Equalizing the response of the **FOOT** Calorimeter as a function of the ion energy and charge

Istituto Nazionale di Fisica Nucleare

Alessandro Valetti on behalf of the FOOT collaboration

Particle Therapy

- Particle therapy is performed with p or C ions
- The Bragg peak is very effective in minimizing the dose delivered to healthy tissues

Secondary fragments are created in the interaction between treatment beams and tissues

Nuclear Fragmentation

Target Fragmentation:

- Target fragments are produced with low energies (short range, hundreds of μm)
- Difficult to detect

Beam Fragmentation:

- Projectile fragments (longer range)
- Non-zero dose beyond the Bragg peak to address
- ✓ Not present in protontherapy

Spacecraft Shielding

- Charged particles in space: Solar Particles Events (SPEs), Galactic Cosmic Rays (GCRs), geomagnetically trapped particles
- ✓ Interaction with walls/shielding of spacecraft produce secondary fragments

FragmentatiOn Of Target: FOOT

- Aim: measurement of beam and target fragmentation differential cross sections with 5% accuracy
- \checkmark Goal: charge and mass identification at 2-3% and 5% accuracy, respectively
- ✓ Inverse kinematics approaches
- ✓ ⁴He, ¹²C, ¹⁶O beams of 200-400 MeV/u on ¹²C, C_2H_4 and $C_5O_2H_8$ targets (Hadronterapy)
- ✓ 12 C, 16 O beams of 800 MeV/u on 12 C, C_2H_4 and $C_5O_2H_8$ targets (Radioprotection)

FOOT is a collaboration with about 100 members coming from

- INFN: 10 sections
- 3 laboratories: CNAO, GSI, IPHC
- 15 universities: France, Italy, Japan, Germany

5

Electronic Setup

Mass Reconstruction

A. Valetti

TOF (β) – CALO (E_{kin}) TOF (β) – TRACKER (p) TRACKER (p) – CALO (E_{kin}) $A_1 = \frac{m}{u} = \frac{p\sqrt{1-\beta^2}}{u\beta}$ $A_3 = \frac{m}{u} = \frac{p^2 - E_{kin}^2}{2E_{kin}}$ $A_2 = \frac{m}{u} = \frac{E_{kin}}{u(\gamma - 1)}$ **TOF & TRACKER TOF & CALO .** i 🐻 🚺

Fluka simulation ¹⁶O (200 MeV/u) + C_2H_4

Calorimeter

- 320 BGO crystals grouped in modules (9 crystals for each module)
- Crystals dimension: 2x2 cm2 (front)
 3x3 cm2 (back) 24 cm (length)
- ✓ SiPM based readout
- ✓ 36/36 modules fully assembled
- Measurement of the kinetic energy

Multiple data acquisition campaigns for calibration and equalisation at:

- Heidelberg Ion Therapy Center (HIT)
- Centro Nazionale di Adroterapia Oncologica (CNAO)

A. Valetti FOOT Collaboration

HIT – First Energy Calibration Study

- Simple setup with just one fully assembled module
- ✓ Beam focused on central crystal
- No other detector between Calorimeter and beam nozzle (autotrigger)
- Energy scan from 50 to 400 MeV/u with Proton, Helium, Carbon and Oxygen ions

Calibrated crystal resolution for different ions

Energy Calibration Curves

 The calorimeter linearity is affected by the Birks effect

A. Valetti

There is clear dependence on Z 250 ✓ The chosen fit function is derived from 200 Birks formula, we call it modified Birks 150 function (MBF) $ADC(E) = \frac{P_0 E^2}{1 + P_1 E + P_2 E^2}$ 100 Crv1HIT2022 Entries 0.001054 Mean 0.0755 Std Dev 35 50 100 150 200 250 300 350 400 450 E_{Beam} [MeV/u] Good fitting of experimental data 20 $\frac{|E_{fit} - E_{ADC}|}{E_{fit}} < 1\%$ -0.6 -0.4-0.20 0.2

ADC [mV]

450

400

350

300

Proton Helium

Carbon

Oxygen

CNAO – Calibration Validation

- Beam in "Screensaver Mode": sweeping a quarter of the modules at a time during each run greatly reducing data acquisition time
- ✓ Setup with 31 fully assembled modules
- Scan at four different energies 115, 190*, 200, 250
 MeV/u with Carbon ions

Crystal intercalibration is performed using the Modified Birks function

* foreseen at 150 MeV, issue with beam delivery

A. Valetti

FOOT Collaboration

Intercalibration Strategy

How to test whether screensaver run achieve the performance needed?

Calorimeter Resolution

After equalization the integrated energy resolution is ~1%

A. Valetti FOOT Collaboration

Istituto Nazionale di Fisica Nucleare

Atomic Number Dependance

Energy Calibration

leasured Protor

15

Applicability

Energy Calibration – CNAO feasibility

- Taking data at HIT is a challenging task: not enough beam time available to us to measure the response of all the crystals
- Performing calibration procedure at CNAO is possible but CNAO provides only Proton and Carbon ions

Energy Calibration – CNAO feasibility

Same validation procedure used with 4-ionspower law

Seems possible to calibrate all crystals at CNAO with the provided ions

Summary and Results

- Calibration run at HIT with proton, helium, carbon and oxygen ions
- BGO calorimeter is affected by Birks effect (Modified Birks function achieve <1% residual distribution)
- Modified-Birks-Parameter-function based Energy Calibration method has been identified, tested and validated on a single crystal
- Each crystal has different power-law parameters
- CNAO allows calibration for all crystals with only two ions (proton and carbon) using screensaver run
- Screensaver run meets experimental requirement: resolution is well below < 2%
- Next step: full calorimeter calibration

