The Hubble Tension and Primordial Magnetic Fields

SFL

Levon Pogosian Simon Fr<u>aser University</u>

K. Jedamzik and LP, arXiv:2004.09487, Phys. Rev. Lett. LP, G.-B. Zhao, K. Jedamzik, arXiv:2009.08455, Ap.J.Lett K. Jedamzik, LP, G.-B. Zhao, arXiv:2010.04158, Comm. Physics S. Galli, LP, K. Jedamzik, L. Balkenhol, arXiv:2109.03<u>816, Phys. Rev. D</u>

The Hubble Tension

CMB (Planck): $H_0 = 67.36 \pm 0.54 \text{ km/s/Mpc}$

Cepheid-calibrated SNIa (SH0ES): $H_0 = 73 \pm 1 \text{ km/s/Mpc}$

Table from arXiv:2203.06142

The tension is between measurements that rely on the standard model to determine *the sound horizon at recombination* and those that do not

The Hubble Tension

Table from arXiv:2203.06142

H₀ from CMB (and BAO)

6000

5000

4000

Sound horizon at recombination, r*

 $l_{peak} \sim 1/\theta_{*_{Planck best-fit}}$

2000

0.3

2500

Smaller $r_* =>$ smaller $d_* =>$ larger H_0

 θ_*

H₀ from CMB

 $z_* = z_*(\omega_r, \omega_b, \omega_m)$ is computed using a recombination model to get r_*

H₀ from CMB

4 key parameters: ω_r , ω_m , ω_b , h

4 key pieces of information: T_{CMB} , eISW, peak heights, θ_*

Using the BAO data to constrain H₀

BAO data provides angular sizes of the sound horizon r_d measured at different redshifts

By itself, BAO data constrains r_dh and Ω_m

To get H_0 from BAO:

- use *r_d* from the LCDM fit to CMB
- use the BBN value of ω_b and compute r_d assuming the standard recombination model. This gives: $H_0 = 67.35 \pm 0.97 \text{ km/s/Mpc} \text{ (SDSS+)}$ $H_0 = 68.53 \pm 0.80 \text{ km/s/Mpc} \text{ (DESI Y1)}$
- use external information on $\omega_m = \Omega_m h^2$ to break the r_d -h degeneracy e

$$\beta_{\perp}(z) = D_M(z)/r_{\rm d} = \int_0^z \frac{2998 \text{ Mpc } dz'}{r_{\rm d}h} \sqrt{\Omega_{\rm m}(1+z')^3 + 1 - \Omega_{\rm m}}$$

eBOSS Collaboration, Alam et al, arXiv:2007.08991, Phys. Rev. D

Why it is challenging to (fully) relieve the Hubble tension by reducing the sound horizon

$$\theta^{-1}(z) = \frac{D(z)}{r_d} = \int_0^z \frac{2998 \text{ Mpc } dz'}{r_d h \sqrt{\Omega_m (1+z')^3 + 1 - \Omega_m}} = \int_0^z \frac{2998 \text{ Mpc } dz'}{r_d \omega_m^{1/2} \sqrt{(1+z')^3 + h^2/\omega_m - 1}}$$

CMB and BAO provide measurements of this at multiple redshifts z

Treat r_d as free parameter

For a given matter density parameter $\omega_m = \Omega_m h^2$, each $\theta(z)$ defines a line in the $r_d - h$ plane

$$r_d(h)\Big|_{\omega_m,z} = \theta(z) \int_0^z \frac{2998 \text{ Mpc } dz'}{\omega_m^{1/2} \sqrt{(1+z')^3 + h^2/\omega_m - 1}} \quad \clubsuit \quad h = h(r_d)\Big|_{\omega_m,z}$$

Why it is challenging to (fully) relieve the Hubble tension by reducing the sound horizon

For a given matter density parameter $\omega_m = \Omega_m h^2$, each $\theta(z)$ defines a line in the $r_d - h$ plane

$$r_d(h)\Big|_{\omega_m,z} = \theta(z) \int_0^z \frac{2998 \text{ Mpc } dz'}{\omega_m^{1/2} \sqrt{(1+z')^3 + h^2/\omega_m - 1}} \quad \Longrightarrow \quad h = h(r_d)\Big|_{\omega_m,z}$$

We can make the CMB best fit H_0 larger by making r_d smaller and moving up the red line

But that creates a tension with the BAO constraint

K. Jedamzik, LP, G.-B. Zhao, arXiv:2010.04158

Why it is challenging to (fully) relieve the Hubble tension by reducing the sound horizon

- To make the CMB line pass through the BAO/SH0ES overlap region one needs to increase $\omega_{\rm m}$
- A larger $\omega_{\rm m}$ creates tension with weak lensing data, e.g. DES and KiDS, by making the S₈ larger

The sound horizon and H₀ determined from BAO in a recombination-independent way

β

- Treat r_d as an independent parameter
- Providing $\omega_m = \Omega_m h^2$ breaks the r_d -h degeneracy
- Combine BAO with CMB and galaxy weak lensing
- Or, <u>combine BAO with a prior on Ω_mh²</u>, e.g. use the value of Ω_mh², as measured by Planck, thus testing consistency of BAO with CMB withing LCDM

$$\begin{array}{lll} {}_{\perp}(z) &=& D_M(z)/r_{\rm d} \\ &=& \int_0^z \frac{2998 \ {\rm Mpc} \ {\rm d}z'}{r_{\rm d}h\sqrt{\Omega_{\rm m}(1+z')^3 + 1 - \Omega_{\rm m}}} \\ &=& \int_0^z \frac{2998 \ {\rm Mpc} \ {\rm d}z'}{r_{\rm d}\omega_m^{1/2}\sqrt{(1+z')^3 + {\color{black}h^2}/\omega_m - 1}} \end{array}$$

LP, G.-B. Zhao, K. Jedamzik, arXiv:2009.08455, Ap. J. Lett

Testing consistency of BAO with CMB in a recombination-independent way

- Treat r_d as a free parameter
- Combine BAO with with a prior on ω_m
- Check if the values of H_0 and r_d are consistent with those in Planck LCDM

Shown are are results for SDSS+ BAO (pre-DESI Year 1)

LP, G.-B. Zhao, K. Jedamzik, arXiv:2009.08455, Ap. J. Lett

DESI Year 1 update

DESI Y1 prefers a higher value for the product r_dh :

r_dh = 102.33 +/- 1.27 for DESI

VS

r_dh = 99.98 +/- 1.21 for SDSS+

Gaussian prior from Planck LCDM: $\Omega_m h^2 = 0.142 + -0.001$

LP, K. Jedamzik, G.-B. Zhao, in preparation

Adding the CMB "BAO" point

Treat CMB peaks as another BAO point

$$\beta_{\perp}^{\star} = \frac{r_{\star}}{\theta_{\star}r_{\rm d}}$$

r* - sound horizon at photondecoupling (peak of the visibilityfunction)

r_d – sound horizon at baryon decoupling

The ratio, r_*/r_d , is the same across different models, use the LCDM value

DESI Year 1 BAO vs CMB

LP, K. Jedamzik, G.-B. Zhao, in preparation

DESI Year 1 update

	$\Omega_{ m m}h^2$	$r_{ m d}h~[{ m Mpc}]$	$\Omega_{ m m}$	$r_{ m d}~[{ m Mpc}]$	$H_0 \; [{\rm km/s/Mpc}]$
Planck LCDM	0.142 ± 0.001	99.44 ± 0.82	0.3126 ± 0.0064	147.44 ± 0.23	67.44 ± 0.47
$SDSS^+BAO$	-	99.98 ± 1.21	0.295 ± 0.016	-	=
$SDSS^+BAO + \Theta_{CMB}$	-	99.28 ± 1.08	0.312 ± 0.009	-	-
${ m SDSS^+BAO}+\Omega_{ m m}h^2$	Planck prior	100.01 ± 1.21	0.294 ± 0.015	144.1 ± 2.5	69.4 ± 1.8
${ m SDSS^+BAO}+\Theta_{ m CMB}+\Omega_{ m m}h^2$	Planck prior	99.35 ± 1.07	0.312 ± 0.009	147.5 ± 0.8	67.37 ± 0.96
DESI Y1 BAO	-	102.33 ± 1.27	0.290 ± 0.014	-	-
DESI Y1 BAO + $\Theta_{\rm CMB}$	-	102.34 ± 1.03	0.290 ± 0.008	-	-
DESI Y1 BAO + $\Omega_{ m m}h^2$	Planck prior	102.46 ± 1.25	0.288 ± 0.014	146.2 ± 2.1	70.1 ± 1.7
DESI Y1 BAO + $\Theta_{\rm CMB}$ + $\Omega_{\rm m}h^2$	Planck prior	102.3 ± 1.0	0.290 ± 0.008	146.5 ± 0.8	69.88 ± 0.93

- SDSS+ BAO is more consistent with the Planck LCDM model with standard recombination, but in slight tension with the CMB acoustic peaks if no recombination model assumed
- **DESI Y1 is less consistent** with Planck LCDM **with standard recombination**, but in perfect agreement with the CMB acoustic peaks if no recombination model assumed

- A smaller sound horizon at decoupling appears to be a necessary (but not necessarily sufficient) ingredient to relieve the Hubble tension
- Many models proposed with the aim of solving the Hubble tension by reducing the sound horizon

Early dark energy, interacting neutrinos, modified gravity, ...

• Primordial Magnetic Fields may help relieve the tension

Cosmic Magnetic Fields

\circ Micro-Gauss (μ G) fields in galaxies

- produced astrophysically via dynamo?
- μG fields seen in very high-z galaxies
- primordial origin? (need 0.01-0.1 nano-Gauss)

Magnetic fields in filaments

- 3-10 Mpc radio emission ridge connecting two merging clusters suggests ~0.1-0.3 µG fields *F. Govoni et al, arXiv:1906.07584, Science (2019)*
- Faraday Rotation Measures from filaments suggest ~0.01-0.1 μG fields

E. Carretti et al, arXiv:2210.06220, MNRAS (2022)

o Magnetic fields in voids?

- missing GeV γ -ray halos around TeV blazars
- A. Neronov and I. Vovk, arXiv:1006.3504, Science (2010)

o Generated in the early universe? Not "if", but "how much"

- phase transitions
- inflationary mechanisms

Vachaspati, arXiv:2010.10525

Bounds on Cosmological Magnetic Fields

Plot from T. Vachaspati, arXiv:2010.10525

How do the magnetic fields help relieve the Hubble tension?

In two sentences:

- Magnetic fields present in the plasma prior to recombination induce baryon inhomogeneities (clumping) on small (~1kpc) scales, speeding up the recombination Jedamzik & Abel, arXiv:1108.2517, JCAP (2013); Jedamzik & Saveliev, arXiv:1804.06115, PRL (2019)
- An earlier completion of recombination results in a smaller sound horizon at decoupling, helping to relieve the H₀ tension *Jedamzik & LP, arXiv:2004.09487, PRL (2020)*

Magnetic field induces density inhomogeneities on scales below the photon mean free path

 $L>l_\gamma$ tightly coupled incompressible baryon-photon fluid $L< l_\gamma$ viscous compressible baryon gas

Plasma develops density fluctuations on small scales (below the photon mean free path)

Jedamzik and Abel, arXiv:1108.2517, JCAP (2013)

Magnetic field induces density inhomogeneities on scales below the photon mean free path

$$\alpha \sim 1/l_{\gamma} \qquad \frac{1}{2} \nabla B^{2} - (\mathbf{B} \cdot \nabla) \mathbf{B}$$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} + c_{s}^{2} \frac{\nabla \rho}{\rho} = -\alpha \mathbf{v} - \frac{1}{4\pi\rho} \mathbf{B} \times (\nabla \times \mathbf{B})$$

$$c_{s}^{2} = 1/3 \text{ for } L > l_{\gamma}$$

$$C_{s}^{2} = 1/3 \text{ for } L > l_{\gamma}$$

$$Drag \text{ force set by}$$

$$\text{the photon}$$

$$\text{mean free path } l_{\gamma}$$

$$Pushes \text{ baryons}$$

$$\text{towards regions}$$

$$\text{of low magnetic}$$

$$\text{energy density}$$

 $L>l_\gamma ~~ {\rm tightly~coupled~incompressible~baryon-photon~fluid} \\ L< l_\gamma ~~ {\rm viscous~compressible~baryon~gas}$

Density fluctuations (on ~1 kpc scales) will grow until either pressure counteracts compression or the source magnetic field decays

$$\frac{\delta \rho}{\rho} \simeq \min\left[1, \left(\frac{v_A}{c_s}\right)^2\right]$$

Jedamzik and Abel, arXiv:1108.2517, JCAP (2013)

Inhomogeneities enhance the recombination rate

$$<\frac{\mathrm{dn}_{\mathrm{e}}}{\mathrm{d}t} + 3Hn_{e} = -C\left(\alpha_{e}n_{e}^{2} - \beta_{e}n_{H^{0}}\mathrm{e}^{-h\nu_{\alpha}/T}\right) >$$
$$n_{e} = \langle n_{e} \rangle + \delta n_{e} \rightarrow \langle n_{e}^{2} \rangle > \langle n_{e} \rangle^{2}$$

Inhomogeneities enhance the recombination rate

$$\left\{ \frac{\mathrm{dn}_{\mathrm{e}}}{\mathrm{d}t} + 3Hn_{e} = -C\left(\alpha_{e}n_{e}^{2} - \beta_{e}n_{H^{0}}\mathrm{e}^{-h\nu_{\alpha}/T}\right) \right\}$$

$$\left\{ n_{e}^{2} \right\} > \left\langle n_{e} \right\rangle^{2}$$

$$\left\{ n_{e}^{2} \right\} > \left\langle n_{e} \right\rangle^{2}$$

$$\left\{ n_{e}^{2} \right\} > \left\langle n_{e} \right\rangle^{2}$$

$$\left\{ n_{e}^{2} \right\} = \left\{ n_{e}^{2} \right\}$$

$$\left\{ n_{e}^{2} \right\}$$

$$\left\{ n_{e}^{2} \right\}$$

$$\left\{ n_{e}^{2} \right\} = \left\{ n_{e}^{2} \right\}$$

$$\left\{ n_{e}^{2} \right\}$$

$$\left\{$$

Jedamzik and Abel, arXiv:1108.2517, JCAP (2013)

The toy-model implementation*

The 3–zone model (M1) for the baryon density PDF from Jedamzik & Abel (2013)

Modified RECFAST with one additional parameter -- baryon clumping

$$b = (\langle n_b^2 \rangle - \langle n_b \rangle^2) / \langle n_b \rangle^2$$

Datasets:

- CMB temperature, polarization and lensing from Planck 2018
- BAO, Pantheon SNIa, DES Y1
- SH0ES determination of H₀
- * Kept us busy during COVID

Fitting the M1 model to Planck only

- Strong degeneracy between the clumping parameter b and H₀
- No preference for a non-zero value of b

Fitting the M1 to Planck + H0

a clear detection of clumping

Fitting the M1 model to all data

K. Jedamzik and L. Pogosian, arXiv:2004.09487, PRL

Clumping required to relieve the H₀ tension

Plot from T. Vachaspati, arXiv:2010.10525

The Silk Damping Tail in M1

 $(C_{\ell} - C_{\ell}^{\Lambda CDM})/C_{\ell}^{\Lambda CDM}$

LCDM and M1 make comparable predictions for CMB Temperature (T) and polarization (E) spectra for I<2000, but the differences become large at higher I

S. Galli, LP, K. Jedamzik, L. Balkenhol, arXiv:2109.03816, PRD

ACT DR4 and SPT-3G Y1 constraints on the M1 model

S. Galli, LP, K. Jedamzik, L. Balkenhol, arXiv:2109.03816, PRD

Takeaways from the M1 toy-model tests

- Magnetic fields could raise the CMB+BAO inferred H_0 to ~70 km/s/Mpc
- The amount of clumping needed for this corresponds to $\sim 0.05-0.1$ nano-Gauss pre-recombination magnetic field
- The Silk damping tail is very sensitive to the details of the baryon PDF and the high-resolution CMB data could provide a stringent test of the proposal
- Drawbacks of the 3-zone model
 - *Ad hoc* choice of the PDF
 - Assumes the PDF does not evolve
 - Does not account for peculiar velocities and Ly-alpha transport
- A necessary next step:

Derive recombination histories from realistic MHD simulations

MHD simulations

Performed by Karsten Jedamzik and Tom Abel using a modification of ENZO (https://enzo-project.org)

Compressible magneto-hydrodynamics (MHD) in an expanding universe before, during and after recombination, with added photon drag

Coupled with a "chemical solver" (similar to RECFAST) that computes abundances of ionized hydrogen and helium at each time step

Additional modeling of Lyman-alpha photon transport across the simulation volume

Four PMF scenarios to be considered:

Phase-transition-sourced blue spectrum with and without helicity Inflation-sourced scale-invariant spectrum with and without helicity

Magnetically induced baryon clumping

Non-helical PMF, blue spectrum, 0.5 nano-Gauss (comoving) strength, (24 kpc)³ box

Projected Over Density

Projected Over Density

K. Jedamzik and T. Abel, arXiv:2312.11448

Baryon density distribution

FIG. 4. The baryon probability distribution function (pdf) for several redshifts for the numerical simulation $P(\Delta)$. shown in Fig. 1. $P(\Delta)$ is shown by red (green) lines be-(after) the maximum of the clumping factor occurs fore Is is shown for redshifts 1250, respectively. at zmax \approx 4400, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 500, 100 = z and 10. The lines for $P(\Delta)$ at redshifts z = 4400 and z = 10 are slightly thicker. For $z > z_{max}$ the maximum moves to lower densities and very high density regions get more and more probable, whereas for lower redshifts $z < z_{max}$ the maximum moves to higher densities and very high density regions get less and less probable.

FIG. 5. The quantity $P(\Delta)\Delta$, with $P(\Delta)\Delta d\Delta$ giving the probability to find a baryon at overdensity between Δ and $\Delta + d\Delta$, for the simulation shown in Fig. 1 at redshift z = 1500. For comparison the analogous quantity for the M1 three-zone model at the same clumping factor b = 1.28 is shown (green dots), illustrating that three zone models do not capture the baryon probability function correctly.

Preliminary results: b_{pmf}, H₀ and S₈

Ionized fraction from simulations vs M1

Full mixing $b_{pmf} = 2.1$ mix=0.25, $b_{pmf}=2.46$ M1 b=0.5

b _{pmf}	pG at z=10
1	4.3
2	9.0
3	20.0
4	37.4
5	70.2
6	136.7

Differences in CMB spectra

$$(C_{\ell} - C_{\ell}^{\Lambda CDM})/C_{\ell}^{\Lambda CDM}$$

Preliminary results: χ^2 comparison

Preliminary results: χ^2 comparison

	LCDM	PMF Full Mix	PMF Part Mix
CamSpec	10545.6	10551.6	10549.6
Low-ell EE	397.02	396.02	395.72
Low-ell TT	22.75	20.60	20.95
DESI BAO	16.55	12.74	13.69
Total	10982	10981	10980

The Outlook

The proposal is still alive, which is not trivial

We are just starting:

More simulations to beat the variance

Code comparisons

Helical PMF simulations, scale-invariant case

The data is evolving too

The Outlook

This is <u>a highly falsifiable proposal</u> (having a well-defined target helps!)

High-resolution CMB temperature and polarization anisotropies S. Galli, L. Pogosian, K. Jedamzik, L. Balkenhol, arXiv:2109.03816, PRD

Cosmological Recombination Radiation – CMB spectral distortion sourced by the emission/absorption of photons during the recombination *M. Lucca, J. Chluba, A. Rotti, arXiv:2306.08085, MNRAS (2023)*

μ - and y-type spectral distortions of CMB

K. Jedamzik, V. Katalinic, A.V. Olinto, astro-ph/9911100, PRL (2000) K. Kunze, E. Komatsu, arXiv:1309.7994, JCAP (2014)

Faraday Rotation produced at last scattering (by ~0.1 nG scale-invariant PMF)

L. Pogosian, M. Shimon, M. Mewes, B. Keating, arXiv:1904.07855, PRD (2019)

γ -ray astronomy as a probe of magnetic fields in voids

W. Chen, J. H. Buckley, and F. Ferrer, arXiv:1410.7717, PRL (2015) S. Archambault et al. (VERITAS), arXiv:1701.00372, ApJ (2017)

Radio astronomy: rotation measures, FRBs, ...

Dark matter mini-halos? P. Ralegankar, arXiv:2303.11861

Conclusions

- The Hubble tension hints at a missing ingredient in the physics of recombination. That missing ingredient could be a primordial magnetic field of strength that happens to be of the right order to also explain the observed galactic, cluster and intergalactic fields
- This can only raise the value of H₀ up to 70 km/s/Mpc (it could be all we need)
- Primordial magnetic fields were not invented to solve the Hubble tension. A detection of PMF is important by itself, as a solution of a much older puzzle and a tantalizing evidence of new physics in the early universe
- Future high resolution CMB temperature and polarization anisotropy data and other types of observations, along with comprehensive MHD simulations, will provide a conclusive test of this scenario

SDSS+ BAO vs CMB

LP, K. Jedamzik, G.-B. Zhao, in preparation

Difficulty with late time-solutions

It is challenging to come up with a model that can pass through both the BAO and the SNIa data without altering the sound horizon r_d

Pogosian et al, arXiv:2107.12992, Nature Astronomy