

Polarisation measurements in diboson final states

Lucia Di Ciaccio Université de Savoie MB & CNRS/IN2P3 On behalf of the ATLAS & CMS Collaboration

SM@LHC 2024, Rome, May 7-10, 2024

Polarisation measurements in diboson final states

Outline

- Motivations
- How to measure "polarisation"
- Polarisation templates
- Measurements in ATLAS and CMS
 - * Single boson polarisation in WZ
 - * Joint polarisation in WZ and ZZ
 - * Polarisation in Vector Boson Scattering W[±]W[±]jj
- Conclusion and outlook

Motivation : probe EWSB in Vector Boson Scattering

Motivation: New Physics effects in diboson inclusive

Different behaviors of amplitudes with different diboson polarisations

	SM	BSM	$V \equiv W, Z$
$q_{L,R}\bar{q}_{L,R} \to V_L V_L(h)$	~ 1	$\sim E^2/M^2$	$V \pm \equiv V_T$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_L(h)$	$\sim m_W/E$	$\sim m_W E/M^2$	L = longitudina
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\pm}$	$\sim m_W^2/E^2$	$\sim E^2/M^2$	T = transverse
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\mp}$	~ 1	~ 1	arXiv:1712.01310

- **Even if BSM small :**
 - → Probe new theories via SM BSM Interference
 - → interesting limits on New Physics parameters

NB: Expect similar $W_L Z_L$ and $W_L h$ cross sections at higher energies

Goldstone Theorem

"Introduction to QFT", M.E.Peskin, D. V. Schroeder

L. Di Ciaccio - SM@LHC2024 - 9 May 2024

Single and joint boson polarisation measurements @LHC

```
Inclusive VV
    pp \rightarrow W^{\pm}Z
    ATLAS @13 TeV 36 fb<sup>-1</sup> Eur. Phys. J. C 79 (2019) 535 → Single only (Z first obs)
              @13 TeV 137 fb<sup>-1</sup> JHEP 07 (2022) 032
                                                                         → Single only (W first obs)
    CMS
time
    ATLAS @13 TeV 139 fb<sup>-1</sup> Phys. Lett. B 843 (2023) 137895 → Single & joint (first obs)
    ATLAS @13 TeV 139 fb<sup>-1</sup> arXiv:2402.16365
                                                                         \rightarrow Joint @high p<sub>T</sub><sup>Z</sup>
                                                                           Radiation Zero Amplitude
    pp \rightarrow ZZ
    ATLAS @13 TeV 140 fb<sup>-1</sup> JHEP 12 (2023) 107
                                                                         → Single & joint(evidence)
    Vector Boson Scattering VVjj
    pp \rightarrow W^{\pm}W^{\pm}jj
```

```
CMS @13TeV 137 fb<sup>-1</sup> Phys. Lett. B 812 (2020) 13601
```

- **In all cases: leptonic final states (e, μ) considered**
- All Run 2 measurements: data statistics is important !

Very active field !

How polarisation is measured

- Choose a reference frame : the value of the "polarised cross sections" is frame dependent ("pseudo cross section")
- Devise variables (BDT, DNN combinations of decay, production angles and variables) discriminating among final states with bosons in a given helicity state
- Fit these variables to polarised templates

One of the main challenges

Extract "polarised cross sections" or polarisation fractions fFor singly-polarised:
$$\sigma_X$$
 (X = L, R, 0), f_L, f_R, f_0 $f_X = \sigma_X / \sigma$ totFor joint polarisation: σ_{XY} (XY = LL, LT, TL, TT) $f_{00}, f_{0T}, f_{T0}, f_{TT}$ $f_{XY} = \sigma_{XY} / \sigma$ tot

(see also backup)

Polarisation templates

Use Monte Carlo + (complex) reweighting techniques

So far polarised templates from MADGRAPH LO (+PS) (arXiv: 1912.01725) Alternatives : $p_{P} \rightarrow e^+e^-\mu^+\mu^- + X \otimes NLO, \sqrt{s} = 13 \text{ TeV}, \text{ fiducial setup, } \mu_0 = M_7$

POWHEG-BOX-RES: NLO QCD+PS (EPJC 84 (2024) 16) SHERPA: nLO QCD + PS (JHEP 04 (2024), 001) PHANTOM $(2 \rightarrow 6)$: LO+PS (arXiv: 0801.3359)

- Fixed-order calculations (MoCaNLO polarised) + POWHEG, SHERPA unpolarised for higher order (HO) reweight
- Templates: sources of main systematic uncertainties

(also take care of interference among polarisations, minimize non resonant contributions)

Polarisation measurements of a single boson in WZ final states

Polarisation templates obtained by reweighting an unpolarised POWHEG+Pythia sample by $cos(\theta_V)$ (V=Z,W)

In CMS: θ_V (V=W, Z) is the angle between the momentum of the decay lepton in the rest frame of the massive boson V and the momentum of its parent in the laboratory frame.

- W reconstructed using PDG W mass constrain
- Cut-based Signal Region selection
- Three Control Regions for ZZ, top and photon conversions

Results : single boson polarisation measurements in WZ JHEP 07 (2022) 032

- Observed significance for longitudinally polarized W bosons of 5.6 σ (4.3 σ).
 First observation of longitudinally polarized W bosons in WZ events
- Results consistent between observations and predictions Comparison with ATLAS results in backup

L. Di Ciaccio - SM@LHC2024 - 9 May 2024

 $\mathbb{C}N$

Joint polarisation measurements in diboson final states: WZ and ZZ

- First joint polarisation observations: W_0Z_0 , W_TZ_0 , W_TZ_T The polarisation of each single boson is also measured.
- Joint polarised templates: Madgraph LO (0-1jet): bias ~ 10-50% from NLO-QCD effects

2 techniques to obtain templates @ NLO-QCD:

- * Multidimensional reweighting DNN-based [arXiv:1907.08209] using Madgraph LO (0-1jet) and POWHEG+Pythia unpolarised
- * Fixed order calculations (+ PS) reweighting
- A DNN variable is used to discriminate among polarisations, then events are split in 4 categories using the lepton decay angles cosθ*

Polarisation in 00-enriched region: cut on $p_T^Z \rightarrow f_{00}$ increases

 \rightarrow Investigate p_T^Z dependence of the polarisation

- **Discriminating variable : BDT (00 against 0T+T0, TT or 00 against all)**
- Polarised templates: MadGraph LO 0,1 j polarised + reweight

Results of a 3-parameter fit. In $100 < p_T^Z < 200 \text{ GeV } f_{00}$: 5.2 σ (4.3 σ)

	Measurement			Prediction	
	$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$		$100 < p_T^Z \le 200 \text{ GeV}$	$p_T^Z > 200 \text{ GeV}$
f_{00}	$0.19 \pm _{0.03}^{0.03} (\text{stat}) \pm _{0.02}^{0.02} (\text{syst})$	$0.13 \pm_{0.08}^{0.09} (\text{stat}) \pm_{0.02}^{0.02} (\text{syst})$	f_{00}	0.152 ± 0.006	0.234 ± 0.007
f_{0T+T0}	$0.18 \pm _{0.08}^{0.07} (\text{stat}) \pm _{0.06}^{0.05} (\text{syst})$	$0.23 \pm _{0.18}^{0.17} (\text{stat}) \pm _{0.10}^{0.06} (\text{syst})$	f_{0T}	0.120 ± 0.002	0.062 ± 0.002
ftt	$0.63 \pm _{0.05}^{0.05} (\text{stat}) \pm _{0.04}^{0.04} (\text{syst})$	$0.64 \pm _{0.12}^{0.12} (\text{stat}) \pm _{0.06}^{0.06} (\text{syst})$	f_{T0}	0.109 ± 0.001	0.058 ± 0.001
f_{00} obs (exp) sig.	5.2 (4.3) <i>σ</i>	1.6 (2.5) σ	f_{TT}	0.619 ± 0.007	0.646 ± 0.008

- Results consistent with SM within uncertainties
- As expected, f_{00} is higher than in the inclusive phase space : @ 100 < p_T^Z < 200 GeV: $f_{00} = 0.19$ (wrt 0.067)
- Uncertainties: ~ 22 % on f_{00} @ 100 < p_T^Z < 200 GeV
 - * Statistically dominated
 - * Systematics mainly from QCD higher order effects

Radiation Zero Amplitude Effect (RAZ) observation arXiv:2402.16365

(WZ and W γ) in $\Delta Y_{WZ} \rightarrow$ cut on p_T^{WZ} (approach LO phase space)

Backgrounds and 0T, T0 & 00 contributions subtracted unfolded and normalised **Depth = 1** - $2 * N^{central} / N^{sides}$

Depth of the unfolded $|\Delta Y_{WZ}|$ deep

L. Di Ciaccio - SM@LHC2024 - 9 May 2024

BDT Score

Fit using 2 free parameters: fractions of $Z_L Z_L$ and $Z_T Z_X$ (X=T, L)

 $\sigma_{Z_L Z_L}^{\text{obs.}} = 2.45 \pm 0.56 (\text{stat.}) \pm 0.21 (\text{syst.}) \text{ fb}$

- Evidence for $Z_L Z_L$ with 4.3 σ (3.8 σ exp.)
- Main uncertainties from statistics, interferences and modelling

Polarisation measurements in Vector Boson Scattering process W[±]W[±]jj

Polarisation measurements with W[±] W[±] jj

Phys. Lett. B 812 (2020) 136018

- First polarisation studies in Vector Boson Scattering process (VBS) Joint and single boson polarisation is measured
- Challenging:
 - * low cross section
 - * separation Signal vs Background (Nonprompt, WZ) & between polarisations
- Three BDTs are trained, 2 fits:

VBS Results: Polarisation measurements with W[±] W[±] jj Phys. Lett. B 812 (2020) 136018

	Diboson c.o.m. frame				
	Significance for LX production at 2.3 (3.1 sepected)				
CMS 137 fb ⁻¹ (13 TeV)	Process	$\sigma {\cal B} ({ m fb})$	Theoretical prediction (fb)		
Expected bkg. only stat	$W_L^{\pm}W_L^{\pm}$	$0.32\substack{+0.42\-0.40}$	0.44 ± 0.05		
6 Expected bkg. only stat+syst	$W_X^{\pm}W_T^{\pm}$	$3.06^{+0.51}_{-0.48}$	3.13 ± 0.35		
- Observed	$W_L^{\pm}W_X^{\pm}$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18		
4 95% CL	$W_T^{\pm}W_T^{\pm}$	$2.11^{+0.49}_{-0.47}$	1.94 ± 0.21		
2 68% Cl	Parton-parton c.o.m. frame Significance for LX production at 2.6σ (2.9σ expected)				
to a change in the second seco	Process	$\sigma ~ {\cal B}$ (fb)	Theoretical prediction (fb)		
	$W_L^{\pm}W_L^{\pm}$	$0.24\substack{+0.40 \\ -0.37}$	0.28 ± 0.03		
$\sigma_{W_{L}W_{L}}$ [fb]	$W_X^{\pm}W_T^{\pm}$	$3.25^{+0.50}_{-0.48}$	3.32 ± 0.37		
	$W_L^{\pm}W_X^{\pm}$	$1.40\substack{+0.60\\-0.57}$	1.71 ± 0.19		
	$W_T^{\pm}W_T^{\pm}$	$2.03^{+0.51}_{-0.50}$	1.89 ± 0.21		

Statistical uncertainty dominant

2 d In L

Significant improvements expected from Run 3 and HL-LHC before systematics start to become a significant issue

Conclusion and Outlook

- **Polarisation measurements in diboson is a very interesting & active field \checkmark** Probe the EWSB at high \sqrt{s} and New Physics **Important for EFT interpretation (no results yet)**
- **VV inclusive :** with Run 2 first observations and evidence in (single and joint) \rightarrow Need statistics (Run 3 and HL-LHC)
 - HL-LHC 14 TeV Main limiting factor: modelling $\sigma_{W_L W_L}$ expected significance $[\sigma]$ CMS of the polarization templates Phase-2 Projection 5σ \rightarrow theorists – experimentalists W_L[±]W_L[±]jj studies important **VBS diboson process :** ✓ severely limited by data statistics WW rest-frame important study at HL-LHC, ····· pp rest-frame CMS-PAS-FTR-21-001 complementary to HH 2000 4000 6000 Luminosity [fb⁻¹] 22

Backup

hep-ph/9403248

 $\mu_q, \mu_q^- = \pm 1/2$ initial state helicities $\lambda_{W, Z}$ helicity of W or Z

$$\rho_{\lambda_W \lambda'_W \lambda_Z \lambda'_Z} \equiv \frac{1}{C} \times \sum_{\mu_q \mu_{\bar{q}}} F_{\lambda_W \lambda_Z}^{(\mu_q \mu_{\bar{q}})} F_{\lambda'_W \lambda'_Z}^{(\mu_q \mu_{\bar{q}})*}$$

$$C = \sum_{\mu_q \mu_{\bar{q}} \lambda_W \lambda_Z} \left| F_{\lambda_W \lambda_Z}^{(\mu_q \mu_{\bar{q}})} \right|^2$$

F = Helicity amplitudes

Helicity or polarisation fractions f_{XX} (**X=T,0**)

$$\begin{split} f_{00} &= \rho_{0000} ,\\ f_{TT} &= \rho_{++--} + \rho_{--++} + \rho_{----} + \rho_{++++} ,\\ f_{0T} &= \rho_{00--} + \rho_{00++} ,\\ f_{T0} &= \rho_{--00} + \rho_{++00} . \end{split}$$

For a single boson : $ho_{\lambda\lambda'}$ Sum over the helicities of one boson

f_X , X=L, R, 0 the diagonal elements of the $Q_{\lambda \lambda}$, matrix

projection studies for polarisation measurements in the HL-LHC in the Yellow Report (https://e-publishing.cern.ch/index.php/CYRM/article/view/950)

CMS-PAS-FTR-21-001

ATL-PHYS-PUB-2018-052

CN **Single boson Polarization measurements in WZ** JHEP 07 (2022) 032 Phys. Lett. B 843 (2023) 137895

(a)

0.15

f_L - f_R

0.1

0.05

0

0.2

0.1

-0.15

-0.1 -0.05

In ATLAS:

 $\theta_{V}^{*}(V=W,X)$ is angle between the momentum of the decay lepton in the rest frame of the massive boson and the momentum of its parent in the WZ rest Frame (modified helicity frame)

In CMS:

 θ_V (V=W,X)) is angle between the momentum of the decay lepton in the rest frame of the massive boson and the momentum of its parent in the laboratory frame.

Joint polarisation measurements in WZ Phys. Lett. B 843 (2023) 137895

• eight variables are used as inputs to the DNN for the statistical analysis:

4 the transverse momenta of the three leptons and of the neutrino, ,
1 the absolute difference between the rapidities of the Z boson and the lepton from the W decay
2 the azimuthal angle difference between the two leptons of each W and Z-boson decay,
1 the transverse momentum of the W Z system

Are the polarization correlated between the two bosons?

$$R_c = \frac{f_{00}}{f_0^W f_0^Z}$$

SM
$$\rightarrow$$
 1.3

Measurement: $Rc = 1.54 \pm 0.35$ (Obs. Significance 1.6σ wrt Rc = 1 hypothesis)

Unique for WZ (and Wγ): Approximate Amplitude Zero

The SM amplitude for $qq^- \rightarrow W^{\pm}Z$ @ Born-level exhibits an approximate zero @ $\cos \theta = (g_{f1} + g_{f2})/(g_{f1} - g_{f2})$ @ high energy

> g_{fi} (i = 1, 2) LH couplings of the Z-boson to fermions θ is the scattering angle of the W-boson w.r.t. quark

This results from an exact zero in the dominant helicity amplitudes $M(\pm, \mp)$ and strong gauge cancellations in the remaining amplitudes (s >> M^2_V)

For non-SM WWZ couplings these cancellations no longer occur
 → Sensitivity to NP
 BUT the NLO spoil the effect: hope to profit a bit from it with appropriate cuts