

PFA Reconstruction for CEPC Crystal Bar ECAL

Weizheng Song

on behalf of the CEPC ECAL software working group

IHEP, CAS

The 20th International Conference on Calorimetry in Particle Physics

Tsukuba, Japan, May 20, 2024

CEPC and Detector Requirements

- CEPC (Circular Electron Positron Collider)
 - High precision Higgs, EW, flavor physics and QCD studies.
 - Probe for physics BSM.
- Detector Requirements
 - Jet energy resolution $< 30\%/\sqrt{E}$.
 - BMR (Boson Mass Resolution) < 4%:
 - Clean separation between hadronic decayed Higgs/Z/W.

CEPC Operation mode		ZH	z	W+W-	ttbar
		~ 240	~ 91.2	~ 160	~ 360
Run time [years]		7	2	1	-
CDR (30MW)	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	3	32	10	-
	[ab-1, 2 IPs]	5.6	16	2.6	-
	Event yields [2 IPs]	1×10 ⁶	7×1011	2×107	-
F	Run time [years]	10	2	1	5
Latest (50MW)	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	192	27	0.83
	[ab-1, 2 IPs]	20	96	7	1
	Event yields [2 IPs]	4×10 ⁶	4×1012	5×107	5×105

Particle Flow Approach

Particle Flow Approach

- Promising approach to achieve an unprecedented jet energy resolution.
- Measure the jet by its components: $E_{jet} = E_{tracker} + E_{ECAL} + E_{HCAL}$.
 - Charged particle momentum: tracker.
 - Photon energies: ECAL.
 - Neutral hadron energies: HCAL.
- Hardware and Software.

PFA-oriented Calorimetry

- Hardware: sampling calorimetry
 - ECAL: Si/Sci + W.
 - HCAL: Sci/RPC + W/Iron.
 - High granularity.
- Software: PFA reconstruction
 - PandoraPFA.
 - ArborPFA.

PFA-oriented Calorimetry

- Hardware: sampling calorimetry
 - ECAL: Si/Sci + W.
 - HCAL: Sci/RPC + W/Iron.
 - High granularity.
- Software: PFA reconstruction
 - PandoraPFA.
 - ArborPFA.

PFA-oriented Calorimetry

- Hardware: sampling calorimetry
 - ECAL: Si/Sci + W.
 - HCAL: Sci/RPC + W/Iron.
 - High granularity.
- Software: PFA reconstruction
 - PandoraPFA.
 - ArborPFA.

CEPC Homogeneous Crystal ECAL

Homogeneous crystal ECAL for CEPC

- Better EM resolution: $\sigma_E/E < 3\%/\sqrt{E}$
 - Photon recovery from bremsstrahlung.
 - π^0 reconstruction.
- A novel concept: orthogonal arranged crystal bars
 - Basic module:
 - BGO crystal bar.
 - Double-end readout with SiPM (Q, T).
 - Cross-location by bars: 2D measurements to get 3D high granularity.
 - Compared with high granularity sampling ECAL:
 - O(10) less readout channels.

Compatible with PFA?

Parameter	BGO	
<i>R_M</i> (cm)	2.23	
<i>X</i> ₀ (cm)	1.12	
λ_I (cm)	22.7	
Light yield (ph/MeV)	7400	
Decay time (ns)	300	

Hardware

110

Sampling SiW ECAL (with threshold)

Material	<i>X</i> ₀ /cm	R _M /cm	λ_I /cm	λ_I/X_0
W	0.35	0.93	9.6	27.4
BGO	1.12	2.23	22.8	20.3
Ratio	3.2	2.4	2.4	0.74

Software

- Clustering
- Pattern recognition
- + Energy splitting

X / mm

Hardware

- More shower overlap with larger crystal R_M and X_0/λ_I
- There are ghost hits (ambiguity) when getting cross location from 2D to 3D

Software

- Clustering
- Pattern recognition
- + Energy splitting

Hardware

- More shower overlap with larger crystal R_M and X_0/λ_I
- There are ghost hits (ambiguity) when getting cross location from 2D to 3D

Software

- Clustering
- Pattern recognition
- + Energy splitting

Hardware

- More shower overlap with larger crystal R_M and X_0/λ_I
- There are ghost hits (ambiguity) when getting cross location from 2D to 3D
- Multi-particle ambiguity in jet events

Software

- Clustering
- Pattern recognition
- + Energy splitting
- + Ambiguity removal

Hardware

- More shower overlap with larger crystal R_M and X_0/λ_I
- There are ghost hits (ambiguity) when getting cross location from 2D to 3D
- Multi-particle ambiguity in jet events

Software

Clustering

Simulation

Detector geometry

- Global: octagonal ECAL, R = 1.86 m, L = 6.6 m, H = 28 cm.
- Crystal Bar(BGO): $1 \times 1 \times 40 \sim 60 \text{ cm}^3$.
- Super Cell: 2 layers of perpendicular crossing bars $\sim 40 \times \sim 60 \times 2 \text{ cm}^3$.
- Ideal geometry: no wrapping, electronics, cooling, mechanics, etc.
- Ideal digitization for energy and time
- Event display

Reconstruction algorithm

Dedicated PFA reconstruction for CEPC crystal bar ECAL

May 20, 2024

Global neighbor clustering for pre-processing

Use the local maximum to simplify the pattern in homogeneous ECAL

May 20, 2024

Global neighbor clustering for pre-processing

Shower recognition

Use the local maximum to simplify the pattern in homoge

Weizheng Song(IHEP) | PFA reconstruction for CEPC

Shower recognition:

- 3 individual algorithms for different types: track-match, Hough-transformation, Cone-clustering.
- A set of topological cluster merging.

May 20, 2024

Shower recognition:

- 3 individual algorithms for different types: track-match, Hough-transformation, Cone-clustering.
- A set of topological cluster merging.

May 20, 2024

Energy splitting and matching

Expected energy: $E_{i\mu}^{exp} = E_{\mu}^{seed} \times f(|x_i - x_c|)$

- Splitting for the overlapped shower:
 - Calculate the expected energy deposition from EM profile.

Assigned weight: $w_{i\mu} = \frac{E_{i\mu}^{exp}}{\sum_{\mu} E_{i\mu}^{exp}}$

- Ambiguity removal:
 - Information from: track, neighbor tower, energy.

Energy splitting and matching

- Splitting for the overlapped shower:
 - Calculate the expected energy deposition from EM profile.

Expected energy: $E_{i\mu}^{exp} = E_{\mu}^{seed} \times f(|x_i - x_c|)$ Assigned weight: $w_{i\mu} = \frac{E_{i\mu}^{exp}}{\sum_{\mu} E_{i\mu}^{exp}}$

- Ambiguity removal:
 - Information from: track, neighbor tower, energy.

Track

Weizheng Song(IHEP) | PFA reconstruction for CEPC crystal bar ECAL

Mean

---- Shower1

Std Dev

22.05

26.64

Single photon reconstruction:

- EM shower recognition efficiency: $\sim 100\%$ for >1 GeV photons.
- Energy resolution: stochastic term = 0.91% +- 0.02%

*Without realistic digitization model.

*Without wrapping, electronics, cooling, mechanics in geometry.

6

9

12

Nearby particle separation:

- Key performance in PFA reconstruction.
- $\gamma \gamma$ separation : ~20 mm @ 100% efficiency.
- $\gamma \pi$ separation : 50 ~ 100 mm @ 100% efficiency.

• Physics performance: $H \rightarrow \gamma \gamma$

- Pure channel for ECAL performance, a benchmark channel for physics.
- An energy correction for longitudinal leakage is applied.

*No lateral leakage without considering cracks between modules.

*Ideal detector geometry and digitization

May 20, 2024

• Physics performance: $e^+e^- \rightarrow ZH \rightarrow \nu\nu gg$

Boson mass resolution (BMR) of di-jet event is essential for CEPC detector.

May 20, 2024

Weizheng Song(IHEP) | PFA reconstruction for CEPC crystal bar ECAL

Ongoing and Next Step

Next step: a full PFA with

- Optimized 32-side ECAL geometry with fine geometry and material description.
- Realistic digitization model.
- Energy correction for the cracks between modules.
- Full simulation and reconstruction of tracker.
- For better understanding: decouple the contributions in current BMR / JER.

Summary

- A novel crystal ECAL design for CEPC reference detector
 - Optimal EM resolution, excellent low energy sensitivity, lower cost.
 - R&D progresses in hardware are introduced in Baohua's talk.
- A dedicated PFA reconstruction for crystal bar ECAL
 - Main challenges are the shower overlapping and ambiguity.
 - Promising separation power and a preliminary BMR are derived.
- Feasibility analysis of crystal bar ECAL is very promising
 - Will broaden detector options and reconstruction methods for future electron-positron collider experiments.

