amplitude we identify QCD-QED (poles up to $1 / \varepsilon^{4}$) and QCD-weak (poles up to $1 / \varepsilon^{2}$ with cumbersome coefficients) diagrams

$$
\begin{aligned}
\left|\mathcal{M}^{(1,0), \text { fin }}\right\rangle=\left|\mathcal{M}^{(1,0)}\right\rangle-\mathcal{I}^{(1,0)}\left|\mathcal{M}^{(0)}\right\rangle, & \text { standard NLO-QCD subtraction } \\
\left|\mathcal{M}^{(0,1), \text { fin }}\right\rangle=\left|\mathcal{M}^{(0,1)}\right\rangle-\mathcal{I}^{(0,1)}\left|\mathcal{M}^{(0)}\right\rangle . & \text { NLO-EW subtraction, with massive leptons } \\
\left|\mathcal{M}^{(1,1), \text { fin }}\right\rangle & =\left|\mathcal{M}^{(1,1)}\right\rangle-\mathcal{I}^{(1,1)}\left|\mathcal{M}^{(0)}\right\rangle-\tilde{\mathcal{I}}^{(0,1)}\left|\mathcal{M}^{(1,0), \text { fin }}\right\rangle-\tilde{\mathcal{I}}^{(1,0)}\left|\mathcal{M}^{(0,1), \text { fin }}\right\rangle .
\end{aligned}
$$

$$
\begin{array}{rlrl}
\mathcal{I}^{(1,0)}= & \left(\frac{s}{\mu^{2}}\right)^{-\epsilon} C_{F}\left(-\frac{2}{\epsilon^{2}}-\frac{1}{\epsilon}(3+2 i \pi)+\zeta_{2}\right), & \Gamma_{l}^{(0,1)}=-\frac{1}{4}\left[Q_{l}^{2}(1-i \pi)+Q_{l}^{2} \log \left(\frac{m_{l}^{2}}{s}\right)+\right. \\
\mathcal{I}^{(0,1)}=\left(\frac{s}{\mu^{2}}\right)^{-\epsilon}\left[\frac{Q_{u}^{2}+Q_{d}^{2}}{2}\left(-\frac{2}{\epsilon^{2}}-\frac{1}{\epsilon}(3+2 i \pi)+\zeta_{2}\right)+\frac{4}{\epsilon} \Gamma_{l}^{(0,1)}\right] & \left.+2 Q_{u} Q_{l} \log \left(\frac{\left(2 p_{1} \cdot p_{4}\right)}{s}\right)-2 Q_{d} Q_{l} \log \left(\frac{\left(2 p_{2} \cdot p_{4}\right)}{s}\right)\right] \\
\mathcal{I}^{(1,1)}=\left(\frac{s}{\mu^{2}}\right)^{-2 \epsilon} C_{F}\left[\frac{Q_{u}^{2}+Q_{d}^{2}}{2}\left(\frac{4}{\epsilon^{4}}+\frac{1}{\epsilon^{3}}(12+8 i \pi)+\frac{1}{\epsilon^{2}}\left(9-28 \zeta_{2}+12 i \pi\right)++\frac{1}{\epsilon}\left(-\frac{3}{2}+6 \zeta_{2}-24 \zeta_{3}-4 i \pi \zeta_{2}\right)\right)\right. \\
& \left.\quad+\left(-\frac{2}{\epsilon^{2}}-\frac{1}{\epsilon}(3+2 i \pi)+\zeta_{2}\right) \frac{4}{\epsilon} \Gamma_{l}^{(0,1)}\right] &
\end{array}
$$

The analytical check of the cancellation of the IR poles in the QCD-weak sector is one very demanding test of the calculation. In CC-DY for the first time we achieved a completely numerical check of the cancellation of all the IR poles

2-loop virtual QCD-EW corrections to CC DY: new Master Integrals

(a)

(b)

(c)

(i)

(d)

(e)

(f)

(g)

(h)

(j)

(b)

(c)

(d)
$\sqrt{ }$
(e)

(g)

(h)

${ }^{(i)}$

(a)
F
(f)

(k)

(p)

(u)

(m)

(q)

(w)

(n)
(o)

(v)

(s)
(t)

Master Integrals with one W and one internal massive lepton lines

(o)
(p)
(q)

(r)

(s)

(t)
(u)

Master Integrals with two different internal masses

- All the terms in the amplitude are reduced to Master Integrals with Abiss+KIRA
- The differential equations are written with LiteRed
- The Boundary Conditions are computed with AMFlow
- The Master Integrals are computed with SeaSyde

2-loop virtual QCD-EW corrections to CC DY: new Master Integrals

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

(f)

(1)

(q)

(g)

(h)

(i)

(o)

(j)

(g)

(h)

(i)
(n)

(s)
(r)

(x)

(j)

(o)

(t)

(y)

Master Integrals with two different internal masses

- All the terms in the amplitude are reduced to Master Integrals with Abiss+KIRA

Automated workflow

- The differential equations are written with LiteRed
- The Boundary Conditions are computed with AMFlow
- The Master Integrals are computed with SeaSyde
useful to tackle NNLO-EW corrections
\rightarrow relevant at LHC and later at FCC-ee

Fast numerical evaluation with arbitrary W-mass values

The Master Integrals can be solved at different (s, t) values, yielding a numerical grid, for a given value \bar{m}_{W} of the W boson mass. \rightarrow very efficient and accurate in Monte Carlo simulations

The differential equations with respect to the internal W mass can be solved via the series expansion approach, yielding as a solution a power series in $\delta m_{W}=m_{W}-\bar{m}_{W}$, taking as BCs the first grid with \bar{m}_{W}.

Our final 2-loop virtual result is cast, at every phase-space point, as a power series in δm_{W}, which can be evaluated in a negligible amount of time, to give the actual grid, for any m_{W} choice

Finite 2-loop exact QCD-EW virtual corrections to Charged-Current Drell-Yan

$$
\text { in units } \frac{\alpha}{\pi} \frac{\alpha_{s}}{\pi} \sigma_{0}
$$

- Expected large effects at large transverse masses, analogously to the NC DY case
- Improved theoretical stability in PDFs determination at (sub)percent level
- Relevance in the discussion of the W resonance region, when matching fixed-order and QCD-QED resummation $\rightarrow m_{W}$ fit

Finite 2-loop exact QCD-EW virtual corrections to Charged-Current Drell-Yan

$$
\text { in units } \frac{\alpha}{\pi} \frac{\alpha_{s}}{\pi} \sigma_{0}
$$

- Expected large effects at large transverse masses, analogously to the NC DY case
- Improved theoretical stability in PDFs determination at (sub)percent level
- Relevance in the discussion of the W resonance region, when matching fixed-order and QCD-QED resummation $\rightarrow m_{W}$ fit
- In the evaluation of the corrections to CC DY we have not optimised the choice of the Master Integrals
\rightarrow the diff.eqs. systems are not triangular (like in the NC DY case) but they are generic coupled systems
SeaSyde is able to handle such systems, achieving a relative precision of 10^{-14} at every phase-space point
Potential limitations: the size of the diff.eqs. system can lead to long evaluation time
Computing the full CC DY grid for LHC applications (3250 points in (s, t)) requires 3 weeks on one 26-core machine

Towards a tool matching QCD+QED resummation with NNLO QCD-EW fixed order
-The exact NNLO QCD-EW corrections yield large effects at large transverse/invariant masses \rightarrow BSM searches

- Relevance in the discussion of the boson resonance region, when matching fixed-order and QCD-QED resummation $\rightarrow m_{W}$ fit

Towards a tool matching QCD+QED resummation with NNLO QCD-EW fixed order

- The exact NNLO QCD-EW corrections yield large effects at large transverse/invariant masses \rightarrow BSM searches
- Relevance in the discussion of the boson resonance region, when matching fixed-order and QCD-QED resummation $\rightarrow m_{W}$ fit

POWHEG simulation NLO QCD+EW +QCDPS + QEDPS

Huge impact of QED and mixed QCD-QED corrections in the m_{W} determination What is the theoretical uncertainty on this estimated shift ?

Towards a tool matching QCD+QED resummation with NNLO QCD-EW fixed order

- The exact NNLO QCD-EW corrections yield large effects at large transverse/invariant masses \rightarrow BSM searches
- Relevance in the discussion of the boson resonance region, when matching fixed-order and QCD-QED resummation $\rightarrow m_{W}$ fit

POWHEG simulation NLO QCD+EW +QCDPS + QEDPS

	$p p \rightarrow W^{+}, \sqrt{s}=14 \mathrm{TeV}$ Templates accuracy: NLO-QCD + QCD $_{\text {PS }}$		M_{W} shifts (MeV)			
			$W^{+} \rightarrow \mu^{+} \nu$		$W^{+} \rightarrow e^{+} \nu($ dres $)$	
	Pseudodata accuracy	QED FSR	M_{T}	p_{T}^{ℓ}	M_{T}	p_{T}^{ℓ}
1	NLO-QCD $+(\mathrm{QCD}+\mathrm{QED})_{\mathrm{PS}}$	Pythia	-95.2 ± 0.6	-400 ± 3	-38.0 ± 0.6	-149 ± 2
2	$\mathrm{NLO}-\mathrm{QCD}+(\mathrm{QCD}+\mathrm{QED})_{\mathrm{PS}}$	Рнотоs	$-88.0 \pm 0 \mathrm{~m}$	-368 ± 2	-38.4 ± 0.6	-150 ± 3
3	NLO-(QCD + EW $)+(\mathrm{QCD}+\mathrm{QED})_{\text {Pstwo }}$-rad	Pythi	89.0 ± 0.6	-371 ± 3	-38.8 ± 0.6	-157 ± 3
4	NLO-(QCD +EW$)+(\mathrm{QCD}+\mathrm{QED})_{\text {Pstwo-rad }}$	PHOTOS	-88.6 ± 0.6	-370 ± 3	-39.2 ± 0.6	-159 ± 2

Huge impact of QED and mixed QCD-QED corrections in the m_{W} determination What is the theoretical uncertainty on this estimated shift ?
L.Buonocore, L.Rottoli, P.Torrielli, arXiv:2404.15II2

Matching in full QCD-EW SM at N3LL'-QCD + NLL'-EW + nNLL'-mixed accuracy including QED effects from all charged legs (see P.Torrielli's talk)

Matching with the exact NNLO QCD-EW will be needed to reach full NNLL-mixed \rightarrow Reliable estimate of the reduced residual theoretical uncertainties

Concluding remarks

The precision tests of the Standard Model at the LHC are an active research field They require the development of advanced computational techniques to evaluate complex 2-loop amplitude

The semi-automatic evaluation, with arbitrary numerical precision of the exact mixed QCD-EW corrections to the NC- and CC-DY processes opens the way to a new class of calculations

The cross section evaluation requires a non-trivial infrastructure
to consistently include all the real and virtual sets of corrections (e.g. Matrix)
The matching of these fixed-order results with a joined QCD-QED all orders resummation
will allow a robust estimate of the theoretical uncertainties affecting the W -mass determination

Thank you

back-up

Computational framework of NNLO QCD-EW corrections to NC DY

The complete calculation has been included in the Munich/Matrix framework

- fully automatic generation and bookkeeping of all the double-real and real-virtual contributions based on an interface with OpenLoops and Recola/Collier
- the 2-loop virtual corrections are separately computed and provided in fast-evaluation format

In this specific framework, main compatibility requirement to include the double-virtual corrections: the q_{T}-subtraction formalism to handle the IR singularities (Catani, Grazzini, 2007)

Upon inclusion of the appropriate scheme-dependent subtraction term, the double virtual corrections can be used with any other simulation code

The q_{T}-subtraction and the residual cut-off dependency

$$
d \sigma=\sum_{m, n=0}^{\infty} d \sigma^{(m, n)} d \sigma^{(1,1)}=\mathscr{H}(1,1) \otimes d \sigma_{L O}+\left[d \sigma_{R}^{(1,1)}-d \sigma_{C T}^{(1,1)}\right]_{q_{T} / Q>r_{c u t}}
$$

When $q_{T} / Q>r_{c u t}$ the double-real and the real-virtual contributions, subtracted with CS dipoles, are finite $d \sigma_{C T}^{(1,1)}$ is obtained by expanding to fixed order the q_{T} resummation formula

The q_{T}-subtraction and the residual cut-off dependency

$$
d \sigma=\sum_{m, n=0}^{\infty} d \sigma^{(m, n)} d \sigma^{(1,1)}=\mathscr{H}^{(1,1)} \bigotimes d \sigma_{L O^{+}}\left[d \sigma_{R}^{(1,1)}-d \sigma_{C T}^{(1,1)}\right]_{q_{T} / Q>r_{c u t}}
$$

When $q_{T} / Q>r_{c u t}$ the double-real and the real-virtual contributions, subtracted with CS dipoles, are finite $d \sigma_{C T}^{(1,1)}$ is obtained by expanding to fixed order the q_{T} resummation formula

Logarithmic sensitivity on $r_{c u t}$ in the double unresolved limit

$$
\int d \sigma_{R}^{(1,1)} \sim \sum_{i=1}^{4} c_{i} \ln ^{i} r_{c u t}+c_{0}+\mathcal{O}\left(r_{c u t}^{m}\right)
$$

The counterterm removes the IR sensitivity to the cutoff variable $\int\left(d \sigma_{R}^{(1,1)}-d \sigma_{C T}^{(1,1)}\right) \sim c_{0}+\mathcal{O}\left(r_{\text {cut }}^{m}\right)$
\rightarrow we need small values of the cutoff
\rightarrow explicit numerical tests to quantify the bias induced by the cutoff choice
we can fit the $r_{c u t}$ dependence and extrapolate in the $r_{c u t} \rightarrow 0$ limit

Dependence on $r_{c u t}$ of the NNLO QCD-EW corrections to NC DY

Symmetric-cut scenario

$$
p_{\mathrm{T}, \ell^{ \pm}}>25 \mathrm{GeV} \quad y_{\ell \pm}<2.5 \quad m_{\ell \ell}>50 \mathrm{GeV}
$$

- large power corrections in $r_{\text {cut }}$ for mixed corrections
\Leftrightarrow explained by overall small size of corrections, and in parts also by cancellation between partonic channels
- by far less dramatic dependence at level of cross sections
\Leftrightarrow better than permille precision at inclusive level

Splitting into partonic channels

The q_{T}-subtraction and the residual cut-off dependency in different acceptance setups

Symmetric cuts

- $p_{\mathrm{T}, \ell^{ \pm}}>25 \mathrm{GeV}$

\Leftrightarrow large power corrections in $r_{\text {cut }}$

Asymmetric cuts on $\boldsymbol{\ell}_{1}$ and $\boldsymbol{\ell}_{\mathbf{2}}$

- $p_{\mathrm{T}, \ell_{1}}>25 \mathrm{GeV} p_{\mathrm{T}, \ell_{2}}>20 \mathrm{GeV}$

$p p \rightarrow \ell^{-} \ell^{+} @ 13 \mathrm{TeV}, \mu_{F}=m_{Z}, \mu_{R}=m_{Z}$

\Leftrightarrow large power corrections in $r_{\text {cut }}$

Asymmetric cuts on ℓ^{+}and ℓ^{-}

- $p_{\mathrm{T}, \ell^{+}}>25 \mathrm{GeV} p_{\mathrm{T}, \ell^{-}}>20 \mathrm{GeV}$

\Rightarrow no significant dependence on $r_{\text {cut }}$

Differential sensitivity to $r_{c u t}$

Binwise $r_{\text {cut }}$ dependence of the mixed NNLO QCD-EW corrections for NC Drell-Yan
Differential distribution in $\boldsymbol{p}_{\mathbf{T}, \mu^{+}}$: peak (left panels) and tail (right panels) regions

\Leftrightarrow large $r_{\text {cut }}$ dependence in particular around the peak of the distribution, and typically precision of $\leq 3 \%$ on the relative mixed QCD-EW corrections (artificially large where corrections are basically zero)

Binwise $r_{\text {cut }}$ dependence of the mixed NNLO QCD-EW corrections for NC Drell-Yan
Differential distribution in $\boldsymbol{m}_{\mu^{+} \mu^{-}}$: peak (left panels) and tail (right panels) regions

\Leftrightarrow quite large $r_{\text {cut }}$ dependence throughout, and lower numerical precision of $\lesssim 10 \%$ on the relative mixed QCD-EW corrections (but still permille-level precision at the level of cross sectionsRoma SM@LHC, May 9th 2024

The hard-virtual coefficient

$$
d \sigma=\sum_{m, n=0}^{\infty} d \sigma^{(m, n)} \quad d \sigma^{(1,1)}=\mathscr{H}^{(1,1)} \otimes d \sigma_{L O}+\left[d \sigma_{R}^{(1,1)}-d \sigma_{C T}^{(1,1)}\right]_{q_{T} / Q>r_{c u t}}
$$

$$
\mathscr{H}^{(1,1)}=H^{(1,1)} C_{1} C_{2}
$$

The process independent collinear functions C_{1}, C_{2} are known up to N3LO
The process dependent hard function H is defined
upon subtraction of the universal IR contributions

The hard-virtual coefficient

$$
d \sigma=\sum_{m, n=0}^{\infty} d \sigma^{(m, n)} d \sigma^{(1,1)}=\mathscr{H}^{(1,1)} \otimes d \sigma_{L O}+\left[d \sigma_{R}^{(1,1)}-d \sigma_{C T}^{(1,1)}\right]_{q_{T} / Q>r_{c u t}}
$$

$$
\mathscr{H}^{(1,1)}=H^{(1,1)} C_{1} C_{2}
$$

The process independent collinear functions C_{1}, C_{2} are known up to N3LO
The process dependent hard function H is defined
upon subtraction of the universal IR contributions

$$
\begin{aligned}
& 2 \operatorname{Re} e\left\langle\mathscr{M}^{(0,0)} \mid \mathscr{M}^{(1,1)}\right\rangle=\sum_{k=-4}^{0} \varepsilon^{k} f_{i}(s, t, m) \quad \text { after UV renormalisation the poles are only } \mathrm{c} \\
& \left|\mathscr{M}_{\text {fin }}\right\rangle \equiv(1-I)|\mathscr{M}\rangle \quad H \propto\left\langle\mathscr{M}_{0} \mid \mathscr{M}_{\text {fin }}\right\rangle \\
& H^{(1,0)}=\frac{2 \operatorname{Re}\left\langle\mathscr{M}^{(0,0)} \mid \mathscr{M}_{\text {fin }}^{(1,0)}\right\rangle}{\left|\mathscr{M}^{(0,0)}\right|^{2}}, \quad H^{(0,1)}=\frac{2 \operatorname{Re}\left\langle\mathscr{M}^{(0,0)} \mid \mathscr{M}_{\text {fin }}^{(0,1)}\right\rangle}{\left|\mathscr{M}^{(0,0)}\right|^{2}}, \quad H^{(1,1)}=\frac{2 \operatorname{Re}\left\langle\mathscr{M}^{(0,0)} \mid \mathscr{M}_{\text {fin }}^{(1,1)}\right\rangle}{\left|\mathscr{M}^{(0,0)}\right|^{2}} \\
& \mathrm{NLO-QCD}
\end{aligned}
$$

The double virtual amplitude: regularisation of the IR divergences
The evaluation of the amplitudes is done in $n=4-2 \varepsilon$ dimensions
In the q_{T}-subtraction formalism, the final state leptons are massive, yielding mass singular logarithms \rightarrow also the 2-loop virtual corrections should be evaluated with massive leptons

We start with a fully massive final state 2-loop amplitude We retain only collinear singular terms $\left(\sim \log \left(m_{l}^{2} / M_{Z}^{2}\right)\right.$) and discard those suppressed by a power of m_{l}^{2} / M_{Z}^{2}

Among the 2-loop boxes

$W W$ and $Z Z$ boxes do not develop collinear singularities
\rightarrow evaluated with Master Integrals with massless external lines

$\gamma \gamma$ and γZ boxes individually develop collinear singularities, but in the sum they exactly cancel
\rightarrow explicit check in the $\gamma \gamma$ case, based on the massive Mls known from $t \bar{t}$ production in the γZ check that the residual singularity is the soft divergence

The double virtual amplitude: generation of the amplitude
$\mathscr{M}^{(0,0)}(q \bar{q} \rightarrow l \bar{l})=$
$\mathscr{M}^{(1,1)}(q \bar{q} \rightarrow l \bar{l})=\quad \mathrm{O}(1000)$ self-energies $+\mathrm{O}(300)$ vertex corrections $+\mathrm{O}(I 30)$ box corrections + lloop \times lloop (before discarding all those vanishing for colour conservation, e.g. no fermonic triangles)

Two independent calculations based on QGraf and FeynArts in the EW Background Field Gauge
The BFG choice guarantees the validity of EW Ward identities for the initial state vertex \rightarrow additional technical checks

- UV finiteness when combining 2-loop vertex and quark WF in the full EW SM \rightarrow that combination has only IR poles - UV renormalisation is confined to the gauge-boson propagators sector, where IR divergences are absent

The I-loop check of the gauge-parameter independence identifies those subsets of diagrams yielding the cancellation.
The 2-loop calculation is organised splitting the total amplitude in the combination of different subsets, according to their EW charges (\# of $\mathrm{Ws}, \mathrm{Zs}, \mathrm{Ys}$)

The double virtual amplitude: UV renormalization
G.Degrassi, AV, hep-ph/0307122, S.Dittmaier,T.Schmidt,J.Schwarz, arXiv:2009.02229 S.Dittmaier, arXiv:2101.05154

Complex mass scheme $\quad \mu_{W 0}^{2}=\mu_{W}^{2}+\delta \mu_{W}^{2}, \quad \mu_{z 0}^{2}=\mu_{Z}^{2}+\delta \mu_{z}^{2}, \quad e_{0}=e+\delta e$

$$
\frac{\delta s^{2}}{s^{2}}=\frac{c^{2}}{s^{2}}\left(\frac{\delta \mu_{Z}^{2}}{\mu_{Z}^{2}}-\frac{\delta \mu_{W}^{2}}{\mu_{W}^{2}}\right)
$$

the mass counterterms are defined at the complex pole of the propagator the weak mixing angle is complex valued $c^{2} \equiv \mu_{W}^{2} / \mu_{Z}^{2}$

BFG EWWard identity \rightarrow cancellation of the UV divergences combining vertex and fermion WF corrections

The bare couplings of Z and photon to fermions in the ($G_{\mu}, \mu_{W}, \mu_{Z}$) input scheme are given by

$$
\begin{aligned}
& \frac{g_{0}}{c_{0}}=\sqrt{4 \sqrt{2} G_{\mu} \mu_{Z}^{2}}\left[1-\frac{1}{2} \Delta r+\frac{1}{2}\left(2 \frac{\delta e}{e}+\frac{s^{2}-c^{2}}{c^{2}} \frac{\delta s^{2}}{s^{2}}\right)\right] \equiv \sqrt{4 \sqrt{2} G_{\mu} \mu_{Z}^{2}}\left(1+\delta g_{Z}^{G_{\mu}}\right) \\
& g_{0} s_{0}=\sqrt{4 \sqrt{2} G_{\mu} \mu_{W}^{2} s^{2}}\left[1+\frac{1}{2}\left(-\Delta r+2 \frac{\delta e}{e}\right)\right] \equiv e_{r e n}^{G_{\mu}}\left(1+\delta g_{A}^{G_{\mu}}\right)
\end{aligned}
$$

Gauge boson renormalised propagators

$$
\begin{aligned}
& \Sigma_{R, T}^{A A}\left(q^{2}\right)=\Sigma_{T}^{A A}\left(q^{2}\right)+2 q^{2} \delta g_{A} \\
& \Sigma_{R, T}^{Z Z}\left(q^{2}\right)=\Sigma_{T}^{Z Z}\left(q^{2}\right)-\delta \mu_{Z}^{2}+2\left(q^{2}-\mu_{Z}^{2}\right) \delta g_{Z}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma_{R, T}^{A Z}\left(q^{2}\right)=\Sigma_{T}^{A Z}\left(q^{2}\right)-q^{2} \frac{\delta s^{2}}{s c} \\
& \Sigma_{R, T}^{Z A}\left(q^{2}\right)=\Sigma_{T}^{Z A}\left(q^{2}\right)-q^{2} \frac{\delta s^{2}}{s c},
\end{aligned}
$$

After the UV renormalisation, the singular structure is entirely due to IR soft and/or collinear singularities

The double virtual amplitude: γ_{5} treatment
The absence of a consistent definition of γ_{5} in $n=4-2 \varepsilon$ dimensions yields a practical problem
The trace of Dirac matrices and γ_{5} is a polynomial in ε
The UV or IR divergences of Feynman integrals appear as poles $1 / \varepsilon$

$$
\operatorname{Tr}\left(\gamma_{\alpha} \ldots \gamma_{\mu} \gamma_{5}\right) \times \int d^{n} k \frac{1}{\left[k^{2}-m_{0}^{2}\right]\left[\left(k+q_{1}\right)^{2}-m_{1}^{2}\right]\left[\left(k+q_{2}\right)^{2}-m_{2}^{2}\right]} \sim\left(a_{0}+a_{1} \varepsilon+\ldots\right) \times\left(\frac{c_{-2}}{\varepsilon^{2}}+\frac{c_{-1}}{\varepsilon}+c_{0}+\ldots\right)
$$

If a_{1} is evaluated in a non-consistent way, then poles might not cancel and the finite part of the xsec might have a spurious contribution

The double virtual amplitude: γ_{5} treatment

The absence of a consistent definition of γ_{5} in $n=4-2 \varepsilon$ dimensions yields a practical problem

The trace of Dirac matrices and γ_{5} is a polynomial in ε
The UV or IR divergences of Feynman integrals appear as poles $1 / \varepsilon$
$\operatorname{Tr}\left(\gamma_{\alpha} \ldots \gamma_{\mu} \gamma_{5}\right) \times \int d^{n} k \frac{1}{\left[k^{2}-m_{0}^{2}\right]\left[\left(k+q_{1}\right)^{2}-m_{1}^{2}\right]\left[\left(k+q_{2}\right)^{2}-m_{2}^{2}\right]} \sim\left(a_{0}+a_{1} \varepsilon+\ldots\right) \times\left(\frac{c_{-2}}{\varepsilon^{2}}+\frac{c_{-1}}{\varepsilon}+c_{0}+\ldots\right)$
If a_{1} is evaluated in a non-consistent way,
then poles might not cancel and the finite part of the xsec might have a spurious contribution

- 't Hooft-Veltman treat γ_{5} (anti)commuting in (4) $n-4$ dimensions preserving the cyclicity of the traces (one counterterm is needed)
- Kreimer treats γ_{5} anticommuting in n dimensions, abandoning the cyclicity of the traces (\rightarrow need of a starting point)
- Heller, von Manteuffel, Schabinger verified that the IR-subtracted squared matrix element are identical in the two approaches
- we adopted the naive anticommuting prescription (Kreimer); we use $\gamma_{5}=\frac{i}{4!} \epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$ to compute traces with one γ_{5}
- we computed the 2-loop amplitude and, independently, the IR subtraction term; both depend on the prescription chosen
- the cancellation of all the lowest order poles is checked (and non trivial)
- absence of fermionic triangles because of colour conservation

Differential equations and IBPs

- Not all the Feynman integrals in one amplitude are independent
\rightarrow exploit Integration-by-parts (IBP) and Lorentz identities to reduce to a basis of independent Master Integrals

$$
\begin{aligned}
& \int \frac{d^{n} k_{1}}{(2 \pi)^{n}} \int \frac{d^{n} k_{2}}{(2 \pi)^{n}} \frac{\partial}{\partial k_{1}^{\mu}} \frac{\left(k_{1}^{\mu}, k_{2}^{\mu}, p_{r}^{\mu}\right)}{\left[k_{1}^{2}-m_{0}^{2}\right]^{\alpha_{0}}\left[\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2}\right]^{\alpha_{1}} \ldots\left[\left(k_{1}+k_{2}+p_{j}\right)^{2}-m_{j}^{2}\right]^{\alpha_{j}} \ldots\left[\left(k_{2}+p_{l}\right)^{2}-m_{l}^{2}\right]^{\alpha_{l}}}=0 \\
& \int \frac{d^{n} k_{1}}{(2 \pi)^{n}} \int \frac{d^{n} k_{2}}{(2 \pi)^{n}} \frac{\partial}{\partial k_{2}^{\mu}} \frac{\left(k_{1}^{\mu}, k_{2}^{\mu}, p_{r}^{\mu}\right)}{\left[k_{1}^{2}-m_{0}^{2}\right]^{\alpha_{0}}\left[\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2}\right]^{\alpha_{1}} \ldots\left[\left(k_{1}+k_{2}+p_{j}\right)^{2}-m_{j}^{2}\right]^{\alpha_{j}} \ldots\left[\left(k_{2}+p_{l}\right)^{2}-m_{l}^{2}\right]^{\alpha_{l}}}=0
\end{aligned}
$$

- Henn's conjecture (2013): if a change of basis exists which leads to

$$
d \vec{J}(\vec{s} ; \varepsilon)=\varepsilon \tilde{\mathbf{A}}(\vec{S}) \cdot \vec{J}(\vec{s} ; \varepsilon)
$$

then the solution is expressed in terms of iterated integrals (Chen integral representation) depending only on the results at previous orders in the ε expansion

Differential equations and IBPs

- Not all the Feynman integrals in one amplitude are independent
\rightarrow exploit Integration-by-parts (IBP) and Lorentz identities to reduce to a basis of independent Master Integrals
$\int \frac{d^{n} k_{1}}{(2 \pi)^{n}} \int \frac{d^{n} k_{2}}{(2 \pi)^{n}} \frac{\partial}{\partial k_{1}^{\mu}} \frac{\left(k_{1}^{\mu}, k_{2}^{\mu}, p_{r}^{\mu}\right)}{\left[k_{1}^{2}-m_{0}^{2}\right]^{\alpha_{0}}\left[\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2}\right]^{\alpha_{1}} \ldots\left[\left(k_{1}+k_{2}+p_{j}\right)^{2}-m_{j}^{2}\right]^{\alpha_{j}} \ldots\left[\left(k_{2}+p_{l}\right)^{2}-m_{l}^{2}\right]^{\alpha_{l}}}=0$
$\int \frac{d^{n} k_{1}}{(2 \pi)^{n}} \int \frac{d^{n} k_{2}}{(2 \pi)^{n}} \frac{\partial}{\partial k_{2}^{\mu}} \frac{\left(k_{1}^{\mu}, k_{2}^{\mu}, p_{r}^{\mu}\right)}{\left[k_{1}^{2}-m_{0}^{2}\right]^{\alpha_{0}}\left[\left(k_{1}+p_{1}\right)^{2}-m_{1}^{2}\right]^{\alpha_{1}} \ldots\left[\left(k_{1}+k_{2}+p_{j}\right)^{2}-m_{j}^{2}\right]^{\alpha_{j}} \ldots\left[\left(k_{2}+p_{l}\right)^{2}-m_{l}^{2}\right]^{\alpha_{l}}}=0$
- The independent Master Integrals (Mls) satisfy a system of first-order linear differential equations with respect to each of the kinematical invariants / internal masses
When considering the complete set of MIs, the system can be cast in homogeneous form: $\quad d \vec{I}(\vec{s} ; \varepsilon)=\mathbf{A}(\vec{s} ; \varepsilon) \cdot \vec{I}(\vec{s} ; \varepsilon)$

$$
\frac{d}{d k^{2}} \sim \sim \sim \frac{1}{2}\left[\frac{1}{k^{2}}-\frac{(D-3)}{\left(k^{2}+4 m^{2}\right)}\right] \sim \sim \sim=-\frac{(D-2)}{4 m^{2}}\left[\frac{1}{k^{2}}-\frac{1}{\left(k^{2}+4 m^{2}\right)}\right] \circlearrowleft
$$

- Henn's conjecture (2013): if a change of basis exists which leads to

$$
d \vec{J}(\vec{s} ; \varepsilon)=\varepsilon \tilde{\mathbf{A}}(\vec{s}) \cdot \vec{J}(\vec{s} ; \varepsilon)
$$

then the solution is expressed in terms of iterated integrals (Chen integral representation) depending only on the results at previous orders in the ε expansion

A Simple Example

$$
\left.\begin{array}{l}
\left\{\begin{array}{c}
f^{\prime}(x)+\frac{1}{x^{2}-4 x+5} f(x)=\frac{1}{x+2} \\
f(0)=1
\end{array}\right. \\
f_{\text {hom }}(x)=x^{r} \sum^{\infty} c_{k} x^{k}
\end{array}\right\} \begin{aligned}
& f_{\text {hom }}^{\prime}(x)=\sum_{k=0}^{\infty}(k+r) c_{k} x^{(k+r-1)} \\
& \left\{\begin{array}{l}
r c_{0}=0 \\
\frac{1}{5} c_{0}+c_{1}(r+1)=0 \\
\frac{4}{25} c_{0}+\frac{1}{5} c_{1}+c_{2}(2+r)=0
\end{array}\right.
\end{aligned}
$$

$$
f_{\text {hom }}(x)=5-x-\frac{3}{10} x^{2}+\frac{11}{150} x^{3}+\ldots
$$

$$
\text { Expanded around } x^{\prime}=0
$$

$$
\begin{aligned}
f_{\text {part }}(x) & =f_{\text {hom }}(x) \int_{0}^{x} d x^{\prime} \frac{1}{\left(x^{\prime}+2\right)} f_{\text {hom }}^{-1}\left(x^{\prime}\right) \\
& =\frac{1}{2} x-\frac{7}{40} x^{2}+\frac{2}{75} x^{3}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=f_{\text {part }}(x)+C f_{\text {hom }}(x) \\
& f(0)=1 \rightarrow C=\frac{1}{5}
\end{aligned}
$$

Evaluation of the Master Integrals by series expansions

T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345
> Taylor expansion: avoids the singularities;

- Logarithmic expansion: uses the singularities as expansion points.
> Logarithmic expansion has larger convergence radius but requires longer evaluation time. We use Taylor expansion as default.

Exploiting the flexibility of the Differential Equations approach

The CC-DY Master Integrals can be evaluated with two different approaches:

- compute the BCs with AMFlow and then solve the differential equations in the invariants s and t

$(s, t)=\left(s_{0}, t_{0}\right)$
BCs for \tilde{B}_{16}
- use the results of the NC DY process as BCs (two equal internal masses, arbitrary s and t) then solve the differential equation in the mass parameter from $\left(m_{Z}, m_{Z}\right)$ to $\left(m_{W}, m_{Z}\right)$

$$
(s, t)=\left(s_{0}, t_{0}\right)
$$

BCs for B_{16}

Perfect agreement of the two approaches

Estimate of the residual uncertainties: total cross section

The impact of the NNLO QCD-EW corrections is twofold: more accurate predictions (additional higher orders) reduced uncertainties (scale, inputs, matching)
Ongoing phenomenological studies for full NC DY

Estimate of the residual uncertainties: total cross section

The impact of the NNLO QCD-EW corrections is twofold: more accurate predictions (additional higher orders) reduced uncertainties (scale, inputs, matching)
Ongoing phenomenological studies for full NC DY
A representative example from the results for the on-shell Z production total cross section
R.Bonciani, F.Buccioni, N.Rana, AV, arXiv:2007.065 I8, arXiv:2 I I I.I 2694
\rightarrow dependence on the EW input-scheme choice
comparison of $\left(G_{\mu}, M_{W}, M_{Z}\right)$ and $\left(\alpha(0), M_{W}, M_{Z}\right) \quad$ (very conservative choice that maximises the spread of the results)

order	G_{μ}	$\mathrm{a}(0)$	$\delta\left(\mathrm{G}_{\mu}-\mathrm{a}(0)\right)$
NNLO-QCD	55787	53884	3.53
NNLO-QCD+NLO-EW	55501	55015	0.88
NNLO-QCD+NLO-EW+ NNLO QCD-EW	55469	55340	0.23

Estimate of the residual uncertainties: total cross section

The impact of the NNLO QCD-EW corrections is twofold: more accurate predictions (additional higher orders) reduced uncertainties (scale, inputs, matching)
Ongoing phenomenological studies for full NC DY
A representative example from the results for the on-shell Z production total cross section
R.Bonciani, F.Buccioni, N.Rana, AV, arXiv:2007.065 I8, arXiv:2 I I I.I 2694
\rightarrow dependence on the EW input-scheme choice
comparison of $\left(G_{\mu}, M_{W}, M_{Z}\right)$ and $\left(\alpha(0), M_{W}, M_{Z}\right) \quad$ (very conservative choice that maximises the spread of the results)

order	G_{μ}	$\mathrm{a}(0)$	$\delta\left(\mathrm{G}_{\mu}-\mathrm{a}(0)\right)(\%)$
NNLO-QCD	55787	53884	3.53
NNLO-QCD+NLO-EW	55501	55015	0.88
NNLO-QCD+NLO-EW NNLO QCD-EW	55469	55340	0.23

the LO + NLO-EW result would suffer of only 0.55% spread;
the NLO-QCD and NNLO-QCD corrections are only LO-EW and reintroduce a dependence ($\rightarrow 0.88 \%$)
which is reduced by the NNLO QCD-EW $(\rightarrow 0.23 \%)$

Estimate of the residual uncertainties: total cross section

The impact of the NNLO QCD-EW corrections is twofold: more accurate predictions (additional higher orders) reduced uncertainties (scale, inputs, matching)
Ongoing phenomenological studies for full NC DY
A representative example from the results for the on-shell Z production total cross section
R.Bonciani, F.Buccioni, N.Rana, AV, arXiv:2007.065I8, arXiv:2 I I I.I 2694
\rightarrow dependence on the EW input-scheme choice
comparison of $\left(G_{\mu}, M_{W}, M_{Z}\right)$ and $\left(\alpha(0), M_{W}, M_{Z}\right) \quad$ (very conservative choice that maximises the spread of the results)

order	G_{μ}	$\mathrm{a}(0)$	$\delta\left(\mathrm{G}_{\mu}-\mathrm{a}(0)\right)(\%)$
NNLO-QCD	55787	53884	3.53
NNLO-QCD+NLO-EW	55501	55015	0.88
NNLO-QCD+NLO-EW+ NNLO QCD-EW	55469	55340	0.23

the LO + NLO-EW result would suffer of only 0.55% spread;
the NLO-QCD and NNLO-QCD corrections are only LO-EW and reintroduce a dependence ($\rightarrow 0.88 \%$)
which is reduced by the NNLO QCD-EW $(\rightarrow 0.23 \%)$
The availability of N3LO-QCD and NNLO QCD-EW results can bring the study of EW gauge bosons in the per mille arena !!! Is the full NNLO-EW calculation negligible at this level ?

W-boson mass prediction

- The Standard Model is a renormalizable gauge theory based on $S U(3) \times S U(2)_{L} \times U(1)_{Y}$
- The EW gauge sector of the SM lagrangian is assigned specifying $\left(g, g^{\prime}, v, \lambda\right)$ in terms of 4 measurable inputs
- More observables can be computed and expressed in terms of the input parameters, including the available radiative corrections, at any order in perturbation theory
- The validity of the SM can be tested comparing these predictions with the corresponding experimental results
- The input choice $\left(g, g^{\prime}, v, \lambda\right) \leftrightarrow\left(\alpha, G_{\mu}, m_{Z}, m_{H}\right)$ minimises the parametric uncertainty of the predictions

$$
\begin{aligned}
\alpha(0) & =1 / 137.035999139(31) \\
G_{\mu} & =1.1663787(6) \times 10^{-5} \mathrm{GeV}^{-2} \\
m_{Z} & =91.1876(21) \mathrm{GeV} / c^{2} \\
m_{H} & =125.09(24) \mathrm{GeV} / c^{2}
\end{aligned}
$$

- with these inputs, m_{W} and the weak mixing angle are predictions of the SM, to be tested against the experimental data

The W boson mass: theoretical prediction

$$
\mathcal{L}_{S M}=\mathcal{L}_{S M}\left(\alpha, G_{\mu}, m_{Z} ; m_{H} ; m_{f} ; C K M\right)
$$

\rightarrow we can compute m_{W}

on-shell scheme: dominant contributions to Δr

$$
\Delta r=\Delta \alpha-\frac{c_{\mathrm{w}}^{2}}{s_{\mathrm{w}}^{2}} \Delta \rho+\Delta r_{\mathrm{rem}}
$$

$\Delta \alpha=\Pi_{\text {ferm }}^{\gamma}\left(M_{Z}^{2}\right)-\Pi_{\text {ferm }}^{\gamma}(0) \quad \rightarrow \quad \alpha\left(M_{Z}\right)=\frac{\alpha}{1-\Delta \alpha}$
$\Delta \rho=\frac{\Sigma_{Z}(0)}{M_{Z}^{2}}-\frac{\Sigma_{W}(0)}{M_{W}^{2}}=3 \frac{G_{F} m_{t}^{2}}{8 \pi^{2} \sqrt{2}} \quad$ [one-loop] $\quad \sim \frac{m_{t}^{2}}{v^{2}} \sim \alpha_{t}$
beyond one-loop order: $\quad \sim \alpha^{2}, \alpha \alpha_{t}, \alpha_{t}^{2}, \alpha^{2} \alpha_{t}, \alpha \alpha_{t}^{2}, \alpha_{t}^{3}, \ldots$ reducible higher order terms from $\Delta \alpha$ and $\Delta \rho$ via

$$
\begin{aligned}
& 1+\Delta r \rightarrow \frac{1}{(1-\Delta \alpha)\left(1+\frac{c_{\mathrm{w}}^{2}}{s_{\mathrm{w}}^{2}} \Delta \rho\right)+\cdots} \\
& \rho=1+\Delta \rho \rightarrow \frac{1}{1-\Delta \rho}
\end{aligned}
$$

effects of higher-order terms on Δr

W-boson mass determination

- In charged-current DY,
it is NOT possible to reconstruct the lepton-neutrino invariant mass
Full reconstruction is possible (but not easy) only in the transverse plane

- A generic observable has a linear response to an m_{W} variation

With a goal for the relative error of 10^{-4}, the problem seems to be unsolvable

- m_{W} extracted from the study of the shape of the p_{\perp}^{l}, M_{\perp} and $E_{\perp}^{\text {miss }}$ distributions in CC-DY thanks to the jacobian peak that enhances the sensitivity to m_{W}

$$
\frac{d}{d p_{\perp}^{2}} \rightarrow \frac{2}{s} \frac{1}{\sqrt{1-4 p_{\perp}^{2} / s}} \frac{d}{d \cos \theta} \sim \frac{d}{d p_{\perp}^{2}} \rightarrow \frac{2}{s} \frac{1}{\sqrt{1-4 p_{\perp}^{2} / m_{W}^{2}}} \frac{d}{d \cos \theta}
$$

\rightarrow enhanced sensitivity at the 10^{-3} level (p_{\perp}^{l} distribution) or even at the 10^{-2} level (M_{\perp} distribution)

The lepton transverse momentum distribution in charged-current Drell-Yan

The lepton transverse momentum distribution has a jacobian peak induced by the factor $1 / \sqrt{1-\frac{s}{4 p_{\perp}^{2}}}$.
When studying the W resonance region, the peak appears at $p_{\perp} \sim \frac{m_{W}}{2}$

Kinematical end point at $\frac{m_{W}}{2}$ at LO
The decay width allows to populate the upper tail of the distribution
Sensitivity to soft radiation \rightarrow double peak at NLO-QCD
The QCD-ISR next-to-leading-log resummation broadens the distribution and cures the sensitivity to soft radiation at the jacobian peak.

In the p_{\perp}^{ℓ} spectrum the sensitivity to m_{W} and important QCD features are closely intertwined

Given one experimental kinematical distribution

- we compute the corresponding theoretical distribution for several hypotheses of one Lagrangian input parameters (e.g. m_{W})
- we compute, for each $m_{W}^{(k)}$ hypothesis, a χ_{k}^{2} defined in a certain interval around the jacobian peak (fitting window)
- we look for the minimum of the χ^{2} distribution

The m_{W} value associated to the position of the minimum of the χ^{2} distribution is the experimental result

A determination at the 10^{-4} level requires a control over the shape of the distributions at the per mille level

The theoretical uncertainties of the templates contribute to the theoretical systematic error on m_{W}

- higher-order QCD
- non-perturbative QCD
- PDF uncertainties
- heavy quarks corrections
- EW corrections

Template fitting: description of the single lepton transverse momentum distribution

The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality

Scale variation of the NNLO+N3LL prediction for ptlep provides a set of equally good templates
but the width of the uncertainty band is at the few percent level a factor 10 larger than the naive estimate would require !
\rightarrow data driven approach
a Monte Carlo event generator is tuned to the data in NCDY (p_{\perp}^{Z}) for one QCD scale choice
\downarrow
the same parameters are then used to prepare the CCDY templates

Template fitting: description of the single lepton transverse momentum distribution

The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality

Scale variation of the NNLO+N3LL prediction for ptlep provides a set of equally good templates but the width of the uncertainty band is at the few percent level a factor 10 larger than the naive estimate would require !
\rightarrow data driven approach
a Monte Carlo event generator is tuned to the data in NCDY (p_{\perp}^{Z}) for one QCD scale choice
\downarrow
the same parameters are then used to prepare the CCDY templates
CDF collaboration, Scince 376, 170-176 (2022)

Template fitting: description of the single lepton transverse momentum distribution

The template fitting procedure is acceptable if the data are described by the theoretical distribution with high quality

Scale variation of the NNLO+N3LL prediction for ptlep provides a set of equally good templates but the width of the uncertainty band is at the few percent level a factor 10 larger than the naive estimate would require !
\rightarrow data driven approach
a Monte Carlo event generator is tuned to the data in NCDY (p_{\perp}^{Z}) for one QCD scale choice
\downarrow
the same parameters are then used to prepare the CCDY templates

A data driven approach improves	the accuracy of the model	(i.e. its ability to describe the data)
does not improve	the precision of the model	(the intrinsic ambiguities in the model formulation)

What are the limitations of the transfer of information from NCDY to CCDY ?

MW from a
 jacobian asymmelry

L.Roltoli, P.Torrielli, AV, arXiv:2301.04059

The jacobian asymmetry \mathscr{A}_{p}

$$
\begin{aligned}
& \mathcal{A}_{p_{\perp}^{\ell}}\left(p_{\perp}^{\ell, \text { min }}, p_{\perp}^{\ell, \text { mid }}, p_{\perp}^{\ell, \text { max }}\right) \equiv \frac{L_{p_{\perp}^{\ell}}-U_{p_{\perp}^{\ell}}}{L_{p_{\perp}^{\ell}}+U_{p_{\perp}^{\ell}}}
\end{aligned}
$$

The asymmetry is an observable (i.e. it is measurable via counting): its value is one single scalar number It depends only on the edges of the two defining bins

Increasing m_{W} shifts the position of the peak to the right \rightarrow Events migrate from the blue to the orange bin \rightarrow The asymmetry decreases

The jacobian asymmetry $\mathscr{A}_{p_{\perp}^{f}}$ as a function of m_{W}

The asymmetry $\mathscr{A}_{p_{\perp}}$ has a linear dependence on m_{W}, stemming from the linear dependence on the end-point position

The slope of the asymmetry expresses the sensitivity to m_{W}, in a given setup $\left(p_{\perp}^{\ell, \text { min }}, p_{\perp}^{\ell, \text { mid }}, p_{\perp}^{\ell, \text { max }}\right)$

The slope is the same with every QCD approximation (factorization of QCD effects, perturbative and non-perturbative)

The "large" size of the two bins $\mathcal{O}(5-10) \mathrm{GeV}$ leads to

- small statistical errors
- excellent stability of the QCD results (inclusive quantity)
- ease to unfold the data to particle level (m_{W} combination)

The experimental value and the theoretical predictions can be directly compared (m_{W} from the intersection of two lines)
The main systematics on the two fiducial cross sections is related to the lepton momentum scale resolution

Compatibility and combination of
world W-boson mass determinations

LHC-TEV MW working group, arXiv:2308.09417

Input Measurements for combination

- CDF - $p \bar{p}$ collisions @ $\sqrt{ } s=1.96 \mathrm{TeV}$; fit variables are p_{T}^{l}, p_{T}^{v} and m_{T}.
- D0 - two separate measurements using $p \bar{p}$ collisions @ $\sqrt{ } s=1.96 \mathrm{TeV}$; fit variables are p_{T}^{e}, m_{T} and p_{T}^{v}.
- ATLAS - pp collisions @ $\sqrt{ } s=7 \mathrm{TeV}$; central region at LHC; fit variables are p_{T}^{l} and m_{T}.
[Original analysis used following agreement to use published results]
- LHCb - pp collisions @ $\sqrt{ }=13 \mathrm{TeV}$; forward region

Experiment	Event requirements	Fit ranges
CDF	$\begin{aligned} & 30<p_{T}^{e}<55 \mathrm{GeV} \\ & \left\|\eta_{e}\right\|<1 \\ & 30<E_{T}^{\text {miss }}<55 \mathrm{GeV} \\ & 65<m_{T}<90 \mathrm{GeV} \\ & u_{T}<15 \mathrm{GeV} \end{aligned}$	
D0	$\begin{aligned} & p_{T}^{e}>25 \mathrm{GeV} \\ & \mid \eta_{e}^{e}<1.05 \\ & E_{T}^{m i s s}>25 \mathrm{GeV} \\ & m_{T}>50 \mathrm{GeV} \\ & u_{T}<15 \mathrm{GeV} \end{aligned}$	$\begin{aligned} & 32<p_{T}^{e}<48 \mathrm{GeV} \\ & 65<m_{T}<90 \mathrm{GeV} \end{aligned}$
ATLAS	$\begin{aligned} & p_{T}^{\ell}>30 \mathrm{GeV} \\ & \left\|\eta_{\ell}\right\|<2.4 \\ & E_{T}^{m i s s}>30 \mathrm{GeV} \\ & m_{T}>60 \mathrm{GeV} \\ & u_{T}<30 \mathrm{GeV} \end{aligned}$	$\begin{aligned} & 32<p_{T}^{\ell}<45 \mathrm{GeV} \\ & 66<m_{T}<99 \mathrm{GeV} \end{aligned}$
LHCb	$\begin{aligned} & p_{T}^{\mu}>24 \mathrm{GeV} \\ & 2.2<\eta_{\mu}<4.4 \end{aligned}$	$28<p_{T}^{\mu}<52 \mathrm{GeV}$

- LEP - legacy combination from LEP experiments.

QCD challenges

The measurements span two decades \rightarrow remarkable theoretical progress
The analyses are based on different PDF sets and event generators, with different theoretical content

- D0: RESBOS CP (N2LO, N2LL) with CTEQ66 PDFs (NLO)

CDF: RESBOS C (NLO, N2LL) with CTEQ6M PDFs (NLO) [CDF publication applied a correction to

- ATLAS: POWHEG + Pythia8 (NLO+PS) with DYTurbo for Angular Distribution (N21O) with CT10 PDFs (NNLO)
- LHCb: POWHEG + Pythia8 (NLO+PS) with DYTurbo for Angular Distribution (N2LO) with averaged result from MSHT20, NNPDF31 and CT18 PDFs (NLO)

The combination study seeks to "update" the measurements to a common QCD framework before their compatibility is assessed and, eventually, the results are combined

$$
m_{W}^{\text {update }}=\underset{\substack{\text { Update to } \\ \text { Published } \\ \text { value }}}{m_{W}^{\text {common PDF }}}+\delta \delta m_{W}^{P D F}+\delta m_{W}^{\text {pol }}+\underset{\substack{\text { Common } W \\ \text { polarisation }}}{\substack{\text { Additional } \\ \text { (small) updates }}}+\delta m_{W}^{\text {other }}
$$

The LHCb measurement has been "repeated", using the same code framework but different PDF sets Effect of updates on other measurements estimated with two simulated samples from two models

Compatibility of PDF sets with Drell-Yan data

Measurement	NNPDF3.1	NNPDF4.0	MMHT14	MSHT20	CT14	CT18	ABMP16
CDF y_{Z}	$24 / 28$	$28 / 28$	$30 / 28$	$32 / 28$	$29 / 28$	$27 / 28$	$31 / 28$
CDF A_{W}	$11 / 13$	$14 / 13$	$12 / 13$	$28 / 13$	$12 / 13$	$11 / 13$	$21 / 13$
D0 y_{Z}	$22 / 28$	$23 / 28$	$23 / 28$	$24 / 28$	$22 / 28$	$22 / 28$	$22 / 28$
D0 $W \rightarrow e \nu A_{\ell}$	$22 / 13$	$23 / 13$	$52 / 13$	$42 / 13$	$21 / 13$	$19 / 13$	$26 / 13$
D0 $W \rightarrow \mu \nu A_{\ell}$	$12 / 10$	$12 / 10$	$11 / 10$	$11 / 10$	$11 / 10$	$12 / 10$	$11 / 10$
ATLAS peak CC y_{Z}	$13 / 12$	$13 / 12$	$58 / 12$	$17 / 12$	$12 / 12$	$11 / 12$	$18 / 12$
ATLAS $W^{-} y_{\ell}$	$12 / 11$	$12 / 11$	$33 / 11$	$16 / 11$	$13 / 11$	$10 / 11$	$14 / 11$
ATLAS $W^{+} y_{\ell}$	$9 / 11$	$9 / 11$	$15 / 11$	$12 / 11$	$9 / 11$	$9 / 11$	$10 / 11$
Correlated χ^{2}	75	62	210	88	81	41	83
Total $\chi^{2} /$ d.o.f.	$200 / 126$	$196 / 126$	$444 / 126$	$270 / 126$	$210 / 126$	$162 / 126$	$236 / 126$
$\mathrm{p}\left(\chi^{2}, n\right)$	0.003%	0.007%	$<10^{-10}$	$<10^{-10}$	0.0004%	1.5%	10^{-8}

No PDF set provides a good description of the full Tevatron+LHC dataset
Best description given by CTI8 (which has larger uncertainties)
CTI8 therefore taken as the default PDF set

Input measurements with updates applied

	All experiments (4 d.o.f.)			
PDF set	m_{W}	$\sigma_{\text {PDF }}$	χ^{2}	$\mathrm{p}\left(\chi^{2}, n\right)$
ABMP16	80392.7 ± 7.5	3.2	29	0.0008%
CT14	80393.0 ± 10.9	7.1	16	0.3%
CT18	80394.6 ± 11.5	7.7	15	0.5%
MMHT2014	80398.0 ± 9.2	5.8	17	0.2%
MSHT20	80395.1 ± 9.3	5.8	16	0.3%
NNPDF3.1	80403.0 ± 8.7	5.3	23	0.1%
NNPDF4.0	80403.1 ± 8.9	5.3	28	0.001%

No combination of all measurements provides a good χ^{2} probability the full combination, including CDF, is disfavoured

LHC-TeV MWWG

-- ABMP16	-- CT14	-- CT18
\checkmark MMHT2014	* MSHT20	-- NNPDF3. 1
-	\bigcirc - N/A	

LEP

Tevatron
\qquad

LHC

Combinations with CDF excluded have good compatibility: $m_{W}=80369.2 \pm 13.3 \mathrm{MeV}$ (CTI8)
the χ^{2} probability is 91%
relative weights: 42\% (ATLAS), 23\% (D0), I8\% (LHCb), 16\% (LEP)
The inclusion of CDF brings the χ^{2} probability below 0.5%

Combination of the different m_{W} determinations
Results combined using BLUE
Validation by reproducing internal experimental combinations
The CDF measurement contains an a posteriori shift $\delta m_{W} \sim 3 \mathrm{MeV}$
accounting for (CTEQ6M \rightarrow NNPDF3.I, mass modelling, polarisation effects) removed before the combination
PDF correlations in the combination
Correlations needed in the combination
Significantly different correlations between the various PDF sets
PDF anti-correlations between experiments leads to more stable results and reduced PDF dependence
cfr. G.Bozzi, L.Citelli,AV, M.Vesterinen, arXiv:I 50I .05587, arXiv:I 508.06954

Alessandro Vicini - University of Milano
10

Conclusions about the m_{W} combination effort

Extensive effort to provide a common treatment of PDF and pQCD modelling for the m_{W} determination at hadron colliders

The updated treatment is unable to solve the tension between the existing measurements

The full combination $m_{W}=80394.6 \pm 11.5 \mathrm{MeV}$ (CTI8) is disfavoured due to low χ^{2} probability (0.5%)

The combination with CDF excluded $m_{W}=80369.2 \pm 13.3 \mathrm{MeV}$ (CTI8) has good χ^{2} probability (9।\%)

Need for a full NNLO-EW calculation to reduce the uncertainties to sub-percent level
The NNLO-EW corrections to scattering processes are still today one of the frontiers in QFT

The NNLO-EW corrections could modify in a non-trivial way the large-mass/momentum tails of the distributions Large logarithmic corrections (EW Sudakov logs) appear in the virtual corrections
At two-loop level, we have up to the fourth power of $\log \left(s / m_{V}^{2}\right)$,

corrections to $e^{+} e^{-} \rightarrow q \bar{q}$ due to EW Sudakov logs
urgently needed to match sub-percent precision in the TeV region

Beyond fixed order: Drell-Yan cross sections resumming large logarithmic corrections

Matching in pure QCD at approximated N4LL+N4LO accuracy

Matching in full QCD-EW SM at N3LL'-QCD + NLL'-EW + nNLL'-mixed accuracy

[^0]: Alessandro Vicini - University of Milano

