
• Projective wedge geometry of dual-readout 
calorimeter.

• Array of scintillation and Cerenkov fibers are 
implanted in copper towers.

• SiPM readouts count optical photon at end of 
each fiber.

• GEANT4 for calorimeter and shower simulation. 

• Particle gun simulated at center of 
calorimeter.

• 𝑒−, gamma, 𝜋+, 𝜋0 are generated with 
energy between 10-100 GeV.

• Incident direction cover region of 3.4°×80° 
(Δ𝜙:  0.06, Δ𝜃:1.4) on barrel and endcap.
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Particle reconstruction

• Point cloud is efficient for sparse data with geometric information.

• Position of reconstructed hit and its energy value became 
point component.

• Timing(depth) information from waveform is used as 
additional channel.

• 5 channels(𝜙, 𝜃, Timing, Scintillation and Cerenkov energy) inputs.

• Maximum 1024 points are utilized for data efficiency.

Simulation Setup

• Model is trained to predict incident energy and direction of 
shower in addition to particle identification.

• gamma and 𝑒− showers are considered as same type.

• Model distinguishes different types of showers.

• Reconstructed 𝜙, 𝜃 directions of shower follow linear fit with 
incident direction.

⚫ Deep learning implementation has been studied to extended particle 
identification.

⚫ Dual-readout calorimeters need geometrically efficient data format 
which is point cloud of energy deposits.

⚫ Point cloud based model have capability of particle identification and 
reconstruction.

⚫ Particle identification performance don’t decrease on multi-task learning.

• Dual-readout calorimeters utilize two readouts from 

scintillation and Cerenkov fibers to measure energy, 

yielding high hadronic energy resolution. 

• It can reconstruct the energy, position and have intrinsic 

particle identification capabilities distinguishing between 

electromagnetic and hadronic shower.

• We explore deep learning algorithms to optimize particle 

reconstruction across the calorimeter and to extend the 

identification of particle types.

Performances by particles

• One of ML methods, which are based on neural networks 

• In each layer, weighted sum of inputs and bias are 
passed through subsequent layer.

• Neural networks model can fit arbitrary dataset to 
necessary output.

• PointMamba3) model is applied for particle reconstruction
• Based on selective state space model.
• Point cloud processing model is proposed for 3d 

shape classification and segmentation.

• Set abstraction of sampling and grouping extracts 
hierarchical features from point cloud.

• Error of 𝜋+ energy reconstruction 
increase at higher energy due to 
leakages.

• PID performances for 𝑒−, gamma and 
𝜋0 are drop at 90-100 GeV.
• Opening angle of 𝜋0 decay is 

getting very narrow over 80 GeV.
• Particle reconstruction performances 

are compared at Δ𝜃:1.4(0.25 - 1.63)
• Energy reconstruction errors stay

under 5 GeV at different 𝜃.
• PID performances increase by 𝜃 at 

endcap but decreased at barrel.

• Ratio of hadronic component and EM component(𝒉/𝒆) is 
differed by material.

• Scintillation fibers react to both EM and hadronic 
particle, Cerenkov fiber reacts to EM particle only. 

• Scintillation part (𝒉/𝒆)𝑺 larger  than Cerenkov part 
(𝒉/𝒆)𝑪.

• EM shower fraction(𝑓𝑒𝑚) is directly measured by scintillation 
and Cerenkov responses.

• Intrinsic capability of particle identification using 𝑓𝑒𝑚=1 
for EM shower, 𝑓𝑒𝑚<1 for hadron shower.

• Hadronic energy can be measured with better resolution.

Schematic layout of the IDEA detector1)

• 𝑓𝑒𝑚 =
Τℎ 𝑒 𝐶−(𝐶/𝑆) Τℎ 𝑒 𝑆
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▪ Multi-task learning improves 

generalization and regularization.
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Signals from a dual-readout calorimeter2)
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