Photon energy reconstruction with MEG II liquid xenon calorimeter

Kensuke Yamamoto (The University of Tokyo) on behalf of the MEG II collaboration

20th International Conference on Calorimetry in Particle Physics 20-24 May 2024

MEG II apparatus

Kensuke Yamamoto

Most intense DC μ^+ beam at Paul Scherrer Institut Stopping rate $R_{\mu} = 3 - 5 \times 10^7 \,\mu/s$

Liquid xenon (LXe) calorimeter

Kensuke Yamamoto

900 L liquid xenon

Energy reconstruction flowchart in LXe calorimeter

Kensuke Yamamoto

Necessarity of multi-photon elimination

Multi-photon elimination algorithms

Peak search in spatial distribution

$N_{\rm pho}$ in entrance face (MPPCs)

Pileup analysis: Summed waveform analysis

• Concept: Pulse unfolding with summed waveform template fit

Kensuke Yamamoto

20th International Conference on Calorimetry in Particle Physics

Seed pulse detection in multi-photon events

Kensuke Yamamoto

Preliminary multi-photon analysis performance

- Number of background photons in analysis region reduced by 34%
- Signal efficiency: 95% due to detection of fake peak in spatial distribution
 - Based on signal γ MC sample

11

Energy scale calibration datasets

Kensuke Yamamoto

12

Energy scale factor & uniformity calibration

Close to signal γ energy (52.8 MeV)

Kensuke Yamamoto

 $E_{\gamma} = S \times U(\vec{x}_{\gamma}) \times T(t) \times N_{sum}$

Major fitting parameters

- Energy scale
- Resolution
- Trigger threshold

Energy scale history calibration $E_{\gamma} = S \times U(\vec{x}_{\gamma}) \times T(t) \times N_{\text{sum}}$ 2021 Normalised Accumulated $N_{\mu^+}^{\text{stop}}$ ast run: 476386 (2022-11-17 09:17:37). 0.2 0.98 2021 T_.: 2.90e+06 s 0.97 2022 T., : 7.76e+06 s 0.15 0.96 0.95 31/08/21 0.1 1.2 2022 0.05

01/Nov

Date

Uncertainty of energy scale suppressed to 0.4% in 2021

01/Sep

02/Jul

02/May

Sun Mar 10 12:43:19 2024

Energy resolution

- Energy resolution evaluated with 55 MeV photon
 - 2.0%/1.8% for w < 2 cm/w > 2 cm
 - EM shower leaks from entrance face
 - Fitting function: Exponential + Gaussian

$$f(x) = \begin{cases} A \exp\left(-\frac{(x-\mu)^2}{\sigma^2}\right) & (\text{if } x > \mu + \tau) \\ A \exp\left(-\frac{\tau(\tau/2 - x + \mu)}{\sigma^2}\right) & (\text{if } x \le \mu + \tau) \end{cases}$$

• Calibration for the 2022 data ongoing

Conclusion & prospects

- MEG II liquid xenon calorimeter reconstructs photon energy precisely to distinguish signal and background
- Multi-photon elimination needed to reconstruct a single photon • Preliminary multi- γ analysis performance: Photon background reduction of 34%
- Energy resolution of 1.8% (2.0%) achieved for W_{γ} > 2 cm (< 2 cm) in 2021 dataset
- Prospects for 2022 photon data reconstruction • Careful calibration to be done for calorimeter energy scale
 - Multi- γ analysis performance to be evaluated

Backup

Photosensor calibration

Background photon characteristics

Template summed waveform

Kensuke Yamamoto

