CALICE, a legacy

Víncent Boudry*

Institut Polytechnique de Paris

CALOR'24 20–24/05/2024, Tsukuba

* with many slides adapted from R. Pöschl, F. Simon, O. Wataru, I. Laktineh,, K. Krüger and others. &

Introduction : Calorimetry and Particle Flow

Ec / GeV **Trackers** : $\sigma_p/p = a p_T \oplus b$ **Classical Calorimetry in HEP :** σ_E/E 800 ILD CMS~/10 - Precise measurement of particle energies and identification. 600 400 Calorimeters : **Particle Flow Approach for Jets :** Eec $\sigma_E/E \approx \alpha/\sqrt{E \oplus f}$ 200 - Calorimeter as a part of a detector system Ec 0.2 0.4 0.6 0.8 Charged particles are most of the time way better measured cost $(\cos\theta=0)$

- Combine tracks and calorimeters clusters topologically, to avoid "bad" calorimetric resolutions

CALICE :

- Calorimeter for the Linear Collider Experiment, founded in 2004 with a specific focus on developing highly-granular calorimeters suitable for particle flow reconstruction techniques.
 - Deemed impossible to design calorimeters system with 10–100's of Millions of channel, although electronics allows
 - CALICE as a challenge

in tracking than in calorimeters

Vincent.Boudry@in2p3.fr

The CALICE Collaboration

Calorimeter R&D for large imaging calorimeters

- MOU 2005
 - first Spokesperson: Jean-Claude Brient current (& last?) : Roman Poeschl
- ~270 physicists/engineers from 62 institutes and 18 countries from 4 continents
- Integrated R&D effort
- Acceleration of detector development due to coordinated approach

Here,

we explore CALICE's journey in advancing calorimetry for future collider experiments.

Vincent.Boudry@in2p3.fr

Steps of R&D

Physics Prototypes

2003 - 2012

- Proof of principle of granular calorimeters
- Large scale combined beam tests
- Inspiration for CMS HGCAL

Technological Prototypes

2010 - ...

- Engineering challenges
- Higher granularity
- Better sensitivity (lower noise)
- $O(10^4 10^6)$ cells

Current period

CALOR'24 | CALICE, a legacy | 21/05/2024

Higgs Factory Detector

- The goal
 - Typically 10⁸ calorimeter cells
- Compare:
 - ATLAS {Ar ~10⁵ cells
 - CMS HGCAL ~10⁷ cells

Vincent.Boudry@in2p3.fr

Physical Prototypes (2005–2012++)

SiW-ECAL

- Silicon-sensor
- 10,000 cells of 1×1cm²
- Analogue readout
- Tungsten absorber
- 30 layers (24X₀, 1λ)

ScW-ECAL

- Scintillator strips 2160 cells of 1×4.5 cm² each
- Analogue readout
- Tungsten absorber
- 30 layers (24X₀, 1λ)

AHCAL

- Scintillator tiles :
- 7608 cells of
 - **3×3** (cent), 6×6, 12×12 cm²
- Analogue readout
- Steel or Tungsten absorber
- 38 layers (5.3λ)

DHCAL*

• GRPC

- up to 500,000 cells, 1×1cm² each
- Readout :
 - Digital (1 bit) semi-digital (2 bits, 3 thr.)

SDHCAL*

- Steel or Tungsten absorber
- Up to 48 layers (~6λ) different readout ASICs

Full-layer test beam prototypes for proof-of-principle of high-granularity calorimeter concept

Some / Many technological criteria set aside : uniformity, embbeded electronics, pulsed mode, mechanics...

* Except for (S)DHCALs

Vincent.Boudry@in2p3.fr

Hadronic Shower Studies : pion vs proton, shower start

Hadronic shower studies by AHCAL

- Test beam data: π +, p 10–80GeV@CERN and FNAL
- Simulation _
 - GFANT4 ver9.6 ٠
 - Physics lists: FTP_BERT, QGP_BERT

Pion vs Proton-induced hadronic showers

- Longitudinal segmentation allows to measure shower start on event-by-event basis _
- Interaction length extracted from distribution of shower starts
- Good agreement as calculated from detector compounds

Nuclear interaction lengths for π^+ and p

Vincent.Boudry@in2p3.fr

CALOR'24 | CALICE, a legacy | 21/05/2024

proton

Hadronic Shower Studies : Profiles

Longitudinal shower profile measured by the AHCAL

- Test beam data: π^+ , p 10–80GeV@CERN and FNAL
- Decompose shower components

Longitudinal hit energy distribution

[MIP]

layer

ΔE in

80

60

- Short component: electromagnetic component
- Long component: hadronic component

Proton

- Extract ratio of hadronic to electromagnetic response (h/e)

Radial profile study measure in SDHCAL

- Large tranverse segmentation (1 cm)
- Test beam: 5-80GeV pions @CERN SPS

<R> [cm]

Simulation: GEANT4
 ver9.6 with High
 Precision (HP) package

Radial profile is narrower in simulation

50

E_{beam}⁶⁰70⁸⁰[GeV]

7/54

10 20 30 40

Mean of radial distribution

SDHCAL DATA (H6 CERN SPS)

FP BERT HE

QGSP BERT HE

CALICE SDHCAL

z from shower start [λ,]

DATA 30 Get

ndf: 14.0/27 = 0.52

(a)

 4.5 ± 0.3

β :: (1.6 ± 0.1) Χ

 $β_{...}$: (1.24 ± 0.02) λ

 $\alpha_{\text{long}}\text{: } \textbf{1.35} \pm \textbf{0.01}$

AE in layer [MIP]

Pion

Hadronic Shower Studies : low energy in ECAL

Shower studies with low energy hadrons using SiW-ECAL

- Test beam: π 2-10GeV @FNAL
- **Comparison with simulation**
 - Agreement to within 20% (much closer for most observables)
 - Longitudinal hit distributions well described
 - Largest discrepancies in longitudinal and radial profile of reconstructed energy

NIM A794 (2015) 240-254

Longitudinal energy distribution (10 GeV π^{-})

10 GeV

π[°] FNAL 2008
 FTFP_BERT G4 v9.3
 FTFP BERT G4 v9.6

----- FTFP BERT G4 v10.1

Erec)/pseudolayer [MIP

10

CALICE

Si-W ECAL

GEANT4 Validation samples

SiW-ECAL

-2008π - data

• 2, 4, 6, 8, 10 GeV NIM A794 (2015) 240-254

AHCAL

- Planned

			param	is.conf
1 PHY	SLIST=	FTFP_BERT,	QGSP_BERT	
! CON	ST:ENE	RGY_UNIT=Gev	v	
PART	ICLE	ENERGY PI	HYSLIST	NEVENTS
pi-	20.	PHYSLIST	50000	
pi-	30.	PHYSLIST	50000	
pi-	40.	PHYSLIST	50000	
pi-	50.	PHYSLIST	50000	
pi-	60.	PHYSLIST	50000	
pi-	80.	PHYSLIST	50000	
pi-	100.	PHYSLIST	50000	
pi-	120.	PHYSLIST	50000	
pi-	150.	PHYSLIST	50000	
pi-	180.	PHYSLIST	50000	
pi-	200.	PHYSLIST	50000	
e-	20.	PHYSLIST	50000	
e-	40.	PHYSLIST	50000	
e-	50.	PHYSLIST	50000	
e-	80.	PHYSLIST	50000	
e-	100.	PHYSLIST	50000	
e-	119.1	PHYSLIST	50000	
e-	147.8	PHYSLIST	50000	

Vincent.Boudry@in2p3.fr

Nice improvements wrt to 2015

- Energy & #hits distributions

CALOR'24 | CALICE, a legacy | 21/05/2024

L. Pezzotti, A. Ribon and D. Konstantinov, CALICE Meeting, Valencia, 2022

Geant4 Collaboration 2022 Energy per layer | Beam: pi- | Energy: 10 | Target: CALICE-SiW

10.6: new overlap of FTF and

BERT models [3, 6] GeV

(previously [3, 12] GeV)

10 GeV π^-

45

40

35

30

25

20

15

Hadronic Shower Studies : sub-structures : track segments

Identified track segments

10 15 20 25 30 35 40 45 SDHCAL Layer

Track segments in **SDHCAL**

- Test beam data: pions 10-80GeV@CERN SPS

Track segments found in dense hadronic shower

- Track finding using Hough Transform
- Useful for detailed shower study (→ Geant4) in-situ calibration and better energy reconstruction
- Slight improvement of energy reconstruction by weighting hits in tracks [reduce Landau fluctuations]

50 GeV π 40-

80

60

AHCAL

 Test beam data: 10–80 GeV π⁻@CERN-SPS

SiW-ECAL

Test beam data:
 2–10 GeV π⁻@FNAL

Energy deposition of secondary tracks @SiW-ECAL

Hadronic Shower Reconstruction in Digital HCALs

← Single threshold DHCAL

- Hit counting

Multi-thresholds readout of SDHCAL →

- SDHCAL version of "software compensation"
- Different weights depending on three thresholds
 - N₁, N₂, N₃: exclusive number of hits associated to 1st, 2nd, 3rd thresholds

[GeV]

Linearity

CALICE SDHCAI

Multi-thr mode

- α , β , γ : quadratic functions of total number values of hits
- Paremeter fit using testbeam data @CERN SPS 5, 10, 30, 60, 80 GeV π^{-})
- Mitigate saturation of energy resolution at high energy

JINST 11(2016)P04001

Vincent.Boudry@in2p3.fr

Energy Reconstruction: SW Compensation

JINST 7 (2012) P09017

JINST 13 (2018) P12022

CALICE calorimeters are non-compensating

- Some compensation can be restored by density weighting
- Beam Test : AHCAL
 - SPS H6 2007: 10–80 GeV π^{\pm}
- Weightings :
 - Local Cell energy density (E/V) weigthing
 - Global C(f(elim=5 MIPs))
- Improvement by ~ 20%

CALOR'24 | CALICE, a legacy | 21/05/2024

AHCAL and ScW-ECAL

- Combined Beam Test : ScW-ECAL + AHCAL + TCMT
 - FNAL 2009 4,12, 15, 20, 32 GeV π-
- Optimisation $\sigma(E)/E$ on 51 parameters
 - Improvement by 10 to 20% (overestimated by simulation)

12/54

Particle Flow Studies: particle separation & identification

Separation of neutral hadron shower from nearby charged hadron shower in **SDHCAL**

- Test beam data: 10-80GeV pions @CERN SPS
- 10GeV "fake" neutral hadron shower is generated by removing initial track segment and overlaid on charged hadron showers
- >90% efficiency and purity for nearby showers for distance>15cm

Particle identification with multi-variate analysis

- Test beam data: 10-80GeV pions @CERN SPS
- BDT improves pion selection efficiency at low energies

Separation of 10GeV neutral hadron from charged hadron

Separation of EM showers (e+e+, $\gamma\gamma$, γ - π) on mixed events SiW-ECAL + (AHCAL | SDHCAL MC)

- Beam test from FNAL 2011 / CERN'07,
- Using Pandora, Garlic and Arbor
- Separation > 90% at 20mm
- Algorithm tuning mandatory acy | 21/05/2024

4 + 25 GeV e+, reconstruction with Pandora

CALICE-CAN-2017-001

vincent. bouding eniz p3.fr

Time structure of Hadronic Showers

JINST 9(2014)P07022

CALICE T3B Setup

CALICE T3B Experiment

- Small dedicated setup of 15 scintillator tiles (30×30 mm²) with SiPMs placed behind CALICE hadron calorimeters (W-AHCAL, Fe-SDHCAL)
- Radial sampling of structure of hadronic showers with sub-ns time resolution over 2.4 µs time window
- More late component in tungsten than in steel

Hit time measurement capability at AHCAL technological prototype

- Hit time resolution of 1.6ns for muons @AHCAL technological prototype
 - Currently limited by front-end electronics
- Analysis for hadrons also in progress

Hit time resolution with AHCAL technological prototype

Vincent.Boudry@in2p3.fr

Technological & new Physics Prototypes

4.5 prototypes, 15⁺ years of R&D, all tested

Si-W ECAL	(ALICE FoCAL)	Scint-W ECAL	AHCAL	SDHCAL
	20 mm W absorber 22 ayers beam direction	Bis State		
0,5×0,5 cm² ×15 (→30) Si layers + W	0,003×0,003 cm² × 24 MIMOSA layers + W	0,5×4,5 cm² ×30 Scint+SiPM lay. + SS	3×3 cm² × 38 Scint+SiPM lay. + SS	1×1 cm² × 48 layers GRPC + SS

Purposes:

- Prove technological feasibility: electronics inside, thermal capacity, mechanical, DAQ, calibration, ...
- Extend physical prototypes : uniformity, "large" production, methods, ...

Vincent.Boudry@in2p3.fr

{SKI,SPI,HARD}ROC ASICs

- 36–64 channels
- Auto-triggered
 - Partial 0-suppr. :
 1 cell triggers all
- Preamp adapted to SiPMs, Silicons, RPCs
 + 2 Gains (Auto-select)
 + TDC (~ ns)
- 15 (×2) analogue memories (128 digital)
- Dyn range 0.1 ~ 2500 mips
 - 12 bits ADC's
 - 2 bits ADC's
- ~600 configuation bits
- Low consumption
 - 25 μW/ch with 0.5% ILC-like duty cycle
- Power-Pulsed

CALICE Thin, long cassettes → all prototyped

Scint Analog HCAL (also used for HGCAL)

(Semi)Digital Gaseous HCAL

GRP

\leq **1.8m long**

- Passive cooling

No cooling or gas flow

SiW-ECAL

Vincent.Boudry@in2p3.fr

Silicon-Tungsten ECAL

Silicon-Tungsten ECAL: Developments

See Roman's presentation for recent dev't

Improvement in design

CERN 2015 "naked FEV11" (320 $\mu m)$

 $S/N_{ADC} \sim 16-17$

Ring X-talk / 10 wrt Phys. Proto.

CERN 2017: 7 FEV11 (320 µm)

S/N_{ADC} ~ 20.3 ± 1.5 8% masking, 1T operation

DESY 2018: 7 FEV11 + 1 FEV13 (650µm)

 $S/N_{ADC} \sim 30.3 - 40;$ $S/N_{TRIG} \sim 11.6 \pm 0.7 \Rightarrow Cut \sim 1/3 \text{ mip } @ 4 \sigma$

CERN 2018: 6 FEV11 + 4 FEV13 + 24 X_0 W

Vincent.Boudry@in2p3.fr

Long Slab

- 8 ASU's with baby wafers (2×2cm²)
 - → New FEV2.1

20/54

R&D Highly Resistive Silicon Diodes:

- Ref = Hamamatsu "Guard-Ring-less" design
- 6" Towards 8" (à la CMS-HGCAL) \times 725µm ?
- ⇒ cost, design, perf. 1 legacy | 21/05/2024

Sc-ECAL

Vincent.Boudry@in2p3.fr

Scintillator-Tungsten ECAL

- Ωmega's Spiroc2e, 36 ch ASICs
- 25 µW/ch with 1% Power Cycle
- cells of $\sim 5 \times 45$ mm², $\rho = 450$ cell/dm³

Technological prototype

- "Physical prototypes" (2005–11, 2013–15)
- Stack with 32 layers
 - aging test made (48h @ 50°C) •
 - being assembled •

ScECAL: commissioning

See Tatsuki Murata's and Xin Xia's presentations

R&D:

- Scintillator SiPM coupling
 - non-uniformity $\Rightarrow \sigma$ (E) \checkmark —
 - SiPM position ٠

AHCAL

Vincent.Boudry@in2p3.fr

Scintillator AHCAL

For ILC and CMS

- ILC with Ω mega SPIROC2e
 - HL-LHC will be Ωmega HGROCv3
- 3×3 cm², density ~ 55 cells / dm³

Technological prototype ≥ 2017

Physics prototype ~ 2006-11 $(3 \times 3 + 6 \times 6 + 12 \times 12 \text{ tiles})$

- Uniform 3×3 cm² tiles (moulded) read by SiPM mounted on PCB
- 38 layers of 0,7×0,7 m², 22k cells
 - + additional layers of 6×6 cm²
- 2018: Stand alone tests and with CMS HGCAL
 - 4λ of stainless steel (1.7 cm \times 38) ٠
 - O(100M) events accumulated ٠

→ Combined beam test with ECALs

 \rightarrow Stand-alone with full W structure

Vincent.Boudry@in2p3.fr

Online corrections: on SiPM's:

- \Rightarrow EM Lin & Resol.
- Gain (Temperature, HV)
- Statistical saturation for $E_{hit} \ge 100 \text{ mips } (N_v \sim N_{niv})$
 - Corrected for $E \leq 350$ mips

with HGCAL EE + FF

AHCAL developments

"MegaTiles" R&D:

- Single Scintillator tile with trenches of 3×3 cm²
- 2019 Beam test:
 - Light Yield, Mip resp, Optical Cross-talk
 - Larger Cross-Talk than in cosmics (mechanics)

R&D

- Scintillators optimisation

Wrapped Tile

- SiPM/MPPC evaluations
- ADC consumption (KLAUS Chip)
 - \rightarrow Next Gen

Long Layer

- 2×6 HBU's OK in lab...
 - Goals:
 - 3×6 HBU's (ILD)
 ... in a test structure (absorbers)

CMS HGCAL:

Vincent.Boudry@in2p3.fr

TP1

Misalignment ~ 0

x=0 mm, y=0 mm

cintillato

AHCAL analysis

New: Hit time correlation

- Time profile from muons
 - SPIROC : double analog ramp \rightarrow ADC
 - with clocks

CALOR'24 | CA

High Level Analyses:

- Shower profiles & PFA tests (≥2011)
- Shower start, PID, $f_{neutrons}$ (time)

Vincent.Boudry@in2p3.fr

(T)-SDHCAL

Vincent.Boudry@in2p3.fr

SDHCAL: Semi-Digital Gaseous HCAL

Technological prototype ≥ 2011

- Single and multi-gap thin GRPC's
- Cells of 1×1 cm², $\rho = 380$ cells/dm³
- Ωmega HARDROC2
- = 48 layers of 1×1 m², 460k cells, $6\lambda_1$ (2 cm Stainless steel)

Semi-Digital calorimetry: 3 thresholds

- Uniformity: efficiency & multiplicity
- Threshold optimisations (typ. 1/2 mips, ~5, ~15 mips)
 - and calibration by scans
- Energy measurement:
 - Linearity & Resolution to single e, π, p
 - Simulation: complex digitization
 - Large number of overlapping effects in avalanches / readout / time
 - Now, reasonable ≤ 40 GeV e, π

Vincent.Boudry@in2p3.fr

SDHCAL developments

Large cassettes: $1 \times 1 \text{ m}^2 \rightarrow 3 \times 1 \text{ m}^2$:

432 ASICs HardRoc3:
 I2C, full zero-suppression,
 dynamic range ×3 (15 → 50pC)

Main goals:

- Sensors: Large uniform GRPC's
- Large & flat PCBs: 32×96 cm²
 - glued on single GRPC chamber

Sensitive

cassette

2935

940

- interconnections (in 3T field)
- Mechanical assembly
 - Electron Beam Welding

Vincent.Boudry@in2p3.fr

LICE, a legacy | 21/05/2024

SDHCAL → **T-SDHCAL** (for Circular colliders)

Power issues ?

- RPC :
 - Rates OK for RPC ? \rightarrow MGRPC
 - Cooling possible with gas
 - (flow to be determined from uniformity of response :
 - heat/laminar flow)

Timing

- Prelim. studies show time information could improve significantly hadronic showers separation at lower distances
- ASICs:
 - Ω mega PETIROC ASIC (20 ps) jitter \oplus Multi-gap GRPC (60 ps)
 - Liroc+internal TDC ?

Others : DECAL, Adriano

Vincent.Boudry@in2p3.fr

MAPS & DECAL / EPICAL-2

See Thomas Peitzmann's presentation

- 24 layers with 3 mm tungsten and two ALPIDE chips each
 - chip size 30 mm x 15 mm
- ▶ 512 x 1024 pixels per chip:
 - 25 M pixels in total
 - pixel size:
 26.88 μm x 29.24 μm

ADRIANO2/3 - Dual/Triple Readout Calorimeter

Primary experimental context: REDTOP / T1604 Collaboration

- ADRIANO2: PFA (Granularity) + Dual Readout (Č/Scint)
 - 5D shower measurement, disentangling the neutron component of the shower.
- ADRIANO3: ps timing

Sensors:

- High-density glass as Cherenkov Medium (and absorber)
- Plastic scintillator tiles
- RPCs with cm² pad readout for fast timing

Key R&D goals

- optimization of the construction technique in terms of:
 - light yield, RPC efficiency, timing resolution, and cost
 - Test layers in 2024, small-scale prototype 2025

Testing many configurations \rightarrow larger prototype 2026–27

Vincent.Boudry@in2p3.fr

Reminder on compact readout

Current detector interface card (SL Board) and zoom into interface region

Complete readout system

More compactness ⇒ Less flexibility ~ in CRK

margin ~ ±2×2 cm ?

- "Dead space free" granular calorimeters put tight demands on compactness
- Current developments in CALICE meet these requirements
- Can be applied/adapted wherever compactness is mandatory
- Components already tested in beam tests

Future Directions and Challenges

Immediate Applications:

- Use in real cases :
 - AHCAL for the CMS-HGCAL : on-going, full speed
 - SiW-ECAL for QED & Dark Photons experiments :LUXE@XFEL, EBES@KEK, Lohengrin@ELSA
 - DECAL for the ATLAS-FOCAL

Further developments:

- Timing in calorimeters
- Adaptation to circular colliders

Timing in Calorimeters: 0.1–1 ns range

Technically feasible but adding thermal constrainst

 $1 \, \text{cm/c} = 30 \, \text{ps}$

Cleaning of Events

adapted from L. Emberger

Vincent.Boudry@in2p3.fr

Particle ID by Time-of-Flight

- Complementary to dE/dx
 - here with 100 ps on 10 ECAL hits

CALOR 24 CALICE, a regardy | 21/05/2024

Ease Particle Flow:

- Identify primers in showers
- Help against confusion better separation of showers
- Cleaning of late neutrons & back scattering.
- Requires 4D clustering

How to adapt calorimeters to circular collider conditions

CALICE calorimeters:

- Embbeded readout: compact design & DAQ
 - Minimal consumption by power pulsing
 - 1-2ms readout , 198-199 ms off.
 - Passive cooling \rightarrow no dead materials

1) Rates and cross-sections

- Z-peak out-of-scale wrt all the other configurations
 - One detector fits all ? "optimal" granularity ?
- DAQ Scheme ? Continuous readout ?

2) Continuous running

– Electronics base comsumption × 100–200 wrt ILC

3) New opportunities: timing in calorimeters

- Adds comsumption
- Large potential but at what cost? What precision?

New ASIC:

DRD6 Common readout ASICs proposal [AGH, Omega, Saclay]

- Develop readout ASIC family for DRD6 prototype characterization
 - Inspired from CALICE SKIROC/SPIROC/HARDROC/MICROROC family
 - Targeting future experiments as mentionned in ICFA document (EIC, FCC, ILC, CEPC...)
 - Addressing embedded electronics and detector/electronics coexistence + joint optimization
 - Detector specific front-end but common backend
 - \Rightarrow allows common DAQ and facilitates combined testbeam
- Start from HGCROC / HKROC : Si and SiPM
 - Reduce power from 15 mW/ch to few mW/ch
 - Allows better granularity or LAr operation
 - Extend to LAr (cryogenic operation) and MCPs (PID)
 - Remove HL-LHC-specific digital part and provide flexible auto-triggered data payload
 - Several improvements foreseen in the VFE and digitization parts
- Several other ASICs R/Os also developed in DRD6 and it is good !
 - FLAME/FLAXE, FATIC...
 - Waveform samplers : commercial or specific (e.g. SPIDER)
 - DECAL

CdLT : future chips DRDI 10 jul 23

Low Power

- Timing ?

Low occupancy

- Self-trigger
- Less memory
 - if continuous readout

Optimized dynamic range

Conclusion:

Development of calorimeters with unprecedented granularity

- Exploratory prototype for physics
- Validation of technologies for future experiments

Opening on hadronics showers imaging :

- Precise 3D profiles → GEANT4 validation/adjustment
- In-shower sub-components:
 - Track identification → in-physics calibration, improved energy resolution
 - EM subshowers → SW compensation
- Validation of particle flow algorithms approach

So ? Mission accomplished ?

Yes, ... but please go-on

– Completion of some prototypes

... in DRD6

- Explore the potential of timing calorimetry
- Lots of data still to be (re)exploited (with Machine Learning)
 - See M. Borysova on Wednesday

An R&D Collaboration Model ?

- Sharing of tools and experience between otherwise competitive teams
 - ASICs, DAQ, Beam test, Reconstuction techniques, Simulations,
 - Building of expertise & Visibility
- Very flexible framework:
 - Openness ... but no financial support
 - Common tasks on Goodwill

CALOR'24 | CALICE, a legacy | 21/05/2024

Vincent.Boudry@in2p3.fr

Backups

Vincent.Boudry@in2p3.fr

Scint-ECAL tile wrapping

Reflector wrapping (90mm strip)

Wrapping by hand with a help of jig

Sc-ECAL (reminder)

Scintillator Electromagnetic CALorimeter (Sc-ECAL)

Technology option of EM calorimeter for ILD

Based on scintillator strips readout by SiPM

- 5 × 45 × 2 mm scintillator strip
- Virtual segmentation : 5mm × 5mm with strips in x-y configuration
- Timing resolution < 1 ns</p>
- Low cost

Time calibration (HW)

Time measurement with Spiroc2E: <u>TDC</u> (time to digital converter)

- 1. Common external clock with ~1ns bins
- 2. Ramp up voltage during one bunch crossing ID

Lorenz Emberger (MPI. Munich)

Integration in ILD: thermal studies by Denis GRONDIN / Julien GIRAUD (LPSC)

Puissances ASU / SLAB ((W) 1	2	1	2
Puissances Front / SLAB	(W) 1	1	2	2
Total ASU SLAB (W)	15	30	15	30
Total FRONT SLAB (W)	15	15	30	30
Total (\	N) 30	45	45	60

Important thermal inertia => 4 days minimum of stabilization

a legacy | 21/05/2024

Active cooling

R&D using CMS studies (Thanks to Th. Pierre-Emile from CMS-LLR group)

Copper plate prototype dimensions information

Pipe insertion on a cooling prototype

П

⊢

- Pipe insertion process introduces some efficiency loss due to the thermal contact resistance. ٠
- The benefit remains significant with regard to a passive cooling •

Thermal static CFD analysis thermal field example using Fluent with 100W extracted and water mass flow rate of 7g/s through 1,5mm ID pipe

45/54

CFRC+W Structures ILD Design

Vincent.Boudry@in2p3.fr CALOR'24 | CALICE, a legacy | 21/05/2024

Timing

Timing of Showers

- For events reconstruction
- From Core Hits to avoid contamination

Single HGCAL **sensor timing performance** evaluated in 2016 **beam tests** [JINST 13 (2018) P10023]

R&D

- HGCROC ASIC: 3 stage TDC
- Clock distribution (CEA)

The clock distribution system is expected to contribute < 15 ps jitter

- Correction of non-linearity of ToA response

Vincent.Boudry@in2p3.fr

Requirements from Physics

e.g.

- Basis: sep of H \rightarrow WW/ZZ \rightarrow 4j
 - $\sigma_z/M_z \sim = \sigma_w/M_w \sim = 2.7\% \oplus 2.75\sigma_{sep}$

⇒ σ_E/E (jets) < ~4%

- Sign ~ S/ \sqrt{B} ~ (resol)^{-1/2} 60%/ $\sqrt{E} \rightarrow 30\%/\sqrt{E} \Leftrightarrow + \sim 40\%$ in \mathscr{L}

Large acceptance

Large Tracker

- Precision and low X₀ budget
- Pattern recognition

High precision on Si trackers

Tagging of beauty and charm

Fwd Calorimetry:

lumi, veto, beam monitoring

∧¹²⁰ 95/¹ 100

80

60

Z-jets

M-iets

Tau Physics (γ vs π_0) \rightarrow Photons in jets ?

CALOR'24 | CALICE, a legacy | 21/05/2024

48/54

A crack-less ECAL geometry

Geometries

Large Scale Building : CALICE HCALs

AHCAL Plans: Hardware Developments

Common Readout

Harmonise readout between CALICE SiW ECAL and AHCAL

Reduce size of AHCAL interface boards

- Current design is from 2007
- Focus was on modularity
- New SiW ECAL interface board (SL board) optimized compactness
- Plan to follow SiW design as much as possible
 - Some differences in powering concept
 - Additional LED calibration system in AHCAL

Status: just started

AHCAL interface boards

36 cm

SiW ECAL SL board

18 cm

T-SDHCAL: cooling & rates

Cooling: Previous studies were performed on Hardroc (full regime)

We have to do the studies with the new ASICs and the mechanical structure in mind

High-rate capability

Low resistivity materials Low-resistive PEEK ($10^{\circ}\Omega \cdot cm$)

