

R&D of DarkSHINE ECAL

Zhiyu Zhao (TDLI/SJTU) On behalf of DarkSHINE Working Group

The 20th International Conference on Calorimetry in Particle Physics May 20-24, 2024, Tsukuba

Dark Matter Search

APPEC Committee Report: 2104.07634

- Dark matter evidence from astronomical observations and gravitational effects:
 - Galactic rotation curves, Gravitational lensing, Cosmic Microwave Background anisotropies, ...
- The "freeze-out" mechanism predict the mass of dark matter is mainly distributed from MeV to tens of TeV
 - Weakly Interacting Massive Particles (WIMP): A large parameter space ruled out in GeV~TeV mass range.
 - Light DM: Sub-GeV mass range not fully explored yet.

TSUNG-DAO LEE INSTITUTE

10⁻²² eV

DarkSHINE Experiment Searching for Dark Photon

上海交通大学 SHANGHAI JIAO TONG UNIVERSITY TSUNG-Dao Lee Institute

Sci. China-Phys. Mech. Astron., 66(1): 211062 (2023)

- Dark photon is regarded one candidate particle of light dark matter
- DarkSHINE: fixed target experiment based on single e- beam provided by SHINE
 - Minimal dark-photon model: dark photon bremsstrahlung and its invisible decay
 - 1~10MHz single e- beam @8GeV, up to 3×10^{14} electron-on-target(EOT) per year

INVISIBLE DECAY MODE

Leading background: Photon bremsstrahlung

Rare background:

Photon-nuclear, $\gamma \rightarrow \mu \mu$, electron-nuclear...

Invisible background: Neutrino productions (negligible)

< 3 >

 $m'_A > 2m_X$

TSUNG-DAO LEE INSTITUTE

Overview of ECAL in DarkSHINE

- Target: measure the energy of recoil electron and bremsstrahlung gamma
 - Radiation hard: survive in $\sim 10^7 rad$ dose and $\sim 10^{13} n_{eq}$ (one year)
 - Large size: contain all of the EM components
 - Fast response: minimum to 1us-100ns time window
- Design: homogeneous LYSO crystal calorimeter
 - LYSO: >30000pe/MeV, 40ns decay time, density 7.2 g/cm^3 , radiation hard
 - Staggered structure, 3D segmentation, ~39 radiation length

DarkSHINE Software Framework

TSUNG-DAO LEE INSTITUTE

ECAL Performance in Background Rejection

- Signal region is defined by some different features of signal and background in detector response ٠
 - Track number, missing momentum, missing energy, HCAL veto ٠
 - Only use the total energy of ECAL in the current analysis.

 p_{tag}

- Zero background can be achieved, for 2.5×10^9 inclusive electron-on-target events(EOTs) and ٠ $\sim 10^{12}$ rare process EOTs,
- The Signal efficiency is about 60%. .

Event ratio of background after signal region cut flow									
	~10 ¹² E0Ts					~	10 ⁸ EOTs	~10 ⁹ [EOTs
									١
	EN_ECAL	PN_ECAL	GMM_ECAL	EN_target	PN_target	GMM_target	Hard_brem	Inclusive	
Total events	100	100	100	100	100	100	100	100	
Only 1 track	58.87	70.48	87.36	5.85	5.88	$< 10^{-3}$	78.73	84.40	
$p_{\text{tag}} - p_{\text{rec}} > 4 \text{ GeV}$	0.0044	0.0033	0.0041	5.58	5.46	$< 10^{-5}$	70.49	4.80	
$E_{\rm HCAL}^{\rm total} < 100 {\rm MeV}$	$< 10^{-3}$	$< 10^{-3}$	0	0.30	0.72	0	69.61	4.76	
$E_{\rm HCAL}^{\rm MaxCell} < 10 {\rm MeV}$	$< 10^{-3}$	$< 10^{-3}$	0	0.13	0.27	0	65.00	4.48	
$E_{\rm HCAL}^{\rm MaxCell} < 2 {\rm MeV}$	$< 10^{-3}$	$< 10^{-3}$	0	0.058	0.095	0	58.14	4.04	
$E_{\rm ECAL}^{\rm total} < 2.5 {\rm ~GeV}$	0	0	0	0	0	0	0	0	
Signal region ECAL is essential for bremsstrahlung background									

BDT for Rare Background Rejection

Rank of variables in BDT

Rank	Variable	Importance	Rank	Variable	Importance
1	Edep	0.05625	15	E49Edep	0.04214
2	Emean	0.05329	16	Shower end	0.03568
3	FD 2D mean	0.05284	17	Zdepth	0.03018
4	Shower density	0.05196	18	Emax sec dist	0.02968
5	Ecell second	0.04954	19	Shower length	0.02606
6	Nhits	0.04920	20	Hit layer	0.02548
7	COG Y mean	0.04876	21	Eclus max sec diff	0.02311
8	E1E9	0.04828	22	Xwidth	0.02265
9	COG X mean	0.04772	23	Emax sec diff	0.02075
10	E1Edep	0.04725	24	Ywidth	0.02043
11	Eclus max	0.04685	25	E9E49	0.01637
12	Shower radius	0.04630	26	Shower layer	0.01291
13	COG Z mean	0.04424	27	Eclus max sec dist	0.008642
14	E9Edep	0.04343	28	Eclus second	0.000

- Rare background is more hard to be rejected by ECAL
 - $\gamma \rightarrow \mu \mu$, hadronic interactions
- Current BDT method displays high efficiency for e^-/π^- separation
- To be studied for more types of background

TSUNG-DAO LEE INSTITUTE

ECAL Size Optimization

- Optimized the ECAL size to achieve a high signal efficiency while keeping the cost not so large.
 - Basic unit: $2.5 \times 2.5 \times 4 cm^3$ LYSO •
 - Signal box: $E_{ECAL}^{Total} < 2.5 GeV \& E_{HCAL}^{Total} < 30 MeV \& E_{HCAL}^{MaxCell} < 0.1 MeV$
- $52.5 \times 52.5 \times 44 cm^3$ size is suitable choice •

Large $m_{A'}$ need large acceptance angle Signal 10 MeV 10 10-3 10 10^{-4}

Table 4. Average signal efficiency with changing transverse size of ECAL Number of crystals $14 \times 14 \times 11$ 21×21×11 28×28×11 35×35×11 Number of crystals 21×21×7 21×21×9 21×21×11 21×21×13 21×21×15 Average signal efficiency(%) 77.62 Average signal efficiency(%) 66.32 76.71 53.32 70.78 75.75 52.05 71.52 74.07

0.2F 28x28x11 0.2F 35x35x11 0.1E 0.1E 0 0 10 10 10^{2} 10 [MeV] Signal Mass

Table 5. Average signal efficiency with changing longitudinal size of ECAL

 10^{-1}

TSUNG-DAO LEE INSTITUTE

Effect of Cell Size on Energy Resolution

- Cell size will affect on the light yield, crystal energy deposit, amount of passive materials...
- Use a digitization model to parameterize energy smearing of different cell size: Scintillation ⊕ SiPM ⊕ ADC
- ECAL with $2.5 \times 2.5 \times 4$ cm³ LYSOs has a great energy resolution and a compromise energy containment

TSUNG-DAO LEE INSTITUTE

The 20th International Con[®] Keep the size of ECAL as a constant

Radiation Damage Estimation

- 10MHz e- beam @8GeV with 3cm radius spot, 3×10^{14} EOTs(one year)
- Under such a powerful and high-frequency beam, detectors are subjected to a huge radiation dose.
- For crystal
 - Damage: light yield reduction, uniformity, phosphorescene
 - Max irradiated cell: ~ 10^7 rad, about 15% light yield reduction

10

10-1

 10^{-2}

10-3

 3×10^{14} Events

• For SiPM

Average Cell Energy Deposit per Event

- Damage: increase of noise, reduction of resolution
- Max irradiated cell: ~ 10^{13} equivalent 1MeV neutron flux

'article Physics

LYSO Intrinsic Radiation

- LYSO intrinsic radiation: ${}^{176}Lu \rightarrow {}^{176}Hf$
- Energy range=0~1.2 MeV, $T_{1/2} = 3.64 \times 10^{10} y$
 - Contribute to noise energy, but a potential calibration source
- At 10MHz event rate, average noise energy from IR for single channel is ~15keV per event

Toy monte carlo to estimate noise energy from IR

IR signal, ~240k Bq for single crystal($2.5 \times 2.5 \times 4cm^3$ LYSO)

Study on the Dynamic Range of SiPMs with Large Pixel Number ational Conference on Calorimetry in Particle Physics

Test of Unit Light Yield

- Test the light yield of crystal unit(LYSO+SiPM) with different crystal sizes, different reflection films, and different SiPMs
- The light yield can be changed from 100-1400p.e./MeV
- Max energy deposit in one crystal ~ $4\text{GeV} \rightarrow 4 \times 10^5 \text{p.e.}$ light output

- $(4) \quad 1 \times 1 \times 4 cm^3 LYSO$
- $(5) 1 \times 1 \times 8 cm^3 LYSO$
- $(b) 1 \times 1 \times 16 cm^3 LYSO$

Awyed part 1 1.5 2 2.5 3 3.5 4

Light Yield

- > Film $(2.5 \times 2.5 \times 5 cm^3 LYSO, NDL EQRO6)$:
 - ① ESR, 1 layer
 - ② Tyvek1, 3 layers
 - ③ Tyvek2, 3 layers
 - (4) Teflon, 3layers

- > SiPM ($2.5 \times 2.5 \times 5cm^3 LYSO$, ESR):
 - ① NDL EQR06-11-3030D-S, 244720 pixels
 - ② NDL EQR10-11-3030D-S, 90000 pixels
 - ③ NDL EQR15-11-3030D-S, 40000 pixels
 - ④ NDL EQR15-11-6060D-S, 160000 pixels

The 20th International Conference on Calorimetry in Particle Physics

TSUNG-DAO LEE INSTITUTE

DESY Beamtest of a Small LYSO Module

$\pm 5 mm$ beam spot, 1~ 5GeV e-, HPK S14160-3010PS

Ch2 (4cmLYSO)•Ch1 (4cmLYSO)Ch4 (5cmLYSO)•Ch3 (5cmLYSO)

DESY TB22 Oct. 2023

Study on the Dynamic Range of SiPMs with Large Pixel Number

Baohua's talk

- Beamtest is together with CEPC crystal ECAL module
- Energy smearing seems not significant, compared with the energy deposit fluctuation.(~1% vs. ~30% @1GeV)
- SiPM saturation is significant at 5GeV, but can be corrected.

First Version Readout Electronical System

- High speed and high precision ADC
 - ADC: AD9680, 1 GS/s, 14 bit
- FPGA: Kintex-7 XC7K420T-FFG901
- Pre-amplifier: transimpedance amplifier
 - PZC + RCRC filter
 - Dual output: large dynamic range
- LED calibration for SiPM
 - LED driver: nanoseconds width and tunable light intensity

Energy range(MeV)	Amplifier Gain	Output Range(mV)
1~40	200	40~1600
25~1000	1	50~1400

Working on the FPGA firmware and upper PC software

- ECAL in Dark SHINE: a homogenous LYSO crystal calorimeter
 - Established a complete software framework. Optimized the overall size and cell size of ECAL.
 Studied the radiation environment in ECAL region.
 - Conducted many unit tests for crystal and SiPM
 - High energy beamtest of a 4-ch small crystal module at DESY in 2023
 - Finished the first version high speed readout electronics system.
- Next
 - Explore the rejection power of ECAL on rare background
 - Preparing a 18-ch LYSO mini-prototype to study the EM performance and more technical issues

Backup

TSUNG-DAO LEE INSTITUTE

The SHINE Facility

Science Bulletin 61, 117(2016), 720-727

- Shanghai High Repetition-Rate XFEL and Extreme Light Facility (SHINE) can provide high repetition rate single electron beams → with dedicated kicker to be designed and deployed.
- Electron energy: 8 GeV, Frequency: 1MHz
 - Expected to achieve $\sim 3 \times 10^{14}$ electrons-on-target (EOT) per year

NEH

BLs

FEH

BLs

• Under construction in ZhangJiang area (2018-2026)

BDS FELs

Dedicated to achieve 10MHz single electron beam with high repetition-rate kicker for Dark SHINE

TSUNG-DAO LEE INSTITUTE

8GeV SCRF linac

Expected Sensitivity of DarkSHINE

Assuming 0.015 bkg. event/ 3×10^{14} EOTs

Expected 90% C.L. limit estimated with 3×10^{14} EOTs (running ~1 year), 9×10^{14} EOTs (~3 years), 1.5×10^{15} EOTs (~5 years) and 1×10^{16} EOTs (with Phase-II upgrade).

Sci. China-Phys. Mech. Astron., 66(1): 211062 (2023)

TSUNG-DAO LEE INSTITUTE

Signal & Background Features

Signal

- Low recoil energy
- Large recoil angle and recoil p_T

Background

- Large recoil energy
- Samll recoil angle and recoil p_T

Background Samples and Extrapolation

Process	Generate events	Branching ratio	EOTs
Inclusive	2.5×10^9	1.0	2.5×10^{9}
Bremsstrahlung	1×10^7	6.70×10^{-2}	1.5×10^8
GMM_target	1×10^7	$1.5(\pm 0.5) \times 10^{-8}$	4.3×10^{14}
GMM_ECAL	1×10^7	$1.63(\pm 0.06) \times 10^{-6}$	6.0×10^{12}
PN_target	1×10^{7}	$1.37(\pm 0.05) \times 10^{-6}$	4.0×10^{12}
PN_ECAL	1×10^8	$2.31 (\pm 0.01) \times 10^{-4}$	4.4×10^{11}
EN_target	1×10^8	$5.1(\pm 0.3) \times 10^{-7}$	1.6×10^{12}
EN_ECAL	1×10^{7}	$3.25(\pm 0.08) \times 10^{-6}$	1.8×10^{12}

Background Rejection and Signal Efficiency

- Set1~Set4: Energy smearing for cell energy
- Others(σ/E): Energy smearing for total energy
- For 4e8 inclusive events, DarkSHINE detector system can reject all of the background events, even with a ECAL of 20% energy resolution.

ECAL Energy Distribution After All Other Cuts - Inclusive

	cube	Wrapper	SiPM Size	coupling*QE	Yield/MeV
R90_LYSO	2.5*2.5*4cm	Ref=90% (ref.)	$9mm^2$	20%	30000(LYSO)
R10_LYSO	2.5*2.5*4cm	Ref=10% (abs.)	$9mm^{2}$	20%	30000(LYSO)
R90_S9_PWO4	2.5*2.5*4cm	Ref=90% (ref.)	$9mm^{2}$	20%	200(PWO)
R90_S36_PWO4	2.5*2.5*4cm	Ref=90% (ref.)	$36mm^2$	20%	200(PWO)

Smearing method

The smearing of ECAL is done in reconstruction/analysis level. For each ECAL cell, the energy of hits are summed, then Gaussian function is used to do the smearing, with the mean value set to truth energy and sigma from the formula $\frac{\sigma}{E} = \frac{A}{\sqrt{E}} + B + \frac{C}{E}$. The A B C parameters are extracted from standalone simulation with optical process enabled.

上海交通

ANGHAI JIAO TONG UNIVERSITY

Signal Mass 10MeV

5000

6000

4000

2000

3000

8000

Energy Cut [MeV]

7000

TSUNG-DAO LEE INSTITUTE

The 20th International Conference on Calorimetry in Particle Physics

Tsung-Dao Lee Institute

Performance of Digitization Algorithm

- $2.5 \times 2.5 \times 4 cm^3$ LYSO
- SiPM digitization dominates in low energy region(E<100MeV)
 - If no saturation correction, the resolution will be better
- Scintillation and ADC has greater contribution when E>100MeV
 - Constant trends come from crystal light yield calibration uncertainty(Scintillation) and SiPM gain calibration uncertainty(ADC)

上海交通大學

GHAI JIAO TONG UNIVERSITY

- Smaller crystal has a better single-cell resolution
- Resolution at low energy region can be roughly consistent with the experimental results

The 20th International Conference on Calorimetry in Particle Physics

Tsung-Dao Lee Institute

Dynamic Range of Cell

- The maximum energy deposit in single crystal cell is about 4GeV
- The hottest crystal is always located in the central area, both for background and signal processes
- At least 3GeV cell dynamic range is required
 - Ecell_Max: saturation value of the energy deposit in crystal

E_Cell: Signal 1000MeV E_ECAL: Inclusive E_Cell: Inclusive ⁸01 Eutries 10⁷ ⁸01 Entries Entries 10² Area 1 Area 1 ECell Max: 500Me Area 2 Area 2 ECell Max: 1000MeV ECell Max: 2000MeV Area 3 Area 3 ECell Max: 3000MeV ECell Max: 4000MeV Area 4 Area 4 ECell Max: 8000MeV 10^{6} 10⁶ 10⁶ 10⁵ 10⁵ 10⁵ 10⁴ 10⁴ 10⁴ 10³ 10³ 10³ 10² ⊨ 10² 10² 10 ⊨ 10 10 10² 10³ 10⁴ ECell [MeV] 10-1 10 10² 10³ ECell [MeV] 1000 2000 3000 4000 5000 6000 7000 8000 900010000 10-1 10 ECAL E total [MeV] Small dynamic range will result It is possible for Area-3 and Area-4 to ٠ The 20th Inte in false signal set a smaller dynamic range

Event ratio of *E*_*ECAL* < 4*GeV*

ECell_Max	Inclusive	Signal 1 MeV	Signal 1000 MeV
100 MeV	~100%	100%	100%
500 MeV	0.1%	90.57%	99.5%
1000 MeV	~0	76.78%	98.56%
2000 MeV	~0	73.75%	98.32%
3000 MeV	~0	73.75%	98.32%
4000 MeV	~0	73.75%	98.32%
8000 MeV	~0	73.75%	98.32%

article Physics

< 24 >

Cosmic Ray test

- (1) $2.5 \times 2.5 \times 2.5 cm^3 LYSO$, ESR, SiPM NDL EQR06, ~9684pe
- ② $2.5 \times 2.5 \times 5 cm^3 LYSO$, ESR, SiPM NDL EQR06, ~5377pe
- (3) $2.5 \times 2.5 \times 10 cm^3 LYSO$, ESR, SiPM NDL EQR06, ~2819pe
- ④ $2.5 \times 2.5 \times 5 cm^3 LYSO$, black aluminum, SiPM NDL EQR06, ~90pe

TSUNG-DAO LEE INSTITUTE

Light Yield Simulation

上海交通大学 Shanghai Jiao Tong University **Tsung-Dao Lee Institute**

- Crystal Number
 - (1) $2.5 \times 2.5 \times 2.5 cm^3 LYSO$, $5 \times 5mm^2$ window
 - (2) $2.5 \times 2.5 \times 5cm^3 LYSO$, $5 \times 5mm^2$ window
 - (3) $2.5 \times 2.5 \times 10 cm^3 LYSO$, $8 \times 8mm^2$ window
- The simulated light yield and resolution roughly match the experimental results

Energy Contributed by Intrinsic Radiation

Tsung-Dao Lee Institute

7.419e+04

5497

- Estimated the energy deposit by ٠ intrinsic radiation in crystal and ECAL at 10MHz event rate
- Average decay energy per event ٠
 - $\langle E_Cell_{Decay} \rangle \sim 15 keV$
 - $\langle E_Total_{Decay} \rangle \sim 74 MeV$ ٠
 - Larger if consider absorbing between adjacent crystals

SiPM Dynamic Range Test and Simulation

- Experiment to measure the intrinsic dynamic range of SiPM with laser
 - Pico-second laser: <40ps pulse width, 405nm wavelength
 - SiPM: DUT with large pixel numbers
 - PMT/Si-PIN: scaler
- Toy Monte Carlo of SiPM when measuring LYSO scintillation light
 - 2×10^5 photons light input~ 40% non-linearity in SiPM output, can be corrected with this model

Toy Monte Carlo including

- SiPM pixel density, PDE spectrum, crosstalk, waveform properties, pixel multi-fired effect
- LYSO emission spectrum, detected • time of scintillation photon

Reconstruction Algorithm

- Motivation: distinguish the multi-particle event, use MVA to explore more physical opportunities
- Cluster Formation \rightarrow Cluster Splitting \rightarrow Cluster-track matching
 - Searching local maxima as clustering seed
 - Absorb the neighbor hits and merge clusters as much as possible
 - Split when more than one local maxima
 - Clusters match to track, subclusters matched to the same track merged
- Performance
 - "90% E reconstructed in leading cluster": 80% for 50MeV e-, ~100% for >500MeV e-
 - Cluster and track can be matched in low energy region

e+/e-

TSUNG-DAO LEE INSTITUTE

New Design ECAL

- Crossing long crystal bars to save costs and prevent beam damage to PCB
 - Crystal that longer than 10cm have a higher unit cost.
 - Use some optical glue to get a long crystal to be validate

Fast Simulation with Machine Learning

- Motivation: As we increase the simulation statistical quantities, it tends to be more background events closing to signal region
 - Geant4 simulation for 3×10^{14} EOTs will consume a massive amount of resources
 - ~5ms per inclusive event. 3×10^{14} EOTs ~ 10^4 CPUs run for 5 years
 - Generation with deep learning network could save a lot of time/money
- NNLS+CGAN can work for ECAL energy data synthesis
 - $\times 10^4$ speed-up could be achieved
 - Upgrade to provided shower shape for detailed validation

[1] Mirza M, Osindero S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
 [2] Chen D, Plemmons R J. Nonnegativity constraints in numerical analysis[M]//The birth of numerical analysis. 2010: 109-139.

netry in Particle Physics