Simulations of Electroweak Dumbbells and Symmetry Breaking

Teerthal Patel

8th May, 2024

Generation, evolution, and observations of cosmological magnetic fields

Bernoulli Center

Work with Tanmay Vachaspati, Paul Saffin & Zong-Gang Mou

Outline

Part I

Relaxed configurations of electroweak dumbbells

T.P & Vachaspati, T. (2023), PRD

Annihilation dynamics of electroweak dumbbells

T.P & Vachaspati, T. (2024), JHEP

Part II

Distribution of monopole-antimonopole pairs.

T.P & Vachaspati, T. (2022), JCAP

Cosmological magnetogenesis from EWSB Ongoing with Tanmay, Paul and Mou

Image Credits: NASA/WMAP Science Team

Background

Why monopoles?

Elegant symmetrization of Maxwell's theory Generic prediction in GUT theories

The hunt continues

Originates all the way back to Dirac in 1931

Background

Confined Monopoles / Dumbbells

G. 't Hooft (1974), Nucl. Phys. A. M. Polyakov (1974), JETP Lett.

H. B. Nielsen and P. Olesen (1973), Nucl. Phys. B

Y. Nambu (1977), Nucl. Phys. B

Dumbbells in the Electroweak theory

The Weinberg-Salam theory of electromagnetic and weak interactions admits classical configurations in which a pair of magnetic monopoles is bound by a flux string of the Z^0 field. They give rise to Regge trajectories of excitations with a mass scale in the TeV range.

Dumbbells undergoing relativistic rotation could be stable enough to be produced in accelerators

Background 4

't Hooft-Polyakov Monopoles

Infinite String

PART I : Dumbbells

In our simulations, we studied the monopole-antimonopole configurations in the electroweak theory (minus fermions)

Annihilation dynamics of electroweak dumbbells

T.P & Vachaspati, T. (2024), JHEP

Dumbbell Configuration

I: Dumbbell Configuration

Relaxation Outline

I: Dumbbell Configuration 7

Relaxation Algorithm

Parallelization

- Divide lattice in sub-domains
- Assign a subdomain to a unique CPU processor
- Compute update and exchange boundary data

Domain decomposition

Asynchronous Parallelization

0							
1	0						
2	1	0					
З	2	1	0				
4	3	2	1	0			
5	4	3	2	1	0		
6	5	4	3	2	1	0	
7	6	5	4	3	2	1	0

- Gauss-Seidel relaxation requires updated field values at neighboring lattice points
- Asynchronous parallelization scheme developed by Ayush Saurabh

Gauss-Seidel-Electroweak-Dumbbell-Relaxation-Parallelized

Aside: Simulations

Relaxation Outline

I: Dumbbell Configuration

Numerical Relaxation

10

Results: Energy v separation

Results: Magnetic fields

$$B_r \big|_{r \gg z_m} = \kappa (1 - \cos \gamma) \frac{\cos \theta}{r^2}$$

Results: Magnetic fields

I: Dumbbell Configuration 13

 $B_{\phi}|_{r\gg z_m} = -\kappa z_m \sin \gamma \frac{\sin \theta \cos \theta}{r^3}$

PART I: Dynamics

With the numerically relaxed field configuration, we can now simulate the dynamics

Relaxed configurations of electroweak dumbbells

T.P & Vachaspati, T. (2023), PRD

Annihilation dynamics of electroweak dumbbells

T.P & Vachaspati, T. (2024), JHEP

Dumbbell Dynamics

EOMs

Initial: Relaxed configuration

Simulate evolution

Dirichlet **Boundaries**

 $\partial_0^2 \Phi = D_i D_i \Phi - 2\lambda (|\Phi^2| - \eta^2) \Phi$ $\partial_0^2 Y_i = -\partial_j Y_{ij} + g' \operatorname{Im}[\Phi^{\dagger}(D_i \Phi)]$ $\partial_0^2 W_i^a = -\partial_j W_{ij}^a - g \epsilon^{abc} W_j^b W_{ij}^c + g \operatorname{Im}[\Phi^{\dagger} \sigma^a(D_i \Phi)]$

Numerical Relativity method (PDE approach from Paul's talk)

 g_p

EW-Monopole-Antimonopole-annihilation Public

I: Dumbbell dynamics 15

Dumbbell Annihilation

Energy density isosurfaces

I: Dumbbell dynamics 16

Dumbbell Annihilation

Energy density isosurfaces $\gamma = \pi$

l: D

Separation-Lifetime Relation

I: Dumbbell dynamics 18

Magnetic relics

Magnetic relics

Magnetic relics

Magnetic energy over time

Relic ME after annihilation

 $\gamma = \pi$

I: Dumbbell dynamics 21

Part I: Summary

- Resolved the static dumbbell configurations
- Dumbbell annihilation : Lifetimes and magnetic relics
- Maximally twisted dumbbells form sphaleron-like configurations before decay
- Chains of twisted dumbbells could have interesting cosmological consequences (Talk by Tanmay)

Dumbbell is unstable and we can't simulate rotation before it decays!

EWSB Magnetogenesis Simulations

ang, Y., Vachaspati, T., & Ferrer, F. (2019) *PRD*

Our EWSB simulations

w TV, Paul Saffin & Zong-Gang Mou

• Peak scale in large lattices

• CP violation: Helical magnetic fields

UNDER CONSTRUCTION

Side Spiel : Parallelization/GPU

- Explosive growth due to AI development
- Inherently parallelized
- Need to write GPU kernels

Complex control logic

(2022) H100 : x3

_	İ		Ľ	1	Ľ	1	1	1	1	1	1	1	П	1	1	
-																
-																
_																
-	1	1	1	1	1	1		1		1	1	1	T.			

DRAM

GPU

- GPU Graphics Processing Unit
- High compute density
- Simple control logic

(2024) H200 : 4.8Tb/s

2 Bubbles - Higgs

Credit: H Ritsch & M Renn

w T. Vachaspati, Paul Saffin & Zong-Gang Mou

2 Bubbles – Higgs and B

w T. Vachaspati, Paul Saffin & Zong-Gang Mou

20 Bubbles – Higgs and B

w T. Vachaspati, Paul Saffin & Zong-Gang Mou

Our setup

Evolve until equilibrium

$$\begin{split} \dot{\Phi}(\vec{x}) &= \dot{W}_i^a(\vec{x}) = \dot{Y}_i(\vec{x}) = 0\\ \Phi(\vec{x}) & W_i^a(\vec{x}) & Y_i^a(\vec{x}) \end{split}$$
Bose-Einstein Distribution of Fourier modes

w T. Vachaspati, Paul Saffin & Zong-Gang Mou

w T. Vachaspati, Paul Saffin & Zong-Gang Mou

Preliminary results

w T. Vachaspati, Paul Saffin & Zong-Gang Mou

Preliminary results

w T. Vachaspati, Paul Saffin & Zong-Gang Mou

Part II: Summary

• GPU code developed to simulate EWSB

TO DO

- Peak scale growth (For large lattices)
- Small-k scaling
- CP violating terms

More to come soon!

Thank You