Numerical simulations from reheating to turbulent MHD

Axel Brandenburg (Nordita)

- Possibility of magnetogenesis

 Inflationary + reheating
 Ratra model
 Axion, axion-like
 Electroweak (EW) + QCD
 Twisted EW dumbbell decay
 Chiral magnetic effect
- Early universe turbulence • From JxB
 - \circ Other sources
 - \circ \rightarrow Gravitational waves
- Then "just" decay

 Magnetically dominated
 Helical
 nonhelical
 → begin with this

Primordial magnetic fields in the early 1990s

- Magnetic fields from phase transitions
 - Vachaspati (1991)
 - Cheng & Olinto (1994)
 - o Baym, Bödeker, & McLerran (1996)
- Magnetic fields a "stable" feature of electroweak phase transitions Martin & Davis (1995)
- Early universe plasma has high conductivity O Enqvist & Olesen (1994)
- Magnetic field would be imprinted on comoving plasma

 Cheng, Schramm, Turan (1994)
 Enqvist, Rez, & Semikoz (1995)
- Typical length scales: at most 3 cm Too small to be of astrophysical interest

Large-scale magnetic fields from hydromagnetic turbulence in the very early universe

Axel Brandenburg*

Nordita, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Kari Enqvist[†]

Department of Physics, P.O. Box 9, FIN-00014 University of Helsinki, Finland

Poul Olesen[‡]

The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark (Received 1 February 1996)

We investigate hydromagnetic turbulence of primordial magnetic fields using magnetohydrodynamics (MHD) in an expanding universe. We present the basic, covariant MHD equations, find solutions for MHD waves in the early universe, and investigate the equations numerically for random magnetic fields in two spatial dimensions. We find the formation of magnetic structures at larger and larger scales as time goes on. In three dimensions we use a cascade (shell) model that has been rather successful in the study of certain aspects of hydrodynamic turbulence. Using such a model we find that after $\sim 10^9$ times the initial time the scale of the magnetic field fluctuation (in the comoving frame) has increased by 4–5 orders of magnitude as a consequence of an inverse cascade effect (i.e., transfer of energy from smaller to larger scales). Thus *at large scales* primordial magnetic fields are considerably stronger than expected from considerations which do not take into account the effects of MHD turbulence. [S0556-2821(96)02712-9]

Inverse cascade since the 1970s (driven turbulence)

769

J. Fluid Mech. (1975), vol. 68, part 4, pp. 769-778 Printed in Great Britain

Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence

By U. FRISCH, A. POUQUET,

Centre National de la Recherche Scientifique, Observatoire de Nice, France

J. LÉORAT AND A. MAZURE

Université Paris VII, Observatoire de Meudon, France

J. Fluid Mech. (1976), vol. 77, part 2, pp. 321–354 Printed in Great Britain 321

Strong MHD helical turbulence and the nonlinear dynamo effect

By A. POUQUET, U. FRISCH

Centre National de la Recherche Scientifique, Observatoire de Nice, France

AND J. LÉORAT

Université Paris VII, Observatoire de Meudon, France

Relativistic equations in expanding Universe

Energy momentum tensor

Brandenburg, Enqvist, Olesen Phys Rev D 54, 1291 (1996)

$$+ \frac{1}{4\pi} \bigg(F^{\mu\sigma} F^{\nu}{}_{\sigma} - \frac{1}{4} g^{\mu\nu} F_{\lambda\sigma} F^{\lambda\sigma} \bigg),$$

Conformal time, rescaled equations $\mathbf{S} = (p + \rho) \gamma^2 \mathbf{v}$

 $T^{\mu\nu} = (p+\rho)U^{\mu}U^{\nu} + pg^{\mu\nu}$

$$\widetilde{t} = \int dt/R.$$
 $\widetilde{\mathbf{S}} = R^4 \mathbf{S}, \quad \widetilde{\rho} = R^4 \rho, \quad \widetilde{\mathbf{B}} = R^2 \mathbf{B},$
 $\widetilde{\mathbf{J}} = R^3 \mathbf{J}, \quad \text{and} \quad \widetilde{\mathbf{E}} = R^2 \mathbf{E}.$

Equivalent to usual magneto-hydrodynamics

$$\frac{\partial \mathbf{S}}{\partial \tilde{t}} = -\left(\boldsymbol{\nabla} \cdot \mathbf{v}\right) \widetilde{\mathbf{S}} - \left(\mathbf{v} \cdot \boldsymbol{\nabla}\right) \widetilde{\mathbf{S}} - \boldsymbol{\nabla} \widetilde{p} + \widetilde{\mathbf{J}} \times \widetilde{\mathbf{B}}.$$
$$\frac{\partial \widetilde{\mathbf{B}}}{\partial \tilde{t}} = -\boldsymbol{\nabla} \times \widetilde{\mathbf{E}}, \quad \boldsymbol{\nabla} \cdot \widetilde{\mathbf{B}} = 0,$$

Small Lorentz factors, γ^{1}

$$\frac{\partial \ln \widetilde{\rho}}{\partial \widetilde{t}} = -\frac{4}{3} (\mathbf{v} \cdot \nabla \ln \widetilde{\rho} + \nabla \cdot \mathbf{v}) - \frac{\widetilde{\mathbf{J}} \cdot \widetilde{\mathbf{E}}}{\widetilde{\rho}},$$

$$\frac{D\mathbf{v}}{D\tilde{t}} = -\mathbf{v}\left(\frac{D\ln\widetilde{\rho}}{D\tilde{t}} + \nabla \cdot \mathbf{v}\right) - \frac{1}{4}\nabla \ln\widetilde{\rho} + \frac{\widetilde{\mathbf{J}} \times \widetilde{\mathbf{B}}}{\frac{4}{3}\widetilde{\rho}},$$

where $D/D\tilde{t} = \partial/\partial \tilde{t} + \mathbf{v} \cdot \nabla$ is the total derivative, and

$$\frac{\partial \widetilde{\mathbf{B}}}{\partial \widetilde{t}} = \nabla \times (\mathbf{v} \times \widetilde{\mathbf{B}}), \quad \widetilde{\mathbf{J}} = \nabla \times \widetilde{\mathbf{B}}.$$

Magnetohydrodynamic turbulence

The conclusion from the above expressions is thus that the MHD equations in an expanding universe with zero curvature are the same as the relativistic MHD equations in a nonexpanding universe, provided the dynamical quantities are replaced by the scaled 'tilde' variables, and provided conformal time \tilde{t} is used. The effect of this is, as usual, that

shell models $\frac{db_n}{d\tilde{t}} = M_n(v,b)$ $M_n(v,b) = ik_n(A-C)(v_{n+1}^*b_{n+2}^* - b_{n+1}^*v_{n+2}^*)$ $+ ik_n(B + \frac{1}{2}C)(v_{n-1}^*b_{n+1}^* - b_{n-1}^*v_{n+1}^*)$ $- ik_n(\frac{1}{2}B - \frac{1}{4}A)(v_{n-2}^*b_{n-1}^* - b_{n-2}^*v_{n-1}^*),$ $\frac{4}{3}\rho_0\frac{dv_n}{d\tilde{t}} = N_n(v,b)$

Turbulent decay: early results & expectations

J. Fluid Mech. (2003), *vol.* 480, *pp.* 129–160. © 2003 Cambridge University Press DOI: 10.1017/S0022112002003579 Printed in the United Kingdom

129

Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation

By HYUNG SUK KANG¹, STUART CHESTER¹ AND CHARLES MENEVEAU^{1,2}

Mon. Not. R. Astron. Soc. 366, 1437-1454 (2006)

doi:10.1111/j.1365-2966.2006.09918.x

Evolving turbulence and magnetic fields in galaxy clusters

Kandaswamy Subramanian,^{1,4*} Anvar Shukurov^{1,2,4*} and Nils Erland L. Haugen^{3,5*}

Increase at small wavenumbers already in 2000

THE DYNAMO EFFECT IN STARS

Axel Brandenburg NORDITA, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark; and Department of Mathematics, University of Newcastle upon Tyne, NE1 7RU, UK

- Magnetically dominated
 - Started from random vector potential
 - K4 spectrum for magnetic energy
 - Kinetic energy (dotted) similar, but without the peak
- Kinetically dominated
 - Very similar inverse transfer
 - But kinetic energy much larger

K.S. Cheng et al. (eds.), Stellar Astrophysics, 1–8. © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

3-D decay simulations with & without helicity

Considerations

- Difficulties in seeing (nonhelical) inverse cascade

 Must have: k_{peak} >> k_{min} (enough k-range to the left of the peak)
 Causal spectrum E_M(k) ~k⁴ (must be steep enough)
- Not seen for velocity spectrum

 \circ Even if incompressible

 $\circ \rightarrow$ long-range interactions immediately driven by **B**-field

• Tools

- pq diagram
- $\,\circ\,$ conservation laws
- \circ study resistive effects

Turbulent magnetic fields: cascades & dissipation

- Turbulence spectrum important diagnostics
 - Spectral slope (inertial range)
 - o Dimensional arguments
 - Subinertial range
 - Random (δ -correlated): k^2 , because integrated over shells in *k*-space
- Length of inertial range
 - $\circ \rightarrow$ Reynolds number
 - Very large in astrophysics
 - Not in simulations
 - o Some effects sensitive to this
- Bottleneck effect
 - $\circ~$ Is a real effect
 - Less pronounced in 1-D spectra
 - Important for some smallscale dynamos

Different approaches to decays laws

- Initial slope matters

 "selective decay"
- Olesen (1997) \circ Initial slope k^{α} \circ Invariance under rescaling: $x \rightarrow x \ell, t \rightarrow t \ell^{1/q}$ $\circ \rightarrow q=2/(3+\alpha)$
- Inverse cascade criterion

 \circ *q*>0, so α > -3

- Self-similarity matters
 - Measure empirically β
 ○ → q=2/(3+β)
- Inverse cascade criterion
 - $\circ \quad \alpha \beta > 0, so$ $\circ \quad \alpha > \beta \quad cc$
- Hosking integral:
 - $\beta = 3/2$

- Conservation law matters
 - Just dimensional arguments
 - Get nondim.
 prefactors from
 simulations

Collapsed spectra and pq diagrams $-p_i(t) = d \ln \mathcal{E}_i/d \ln t$, $q_i(t) = d \ln \xi_i/d \ln t$,

14

Cascades (periodic box)

forced turbulence decaying turbulence MHD nonhul MHD hel NHD nonhil MHD hel AEK(L, t) EMUL EKUE E ((, t) $E_{\mu}(l,t)$ 1 En (l, t) increase just decay t=2.00385 decay & growth self similar shift 10 10^{-3} to the left no increase shift and decay 10^{-4} at small h $\begin{pmatrix} \widehat{x} \\ \widehat{a} \\ \widehat{a} \end{pmatrix}$ 10⁻⁵ $E_{\mu}(k_{i},t) \sim t^{(k-\beta)q}$ 10^{-6} 10^{-7} 10⁻⁸ 100 10 1 15

Self-similar turbulent decay

$$E_{\mathrm{M}}(k\xi_{\mathrm{M}}(t),t) \approx \xi_{\mathrm{M}}^{-\beta_{\mathrm{M}}} \phi(k\xi_{\mathrm{M}}).$$
$$\int E_{i}(k,t) \,\mathrm{d}k = \mathcal{E}_{i} \quad \xi_{i}(t) = \int_{0}^{\infty} k^{-1} E_{i}(k,t) \,\mathrm{d}k/\mathcal{E}_{i}(t)$$

instantaneous scaling exponents

$$-p_i(t) = d \ln \mathcal{E}_i / d \ln t, \quad q_i(t) = d \ln \xi_i / d \ln t,$$

	β	p	q	inv.	dim.
	4	$10/7\approx 1.43$	$2/7\approx 0.286$	L	$[x]^{7}[t]^{-2}$
	3	$8/6 \approx 1.33$	$2/6 \approx 0.333$		
_	2	6/5 = 1.20	2/5 = 0.400		
3/2	1	4/4 = 1.00	2/4 = 0.500	$\langle oldsymbol{A}_{ m 2D}^2 angle$	$[x]^4[t]^{-2}$
	0	$2/3 \approx 0.67$	$2/3 \approx 0.667$	$\langle {m A} \cdot {m B} angle$	$[x]^{3}[t]^{-2}$
	-1	0/2 = 0.00	2/1 = 1.000		

growth at small *k*

$$E_{\rm M}(k,t) = \xi_{\rm M}^{\alpha-\beta} k^{\alpha} \quad (k\xi_{\rm M} \ll 1)$$

 $\alpha \quad \beta \quad q \quad (\alpha - \beta) q \quad \text{comment, property}$

1.7	3/2	4/9	4/45	possible scaling, assuming Hosking integral conserved
1.7	2	2/5	-3/25 or 0	alternative scaling if Saffman integral conserved
2	2	2/5	0	Saffman scaling, assuming Saffman integral conserved
2	3/2	4/9	$2/9 \approx 0.22$	Saffman scaling, assuming Hosking integral conserved
3	2	2/5	2/5 = 0.4	cubic scaling, assuming Saffman integral conserved
3	3/2	4/9	$2/3 \approx 0.67$	cubic scaling, assuming Hosking integral conserved
4	3/2	4/9	$10/9 \approx 1.11$	Batchelor scaling, assuming Hosking integral conserved
11	()	21-	61 2 2	

4 0 2/3 8/3 = 2.7 July helical

 $1 + \beta_{\rm M} = p_{\rm M}/q_{\rm M}$

Conservation laws

 $\xi_{\rm M} \sim <A.B>t^{2/3}$

Magnetic helicity Anastrophy (2-D) Hosking integral Saffman integral Loitsyansky integral

 $\xi_{\rm M}(t) \propto \langle {m A} \cdot {m B} \rangle^{1/3} t^{2/3}$ $\mathrm{cm}^3\,\mathrm{s}^{-2}$ $\langle \boldsymbol{A}\cdot \boldsymbol{B}
angle$ $\xi_{\rm M}(t) \propto \langle A_z^2 \rangle^{1/4} t^{1/2}$ $\mathrm{cm}^4\,\mathrm{s}^{-2}$ $\langle A_z^2 \rangle$ $\xi_{
m M}(t) \propto I_{
m H}^{1/9} t^{4/9}$ ${\rm cm}^9\,{\rm s}^{-4}$ $I_{
m H}$ $\xi_{\mathrm{M}}(t) \propto I_{\mathrm{S}}^{1/5} t^{2/5}$ $\mathrm{cm}^{5}\,\mathrm{s}^{-2}$ $I_{\rm S}$ $\xi_{
m M}(t) \propto I_{
m S}^{1/7} t^{2/7}$ ${
m cm}^7\,{
m s}^{-2}$ I_{L}

> Magnetic energy dependence Parametric representation

magnetic energy $\kappa = p/2q$ $\propto \xi_{
m M}^{-1/2}$ $\mathcal{E}_{\mathrm{M}}(t) \propto \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle^{2/3} t^{-2/3}$ $\propto \xi_{\rm M}^{-1}$ $\propto \xi_{\rm M}^{-5/4}$ $\propto \xi_{\rm M}^{-3/2}$ $\propto \xi_{\rm M}^{-5/2}$ $\mathcal{E}_{\mathrm{M}}(t) \propto \langle A_z^2 \rangle^{1/2} t^{-1}$ $\mathcal{E}_{\mathrm{M}}(t) \propto I_{\mathrm{H}}^{2/9} t^{-10/9}$ $\mathcal{E}_{\rm M}(t) \propto I_{\rm S}^{2/5} t^{-6/5}$ $\mathcal{E}_{\mathrm{M}}(t) \propto I_{\mathrm{S}}^{2/7} t^{-10/7}$

AB, Sharma, Vachaspati (2023)

18

Quantitatively

$$\xi_{\rm M}(t) = C_i^{(\xi)} I_i^{\sigma} t^q, \quad \mathcal{E}_{\rm M}(t) = C_i^{(\mathcal{E})} I_i^{2\sigma} t^{-p}, \quad E_{\rm M}(k) = C_i^{(E)} I_i^{(3+\beta)\sigma} (k/k_0)^{\beta},$$

$I_{\rm M} = \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle$

 $\xi_{\rm M}(t) \approx 0.13 \, I_{\rm M}^{1/3} \, t^{4/9}, \quad \mathcal{E}_{\rm M}(t) \approx 4.1 \, I_{\rm M}^{2/3} \, t^{-10/9}, \quad E_{\rm M}(k,t) \lesssim 0.7 \, I_{\rm M}.$

 $[I_{\rm H}] = {\rm cm}^9 {\rm s}^{-4}$

 $\xi_{\rm M}(t) \approx 0.12 I_{\rm H}^{1/9} t^{4/9}, \quad \mathcal{E}_{\rm M}(t) \approx 3.7 I_{\rm H}^{2/9} t^{-10/9}, \quad E_{\rm M}(k,t) \lesssim 0.025 I_{\rm H}^{1/2} (k/k_0)^{3/2}.$

conservation of anastrophy, $\langle A_z^2 \rangle = \text{const}$ Vector potential (0, 0, A_z) obeys $\frac{\mathrm{D}A_z}{\mathrm{D}t} = \eta \nabla^2 A_z$ Slightly different decay laws

 $\xi_{\rm M}(t) \approx 0.13 \, \langle A_z^2 \rangle^{1/4} \, t^{1/2}, \quad \mathcal{E}_{\rm M}(t) \approx 15 \, \langle A_z^2 \rangle^{1/2} \, t^{-1}$

Envelope: linear increase

Appendix A: Historical note on anastrophy

Annick Pouquet (2024, private communication) informed us now that the word may have been invented by Uriel Frisch and Nicolas Papanicolaou during a meeting on a Winter Sunday in the late 1970s at Saint-Jean-Cap-Ferrat, while she and Jacques Léorat were also present.

The word has Greek roots, where 'strophe' refers to curl or turning, and 'ana' therefore hints at the inverted curl of B. This is somewhat reminiscent of the word palinstrophy, which is the mean squared double curl of the velocity, where 'palin' means again. This term was also invented by Frisch and Papanicolaou. The palinstrophy is proportional to the rate of change of enstrophy, i.e., the mean squared vorticity.

Resistively prolonged decay during radiative era

- Endpoints under assumption that decay time = Alfven time
- Use: decay time = recombination time
- Possibility: decay time >> Alfven time
- → Premature endpoint of evolution

Resistively controlled primordial magnetic turbulence decay

A. Brandenburg^{1,2,3,4,5}, A. Neronov^{6,7}, and F. Vazza^{8,9,10}

Relation between decay time

$$\tau^{-1} = -\mathrm{d}\ln \mathcal{E}_{\mathrm{M}}/\mathrm{d}t$$

and Alfven time

$$au_{\mathrm{A}}=\xi_{\mathrm{M}}/v_{\mathrm{A}}$$
 $\mathcal{E}_{\mathrm{M}}=B_{\mathrm{rms}}^{2}/2\mu_{0}=
ho v_{\mathrm{A}}^{2}/2$

Determine C_{M} in relation:

$$au = C_{\mathrm{M}} \xi_{\mathrm{M}} / v_{\mathrm{A}}$$

Resistive limitations also in driven turbulence

Travel speed of the bump to the left

bers. In order to check whether or not the speed of the spectral bumps in the different runs shown in Figs 7 and 10 also decreases with decreasing magnetic diffusivity we plot in Fig. 11 the position of the secondary bump in the power spectrum as a function of time. It is evident that the slope, which signifies the speed of the bump, decreases with decreasing magnetic diffusivity. A reasonable fit to this migration is given by

$$k_{\rm max}^{-1} = \alpha_{\rm trav}(t - t_{\rm sat}), \tag{53}$$

where the parameter α_{trav} characterises the speed at which this secondary bump travels. The values obtained from fits to various runs are also listed in Table 1. Following arguments given by Pouquet et al. (1976), α_{trav} obtained in this way is actually a measure of the α effect. The decrease of α_{trav} with decreasing magnetic diffusivity adds to the evidence that the α effect is quenched in a R_m dependent fashion.

Table 1. Summary of runs, some of which were already presented in BS02. The runs with n = 2 have hyperdiffusivity, so the effective diffusivity at the forcing wavenumber, $k_{\rm f}$, and at the Nyquist wavenumber, $k_{\rm Ny} = \pi/\delta x = N/2$, are different. N^3 is the total number of mesh points, and δx is the mesh spacing. The parameter $\ell_{\rm skin}$ gives an approximate upper bound for $|H|/(2\mu_0 M)$.

Run	N	\boldsymbol{n}	η_n	$\eta_n k_{ m f}^{2n-2}$	$\eta_n k_{ m Ny}^{2n-2}$	γ	$k_{ m f}$	$lpha_{ ext{trav}}$	$ H /(2\mu_0 M)$	$\ell_{ m skin}$	$S/(2M) _{t=1000}$
А	120^{3}	1	10^{-4}	10^{-4}	10^{-4}	0.047	27	1.1×10^{-3}	0.035	0.065	0.00075
В	120^{3}	2	3×10^{-8}	2×10^{-5}	10^{-4}	0.070	27	$7.3 imes 10^{-4}$	0.018	0.025	0.00035
С	120^{3}	2	10^{-8}	7×10^{-6}	4×10^{-5}	0.082	27	$3.6 imes 10^{-4}$	0.005	0.013	0.00020

Two examples of magnetogenesis in cosmology

"Battery" still needed

 $\frac{\partial \mathbf{A}}{\partial t} = \frac{c}{qn_{\rm e}} \nabla p_{\rm e}, \qquad \qquad \frac{\partial \mathbf{A}}{\partial t} = \frac{c^2}{\sigma} (\mu_5 \mathbf{B} - \nabla \times \mathbf{B}) + \mathbf{u} \times \mathbf{B}$ $\mu_5 = 24 \,\alpha_{\rm em} \left(n_{\rm L} - n_{\rm R} \right) \left(\hbar c / k_{\rm B} T \right)^2$

$$f^2 F_{\mu\nu} F^{\mu\nu}$$

 $\tilde{\mathbf{A}}'' + \left(\mathbf{k}^2 - \frac{f''}{f}\right)\tilde{\mathbf{A}} = 0$

Chiral magnetic effect: introduces pseudoscalar

- Mathematically identical to α effect in mean-field dynamos
- Comes from chiral chemical potential μ (or μ_5)
- Number differences of left- & righthanded fermions

 $\mu_5 = 24 \, \alpha_{\rm em} \left(n_{\rm L} - n_{\rm R} \right) \left(\hbar c / k_{\rm B} T \right)^2,$

- In the presence of a magnetic field, particles of opposite charge have momenta
- \rightarrow electric current
- Self-excited dynamo
- But depletes $\boldsymbol{\mu}$

$$\frac{\partial A}{\partial t} = \eta (\mu B - \nabla \times B) + U \times B$$
$$\sigma = |\mu k| - \eta k^2 \qquad B = \text{curl}A$$

Discovered originally by Vilenkin (1980); application to magnetogenesis in early Universe by Joyce & Shaposhnikov (1997)

Time dependence from chiral magnetic effect (CME)

- Exponential growth at one k
- Subsequent inverse cascade
- Always fully helical

 10^{-3}

10-4

 10^{-6}

 10^{-7}

 10^{-8}

 $(1, 10^{-5})$ $(1, 10^{-5})$ $(1, 10^{-6})$

t = 555

 10^{5}

10

10⁻⁵

 10^{-10}

100

Growth at one wavenumber Then: saturation caused by initial chemical potential

(c)

 $v_{\lambda}/v_{\mu}=7$

1.0

 k/μ_0

Brandenburg et al. (2017, ApJL 845, L21)

10

k

Many details are known by now

- Instability just η dependant
- Saturation governed by $\boldsymbol{\lambda}$

- Regime I is when turbulent subrange is long
- In regime II, just inverse cascading

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times [\boldsymbol{u} \times \boldsymbol{B} + \eta(\mu_5 \boldsymbol{B} - \boldsymbol{J})], \quad \boldsymbol{J} = \boldsymbol{\nabla} \times \boldsymbol{B}$$
$$\frac{\mathrm{D}\mu_5}{\mathrm{D}t} = -\lambda \eta (\mu_5 \boldsymbol{B} - \boldsymbol{J}) \cdot \boldsymbol{B} + D_5 \nabla^2 \mu_5 - \Gamma_{\mathrm{f}} \mu_5,$$

$$v_{\lambda} = \mu_{50} / \lambda^{1/2}, \qquad v_{\mu} = \mu_{50} \eta.$$
 (6)

We recall that we have used here dimensionless quantities. We can identify two regimes of interest:

 $\eta k_1 < v_\mu < v_\lambda \quad \text{(regime I)}, \tag{7}$

$$\eta k_1 < v_\lambda < v_\mu \quad \text{(regime II)},$$
 (8)

Strength of chiral magnetic effect

- Inverse turbulent cascade $\circ < B^2 > \sim t^{-2/3}$ length scale: $\xi_M \sim t^{+2/3}$
- Dimensional arguments give

 $\langle \boldsymbol{B}^2 \rangle \, \xi_{\mathrm{M}} = \epsilon \, (k_{\mathrm{B}} T_0)^3 (\hbar c)^{-2},$

- Inserting T=3K gives 10⁻¹⁸ G on 1 Mpc
- Consequence of conservation law

$$(n_{\rm L} - n_{\rm R}) + \frac{4\alpha_{\rm em}}{\hbar c} \langle \boldsymbol{A} \cdot \boldsymbol{B} \rangle = {\rm const.}$$

- But starting length scale very small \rightarrow 12 cm
- Compared with horizon scale at that time (electroweak) of ~1 AU
- Other dimensional argument:

 $\langle \mathbf{B}^2 \rangle \xi_{\rm M} \lesssim \epsilon_3 (a_\star/a_0)^3 G^{-3/2} \hbar^{-1/2} c^{11/2},$

Decay law of magnetic turbulence with helicity balanced by chiral fermions

Axel Brandenburg^{1,2,3,4} Kohei Kamada⁵, and Jennifer Schober⁶

$$h_{\rm tot} \equiv \boldsymbol{A} \cdot \boldsymbol{B} + 2\mu_5/\lambda$$

- Fully helical, but balanced chirality
- Hosking scaling applies
- Same scaling as for nonhelical turbulence
- But magnetic helicity not conserved: power law!

Algebraic decay of helicity

 $2\mathcal{E}_{\mathrm{M}}\xi_{\mathrm{M}}/\mathcal{H}_{\mathrm{M}}\approx 1$

$$|\mathcal{H}_{\mathrm{M}}| \propto |\mu_{5}\rangle| \propto t^{-r}$$

$$r = p - q = 2/3$$

- Helicity decays not exponentially,
- But algebraically: 10/9 4/9 = 6/9
- Important for baryogenesis

Gravitational waves & polarization

$$\left(\partial_t^2 + 3H\partial_t - c^2\nabla^2\right)h_{ij}(\boldsymbol{x}, t) = \frac{16\pi G}{c^2}T_{ij}^{\mathrm{TT}}(\boldsymbol{x}, t)$$

$$T_{ij}(\boldsymbol{x},t) = \left(p/c^2 + \rho\right)\gamma^2 u_i u_j - B_i B_j + (\boldsymbol{B}^2/2 + p)\delta_{ij}$$

Example

$$\boldsymbol{B} = \begin{pmatrix} 0 \\ \boldsymbol{\sigma}\sin kx \\ \cos kx \end{pmatrix} \longrightarrow \boldsymbol{\nabla} \times \boldsymbol{B} = \begin{pmatrix} \partial_x \\ 0 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ \sin kx \\ \cos kx \end{pmatrix} = k \begin{pmatrix} 0 \\ \sin kx \\ \cos kx \end{pmatrix} = k\boldsymbol{B}$$

Traceless-transverse

$$T_{ij}(x) = \mathcal{E}_{\mathrm{M}} \begin{pmatrix} 0 & 0 & 0\\ 0 & -\cos 2kx & \sigma \sin 2kx\\ 0 & \sigma \sin 2kx & \cos 2kx \end{pmatrix}$$

GW energy dependence on magnetic energy and wavenumber k0.

$$\bar{\varOmega}_{\rm GW} = \frac{3H_*^2}{c^2k_0^2} \Omega_{\rm M}^2$$

Roper Pol et al. (2020, GAFD 114, 130)

Polarization in turbulent cases: Kahniashvili et al. (2021, PRR 3, 013193)

32

GW energy depends quadratically on energy input & scale

$$\mathcal{E}_{\rm GW}^{\rm sat} \approx (q \mathcal{E}_{\rm M}^{\rm max}/k_{\rm peak})^2$$

Acoustic turbulence more efficient (q~30) Vortical turbulence less efficient (q<5) Helical MHD turbulence least efficient

- Large-scale fields \rightarrow more GW energy
- Generation at electroweak era: need strong fields
- Generation during inflation & reheating

GW energy depends quadratically on energy input & scale

- Regime II: is more resistive \rightarrow unrealistic, but large GW energies
- Regime I: \rightarrow realistic, but small scales & less GW energy

GW energy depends quadratically on energy input & scale

Regime II

$$\tilde{h}(k, t) = \frac{6\tilde{T}_0(k)}{4\gamma_0^2 + k^2} \bigg[e^{2\gamma_0 \tau} - \cos k\tau - \frac{2\gamma_0}{k} \sin k\tau \bigg]_{\tau = t - 1}$$

Kinematic phase: Peak determined By growth rate

GW energy depends quintically on limiting CME speed v_{λ}

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times [\boldsymbol{u} \times \boldsymbol{B} + \eta(\mu_5 \boldsymbol{B} - \boldsymbol{J})], \quad \boldsymbol{J} = \boldsymbol{\nabla} \times \boldsymbol{B}$$

$$\frac{D\mu_5}{Dt} = -\lambda \ \eta(\mu_5 \boldsymbol{B} - \boldsymbol{J}) \cdot \boldsymbol{B} + D_5 \nabla^2 \mu_5 - \Gamma_{\rm f} \mu_5$$

$$v_{\lambda} = \mu_{50} / \lambda^{1/2}, \qquad v_{\mu} = \mu_{50} \eta.$$

$$\eta k_1 < v_\mu < v_\lambda$$
 (regime I),
 $\eta k_1 < v_\lambda < v_\mu$ (regime II),

- For realistic parameters \rightarrow very weak GW energy
- Need larger length scales

Magnetic energy also weak

$$\langle \boldsymbol{B}^2 \rangle \, \xi_{\mathrm{M}} = \epsilon \, (k_{\mathrm{B}} T_0)^3 (\hbar c)^{-2},$$

Brandenburg+17

Inflationary magnetogenesis

- Early Universe Turbulence

 Source of gravitational waves
 Information from young universe
- Magnetogenesis
 - \circ Inflation/reheating \circ No particles yet, no conductivity \circ Coupling with electromagn field $f^2 F_{\mu\nu} F^{\mu\nu}$
 - \circ Breaking of conformal invariance \circ Quantum fluct \rightarrow field stretched

CODE (Pencil Code Collaboration et al. 2021), where

 $\mathbf{A}' = \mathbf{u} \times \mathbf{B} + \sigma^{-1} \nabla^2 \mathbf{A}$

(8)

is solved in real space, which includes the induction effect from the velocity and the finite conductivity. It is solved together with (Brandenburg et al. 1996)

$$\mathbf{u}' = -\mathbf{u} \cdot \nabla \mathbf{u} - \frac{1}{4} \nabla \ln \rho + \frac{3}{4\rho} \mathbf{J} \times \mathbf{B} + \boldsymbol{\mathcal{F}}_{\nu} + \boldsymbol{\mathcal{F}}, \quad (9)$$

 $(\ln \rho)' = -\frac{4}{3} \left(\nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \ln \rho \right) + \mathcal{H}, \qquad (10)$

where $\mathcal{F} = (\nabla \cdot \mathbf{u} + \mathbf{u} \cdot \nabla \ln \rho) \mathbf{u}/3 - [\mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) + \mathbf{J}^2/\sigma] \mathbf{u}/\rho$, and $\mathcal{H} = [\mathbf{u} \cdot (\mathbf{J} \times \mathbf{B}) + \mathbf{J}^2/\sigma]\rho$ are higher

Software and Data Availability. The source code used for the simulations of this study, the PENCIL CODE (Pencil Code Collaboration et al. 2021), is freely available on https://github.com/pencil-code/. The doi of the code is 10.5281/zenodo. 2315093 (Brandenburg 2018). The simulation setup and the corresponding data are freely available from doi:10.5281/zenodo.4448211, see also http://www.nordita.org/~brandenb/projects/GWfromCME/ for easier access.

Brandenburg & Sharma 2106:03857

Circular polarization in chiral inflationary magnetogenesis

$$\iota f^2 F_{\mu\nu} * F^{\mu\nu}$$

$$f(a) = a^{-\beta}, \quad \text{where } a = (\eta + 1)^2/4$$

$$\tilde{A}_{\pm}'' + \left(k^2 \pm 2\iota k \frac{f'}{f} - \frac{f''}{f}\right) \tilde{A}_{\pm} = 0,$$

$$\frac{f'}{f} = -\frac{2\beta}{\eta+1}, \quad \frac{f''}{f} = \frac{2\beta(2\beta+1)}{(\eta+1)^2}$$

- Step I: spectra peaked
- Step II: Inverse cascade
- GW: circularly polarized

$$\mathcal{P}(k) = \int 2 \operatorname{Im} \tilde{h}_{+} \tilde{h}_{\times}^{*} k^{2} \mathrm{d}\Omega_{k} / \int \left(|\tilde{h}_{+}|^{2} + \tilde{h}_{\times}|^{2} \right) k^{2} \mathrm{d}\Omega_{k}$$

Inflationary growth & magnetic decay

Inflationary growth: electric, magnetic, and GW grow

Lorentz force drives smaller scales: surprisingly weak

Flow of energy in inflationary magnetogenesis

 $f^2 F_{\mu\nu} F^{\mu\nu}$

$$\frac{1}{c^2} \left(\frac{\partial E}{\partial t} + 2 \frac{f'}{f} E \right) = \mathbf{\nabla} \times \mathbf{B} - \mu_0 \mathbf{J} \qquad \qquad \begin{array}{l} f \propto a^{-\beta} \propto t^{-2\beta} \\ f'/f = -2\beta/t \end{array}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \epsilon_0 \mathbf{E}^2 / 2 \right\rangle = -2(f'/f) \left\langle \epsilon_0 \mathbf{E}^2 \right\rangle + \left\langle \mathbf{E} \cdot \boldsymbol{\nabla} \times \mathbf{B} / \mu_0 \right\rangle - \left\langle \mathbf{J} \cdot \mathbf{E} \right\rangle$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \mathbf{B}^2 / 2\mu_0 \right\rangle = -\left\langle \mathbf{E} \cdot \boldsymbol{\nabla} \times \mathbf{B} \right\rangle / \mu_0$$

Electric fields converted to kinetic energy

t

No small scales in GW field

0.04

0.02

0.00

-0.02

0.04

 $\eta = 16.00$

Note on the Pencil Code

- 2001 started at Summer School
- 2004 First User Meeting
 - Annually since then
- 2016 Steering Committee
- 2020 Special Issue in GAFD
- 2020 Newletter
 - 4 newsletters since then
- 2020 Office hours
 - Second Friday of the month
- JOSS=Journal for Open Source Software: code rather than paper

Open code: will one be scooped? Negative press? Mistakes traced back.. The Pencil Code, a modular MPI code for partial differential equations and particles: multipurpose and multiuser-maintained

The Pencil Code Collaboration¹, Axel Brandenburg^{1, 2, 3}, Anders Johansen⁴, Philippe A. Bourdin^{5, 6}, Wolfgang Dobler⁷, Wladimir Lyra⁸, Matthias Rheinhardt⁹, Sven Bingert¹⁰, Nils Erland L. Haugen^{11, 12, 1}, Antony Mee¹³, Frederick Gent^{8, 14}, Natalia Babkovskaia¹⁵, Chao-Chin Yang¹⁶, Tobias Heinemann¹⁷, Boris Dintrans¹⁸, Dhrubaditya Mitra¹, Simon Candelaresi¹⁹, Jörn Warnecke²⁰, Petri J. Käpylä²¹, Andreas Schreiber¹⁵, Piyali Chatterjee²², Maarit J. Käpylä^{9, 20}, Xiang-Yu Li¹, Jonas Krüge^{11, 12}, Jørgen R. Aarnes¹², Graeme R. Sarson¹⁴, Jeffrey S. Oishi²³, Jennifer Schober²⁴, Raphäel Plasson²⁵, Christer Sandin¹, Ews Karchniwy^{12, 26}, Luiz Felippe S. Rodrigues^{14, 27}, Alexander Hubbard²⁸, Gustavo Guerrero²⁹, Andrew Snodin¹⁴, Illa R. Losada¹, Johannes Pekkilä⁹, and Chengeng Qian³⁰

1 Nordita, KTH Royal Institute of Technology and Stockholm University, Sweden 2 Department of Astronomy, Stockholm University, Sweden 3 McWilliams Center for Cosmology & Department of Physics, Carnegie Mellon University, PA, USA 4 GLOBE Institute, University of Copenhagen, Denmark 5 Space Research Institute, Graz, Austria 6 Institute of Physics, University of Graz, Graz, Austria 7 Bruker, Potsdam, Germany 8 New Mexico State University, Department of Astronomy, Las Cruces, NM, USA 9 Astroinformatics, Department of Computer Science, Aalto University, Finland 10 Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen, Germany 11 SINTEF Energy Research, Trondheim, Norway 12 Norwegian University of Science and Technology, Norway 13 Bank of America Merrill Lynch, London, UK 14 School of Mathematics, Statistics and Physics, Newcastle University, UK 15 No current affiliation 16 University of Nevada, Las Vegas, USA 17 Niels Bohr International Academy, Denmark 18 CINES, Montpellier, France 19 School of Mathematics and Statistics, University of Glasgow, UK 20 Max Planck Institute for Solar System Research, Germany 21 Institute for Astrophysics, University of Göttinge, Germany 22 Indian Institute of Astrophysics, Bengaluru, India 23 Department of Physics & Astronomy, Bates College, ME, USA 24 Laboratoire d'Astrophysique, EPFL, Sauverny, Switzerland 25 Avignon Université, France 26 Institute of Thermal Technology, Silesian University of Technology, Poland 27 Radboud University, Netherlands 28 Department of Astrophysics, American Museum of Natural History, NY, USA 29 Physics Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil 30 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China

Summary

DOI: 10.21105/joss.02807

Review of

Archive C

Repository C

Editor: Arfon Smith ra

Submitted: 17 September 2020

Published: 21 February 2021

copyright and release the work

under a Creative Commons

Attribution 4.0 International

Authors of papers retain

License (CC BY 4.0).

Øzingale
 Ørtfisher

Software

Reviewers

License

The Pencil Code is a highly modular physics-oriented simulation code that can be adapted to a wide range of applications. It is primarily designed to solve partial differential equations (PDEs) of compressible hydrodynamics and has lots of add-ons ranging from astrophysical magnetohydrodynamics (MHD) (A. Brandenburg & Dobler, 2010) to meteorological cloud microphysics (Li et al., 2017) and engineering applications in combustion (Babloxskiai et al., 2011). Nevertheless, the framework is general and can also be applied to situations on trelated to hydrodynamics or even PDEs, for example when just the message passing interface or input/output strategies of the code are to be used. The code can also evolve Lagrangian (inertial and noninertial) particles, their coagulation and condensation, as well as

H=37 people have done > 37 commits

Conclusions

- Selfsimilar decay
 - \circ Magnetic helicity plays a role even when it vanishes on average!
 - \odot Hosking integral conserved relevant for early universe
 - \circ Perhaps also for galaxy clusters (after mergers)
- Universe as a whole \rightarrow primordial (non-astrophysical) fields
 - \circ Decay till recombination: ~ nG fields, 30 kpc scales at best
 - \odot If nonhelical: Hosking integral conserved
 - Also applies to fully helical, if balanced by fermion chirality
- Inflationary: large scales, often helical
 - \circ Electric energy \rightarrow kinetic energy
 - $\ensuremath{\circ}$ Circularly polarized waves
- What next?
 - \circ Reconnection
 - \circ Rm dependence
 - \circ magnetic helicity fluxes