New calculations & techniques for NLO EW

Facilitating Precision Physics at the LHC

Steffen Schumann

Institute for Theoretical Physics Georg-August-University Göttingen

SM@LHC 2024 - Rome

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Scrutinizing the Standard Model: multi-boson production

- rare & subtle electroweak signal processes probing EWSB
- triple-, quartic gauge-boson couplings
- Iongitudinal polarisation modes of massive gauge bosons

Accounting for (dominant) electroweak corrections

EW one-loop and QED real emission amplitudes needed, e.g.

RECOLA [Denner et al.], OPENLOOPS [Pozzorini et al.]

QED infrared subtraction terms (dipole/FKS)

 \rightsquigarrow real weak-boson radiation excluded

- frameworks to accomplish full calculations, e.g. MG5_aMC [Frederix et al.], POWHEG [Nason et al.], SHERPA [Bothmann et al.]
- invoke QCD/QED showers for particle-level predictions HERWIG [Bellm et al.], PYTHIA [Bierlich et al.], SHERPA

state-of-the-art: full NLO calculation for $2 \rightarrow 6$ processes

- full NLO QCD & EW corrections and QCD-EW interferences
 ~> crucial benchmark for approximation schemes
- consider like-sign W-boson scattering: $pp \rightarrow e^+ \nu_e \mu^+ \nu_\mu j j$

[Dittmaier et al. JHEP 11 (2023) 22] [Biedermann et al. JHEP 10 (2017) 124]

state-of-the-art: $pp
ightarrow e^+
u_e \mu^+
u_\mu j j$ at full NLO

[Dittmaier et al. JHEP 11 (2023) 22] [Biedermann et al. JHEP 10 (2017) 124]

consider VBS event selection cuts, in particular

 $M_{j_1j_2} > 500 \, {\rm GeV} \, , \, \, |y_{j_1} - y_{j_2}| > 2$

full off-shell calculation vs. VBS/DPA approximations

	Order	Result [fb]	δ [%]	Scale und	ertainty
LO	$O(\alpha^6 \alpha_s^0)$	1.24597(5)		-7.7%	9.9%
	$O(\alpha^5 \alpha_8^1)$	0.051133(3)		-14.0%	17.7%
	$O(\alpha^4 \alpha_s^2)$	0.18649(2)		-22.2%	31.6%
	sum	1.48359(5)		-9.8%	12.1%
NLO	$O(\alpha^7 \alpha_8^0)$	-0.1747(5)	-11.8%		
	$O(\alpha^6 \alpha_s^1)$	-0.0902(8)	-6.1%		
	$O(\alpha^5 \alpha_s^2)$	-0.00017(19)	0.0%		
	$O(\alpha^4 \alpha_s^3)$	-0.0033(7)	-0.2%		
	sum	-0.268(1)	-18.1%		
LO+NLO	sum	1.215(1)		-4.0%	1.5%

- sizeable NLO corrections
- VBS/DPA within few %
- O(\alpha^7) dominate tails
 ~ Sudakov logarithms

state-of-the-art: $pp ightarrow e^+ u_e \mu^+ u_\mu j j$ at full NLO

[Denner, Pellen, Schönherr, S. to appear]

consider inclusive triple-W phase space, in particular

 $M_{j_1 j_2} < 160 \, {\rm GeV} \, , \, \left| y_{j_1} - y_{j_2} \right| < 1.5 \qquad \ \ [\text{inspired by ATLAS 2201.13045]}$

orders	$O(\alpha^6)$		$O(\alpha_s$	α^5	O(c	$a_s^2 \alpha^4$)		sum
$\sigma_{LO}[fb]$	0.78549(9)	0.0073	32(1)	0.259	925(3)	1.	05206(9
$\sigma / \sigma sum [07]$	74.7		0	7	9	1.6		100
0/0LO [/9]	14.1		0.			1.0		100
0/0 LO [70]	14.1		0.	'	2	1.0		100
orders	$O(\alpha^7)$	0	$(\alpha_s \alpha^6)$	' Ο(α	$^{2}_{s}\alpha^{5})$	$\mathcal{O}(\alpha_s^3 \alpha')$	 4) ∥	sum
$\frac{\sigma \sigma_{\rm LO} \left[\tau_0 \right]}{\sigma_{\rm fb}}$	$\frac{O(\alpha^7)}{-0.035(1)}$	0 0.	$(\alpha_8 \alpha^6)$ 305(1)	$\frac{O(\alpha)}{-0.00}$	$\frac{2}{8}\alpha^{5})$ 32(3)	$\mathcal{O}(\alpha_8^3 \alpha' = 0.2260($	4) 3)	sum 0.493(2

- many O(α⁶) contributions WWW, WH, WZ, VBS
- $\delta_{\text{NLO}} = +47\%$, largest
 - $\mathcal{O}(\alpha_s\alpha^6) \And \mathcal{O}(\alpha_s^3\alpha^4)$
- $\mathcal{O}(\alpha^7)$ sizeable in tails ~> Sudakov logarithms

state-of-the-art: $pp ightarrow e^+ u_e \mu^+ u_\mu j j$ at full NLO

[Denner, Pellen, Schönherr, S. to appear]

full off-shell calc vs. incoherent sum of on-shell channels

Taming the tails: EW Sudakov logarithms

universal high-energy enhancements

consider EW one-loop amplitudes in high-energy limit, where

$$s_{ij} \equiv (p_i + p_j)^2 \sim s \gg M_W^2 \quad \forall i, j$$

amplitude factorization, dominance of scale-ratio logarithms

$$\mathcal{M}_{1} \propto \mathcal{M}_{0} \times \left(\delta^{\mathsf{DL}} + \delta^{\mathsf{SL}}\right)$$
$$\delta^{\mathsf{DL}} \sim \frac{\alpha}{4\pi} \log^{2} \left(\frac{|s_{ij}|}{M_{W}^{2}}\right) \quad \delta^{\mathsf{SL}} \sim \frac{\alpha}{4\pi} \log \left(\frac{|s_{ij}|}{M_{W}^{2}}\right)$$

- algorithm to construct NLL EW corrections [Denner, Pozzorini '01]
- recent revisitations, refinements and new implementations
 SHERPA, MG5_aMC & OPENLOOPS

[Bothmann, Napoletano '20, Bothmann et al. '22] [Pagani, Zaro '22, Pagani et al. '23] [Lindert, Mai '23]

 p_1

Taming the tails: EW Sudakov logarithms

- extensive validation for OPENLOOPS [Lindert, Mai 2312.07927]
- comparison to NLO_{VI} EW approximation [Kallweit et al. '15]
- \rightsquigarrow used in SHERPA MEPS@NLO approach [Bothmann et al. JHEP 06 (2022) 131

Probing EWSB: vector-boson polarizations

predicting vector-boson polarization fractions f_{pol}

• consider decay of on-shell massive gauge boson $(m_{q/l} = 0)$ \rightarrow use pole approximation, i.e. on-shell projections, or NWA

$$\mathcal{M}^{\mathsf{tot}} \quad \approx \quad \sum_{\lambda = L, \pm} \mathcal{M}_{\lambda}^{\mathsf{fac}} = \frac{i}{p^2 - M_V^2 + i\Gamma_V M_V} \sum_{\lambda = L, \pm} \mathcal{M}_{\lambda}^{\mathsf{prod}}(\tilde{p}) \mathcal{M}_{\lambda}^{\mathsf{dec}}(\tilde{p})$$

■ consider inclusive & fiducial phase spaces → residual interference contribution when fiducial cuts

$$|\mathcal{M}_{\rm res}^{\rm tot}|^2 = \sum_{\lambda = L, \pm} |\mathcal{M}_{\lambda}^{\rm fac}|^2 + \sum_{\lambda \neq \lambda'} \mathcal{M}_{\lambda}^{\rm fac} \mathcal{M}_{\lambda'}^{*{\rm fac}}$$

seek for differential distributions with λ = L enhancements
 → for use in experimental template fits
 → note, f_{pol} frame dependent, e.g. lab or diboson rest frame

 \rightsquigarrow more on polarizations in Rene Poncelet's talk (Thu)

Probing EWSB: vector-boson polarizations

NLO EW for polarized $pp \rightarrow W^+ (\rightarrow e^+ \nu_e) W^- (\rightarrow \mu^- \bar{\nu}_\mu)$ [Denner et al. PLB 850 (2024) 138539] [Dao, Le EPJC 84 (2024) 3]

- full calc & DPA on-shell projection (valid for $\sqrt{\hat{s}} > 2M_W$)
- polarization states at amplitude level, fiducial cuts ~ non-vanishing interference contributions
- allow for $\gamma\gamma$, $b\bar{b} \& \gamma b$ (full calc only) initial states \rightarrow contributing differently for *LL*, *TT*, *LT*/*TL*

Probing EWSB: vector-boson polarizations

particle-level predictions for polarized bosons

[Hoppe, Schönherr, Siegert JHEP 04 (2024), 001] [Pelliccioli, Zanderighi EPJC 84 (2024) 1]

- implementations in SHERPA (NWA) & POWHEG (DPA)
- restrict to QCD corrections at (N)LO and QCD parton shower
- SHERPA utilizes its spin-correlated decay model [Höche et al. '15] → event weights for different polarizations/frames on-the-fly

 \rightsquigarrow (currently) assume virtual QCD amplitude as unpolarized

Facilitating Precision Physics at the LHC

acounting for (dominant) NLO EW corrections

- full NLO SM calculations for $2 \rightarrow 6/7$ processes
 - \rightsquigarrow numerous contributing (non-)resonant channels
 - \rightsquigarrow corrections strongly dependent on phase-space selections \rightsquigarrow validity tests for approximation schemes
- automation of NLL EW Sudakov corrections in generators ~→ SHERPA, MG5_aMC, OPENLOOPS
- predictions for polarised resonant vector bosons
 → NLO QCD EW corrections for diboson channels
 → NLO QCD+PS in POWHEG and SHERPA

