A Pointing Electromagnetic Calorimeter for FIP Experiments leveraging $X \rightarrow \gamma \gamma$ decays PRISMA⁺ CALDA Graduate School PRISMA⁺ CALDA Particle Detectors DETECTOR LAB

Sebastian Ritter CALOR 2024 | Tsukuba - 20.05.24

sebastian.ritter@uni-mainz.de

on behalf of Volker Büscher, Reinhold Degele, Claudia Caterina Delogu, Karl-Heinz Geib, Steffen Schönfelder, Rainer Wanke

OUTLINE

- Motivation
- ECAL Concept two Options
- Baseline Design
- Simulation Results
- Conceptual Prototype
- Test Beam Results
- Summary + Outlook

MOTIVATION

- SHiP is approved and needs a pointing ECAL
- BDF/SHiP offers advanced experimental setup dedicated to neutrino physics and searching for feebly interacting particles (FIPs)
- FIPs considered a good DM candidate
- To be built at CERN SPS in the next 5 years

Search for Hidden Particles

IGI

20524

EXPERIMENTAL SETUP

- Fixed target experiment
- Long fiducial volume → ideal for studies of long-lived particles
- ECAL part of larger spectrometer

JGU

ECAL REQUIREMENTS

- Energy resolution: $10-15\%/\sqrt{E(GeV)}$
- Particle ID with E/p measurements

Pointing capabilities required for

- reconstruction of FIP decays into two photons $(X \rightarrow \gamma \gamma)$
- background rejection

JGU

TWO OPTIONS EVALUATED IN MAINZ

SplitCAL:

20524

- Plastic scintillator-based sampling calorimeter with 6 cm strips
- Split into two parts to increase lever arm for pointing
- 2-3 high precision layers (eg MicroMegas) for pointing accuracy

StripCAL (focus of this talk)

- Pointing capability through smaller strips
- Single technology \rightarrow simplified design
- Split design will be considered

JGU

BASELINE DESIGN

- Sampling calorimeter
- 20 X₀ deep ECAL to avoid shower leakage
- About 1 m (for 9 mm iron absorbers)
- 40 layers of scintillating strips
 - 1x1 cm² strip cross-section
 - Alternating horizontal/vertical orientation
- Double-sided readout of scintillators with WLS fibers and SiPMs

IGL

20524

GEANT4 SIMULATION

- Single photons hitting ECAL at various angles
- Energy range from 1-20 GeV
- Energy resolution of about $10\%/\sqrt{E(GeV)}$ within requirements
- Largely independent of incident angle

JGL

GEANT4 SIMULATION

- Strip width choice determines angular reconstruction bias
- Mainly affects smaller energies due to low shower depth
- Lack of angular resolution at small incident angles with wider strips
- Ideal scintillator strip width for shower direction reconstruction
 – 1 cm

JGU

GEANT4 SIMULATION

- Strip width choice determines angular reconstruction bias
- Mainly affects smaller energies due to low shower depth
- Lack of angular resolution at small incident angles with wider strips
- Ideal scintillator strip width for shower direction reconstruction
 1 cm

POINTING RESOLUTION FOR 1 CM STRIPS

Sebastian Ritter | A pointing ECAL for FIP Experiments | CALOR 2024 | Tsukuba

JGU

CONCEPTUAL PROTOTYPE

- 9 layers 180 channels
- 20x20 cm² active area
- 1x1x20 cm³ coextruded scintillator strips
- Modular 4 mm iron absorbers
- Single-sided readout on alternating sides
- <u>S13360-1325PE HAMAMATSU</u> SiPMs
 Kuraray YS2 fibers

20 cm

IGL

TEST BEAM @DESY

- Electron energies from 1 to 5 GeV
- 5 angles from 0 to 20°
- Different absorber configurations
- Main goals:

20.5.24

- Validate simulation
- Verify pointing resolution
- Very simple detector concept
 → 6 months from design to test beam

JGU

DESIGN ADAPTATIONS FOR CONCEPTUAL PROTOTYPE

- Small design changes from baseline design to conceptual prototype
- Necessary due to external constraints
- 9 mm \rightarrow 4 mm absorbers
- 1 mm → 12 mm air gap between layers

Better sampling fraction
 Larger lever arm for angular reconstruction

conceptual prototype

baseline

design

CONCEPTUAL PROTOTYPE VS SIMULATIONS

- Simulation and TB data in good agreement
- 9 layers in prototype (65 cm)
- 40 layers in simulation (90 cm)

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

SUMMARY + OUTLOOK

- StripCAL shows very promising performance
- Test beam results match simulation
- Further optimization of both ECAL designs
- Studies towards full-size detector
- Consolidation into one design proposal

IGL

Sebastian Ritter | A pointing ECAL for FIP Experiments | CALOR 2024 | Tsukuba

20.5.24

17

LAYER WISE OFFSET

 In angled setup channels are not aligned between layers

- Individual physical offset for each horizontal layer
- Alignment achieved to ±1 mm

JGU

POINTING: SplitCAL vs StripCAL

Fair comparison difficult at this stage

StripCAL:

- 12 mrad @20 GeV with current baseline design (can be improved)
- 99% efficiency in shower direction reconstruction

SplitCAL:

- 2 mrad (0.12°) @20 GeV resolution if high-precision layers are fully utilized
- Efficiency of event reconstruction about 90% (http://doi.org/10.25358/openscience-7043)

BASELINE DESIGN VS CONCEPTUAL PROTOTYPE PERFORMANCE

Sebastian Ritter | A pointing ECAL for FIP Experiments | CALOR 2024 | Tsukuba

JGU

20