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Introduction: Cosmology is a search for relics

In observational cosmology we try to constrain the history of the Universe by the
observation of relics. The best example of this is the CMB which represents not
only a relic of the time of recombination, t ≃ 3 × 105 years after the big bang, but
probably also of a much earlier moment, t <∼ 10−35sec, when something like
inflation took place and generated correlations on very large scales.

Another such relic is the abundance of light elements which where generated at
nucleosynthesis, t ≃ 100 sec.

Yet another is a potential background of gravitational waves.

But there are other very interesting events which may have left observable traces,
relics, in the universe. Most notably confinement at t ≃ 10−4 sec

or the electroweak transition at t ≃ 10−10 sec which may have led to the observed
baryon asymmetry in the Universe.

It has been proposed that confinement and, especially the electroweak (phase)
transition but also inflation might generate primordial magnetic fields which
represent seeds for the magnetic fields observed in galaxies, clusters, filaments
and even voids.
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Arguments against late time Generation of Magnetic fields

In order to generate micro Gauss fields in galaxies and clusters today via a dynamo
mechanism, at least 10−20Gauss are needed all over the Universe, even in voids. The
Neronov & Vovk result indicates that fields of more than 10−16Gauss might actually be
present also in voids. How did they get there?

It is difficult to generate micro Gauss fields with kpc coherence scale already at z ≃ 2
or even 4. A small scale dynamo might be able to generate these fields with very small
coherence scale but to render them coherent on kpc scale takes time...

To generate the galactic fields simply by flux conservation during the formation of the
galaxy, primordial fields of about 10−9Gauss would be needed. There are no
suggestions how such large fields can be generated in proto-galaxies by astrophysical
processes

But the greatest difficulty is to permeate also voids with magnetic fields at late times. To
explain the absence of GeV photons in blazars, these would need to have ’filling
factors’ of order 70%. This cannot be achieved e.g. with jets etc.

For these reasons I believe it is very difficult to generate the observed ubiquitous
magnetic fields at late times. But can we do it in the early universe?
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Generation of primordial magnetic fields

There are three main ideas how magnetic fields may have formed in the early
Universe:

Second order perturbations: To generate magnetic fields in the cosmic fluid one
needs vorticity and a charge and current density. Vorticity can be obtained only in
second order perturbation theroy (at first order vector perturbations decay) and
currents require charge separation which is obtained only at second order in the
tight coupling limit. Estimates have shown that typical fields do not exceed
10−29Gauss (Fenu et al. 2010). This is far too small to be consistent with the
Neronov-Vovk (2010) bound or with the minimal amplitude needed for dynamo
amplification.

Phase transitions: First order phase transitions are violent events which proceed
via bubble nucleation. Charge separation and turbulent fluid motion can lead to the
generation of magnetic fields.

Inflation: The electromagnetic field is conformally coupled to gravity and is
therefore usually not generated during inflation. However, if conformal symmetry is
explicitely broken or if the electromagnetic field is coupled to the inflation, it can
also be generated during inflation.
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The initial spectrum

We assume that the process leading to a magnetic field is statistically homogeneous
and isotropic. A magnetic field spectrum generated by such a process is of the form

⟨Bi(η, k)B∗
j (η,q)⟩ =

(2π)3

2
δ(k − q)

{
(δij − k̂i k̂j)PS(k , η)− iϵijnk̂nPA(k , η)

}
The Dirac–δ is due to statistical homogeneity and the requirement ∇ · B dictates the
tensor structure. Note that the pre-factor of PS is even under parity while the one of PA

is odd under parity.

k3PA ∝ |B+|2 − |B−|2 determines the helicity of the magnetic field. Its integral is the
helicity density while k3PS ∝ |B+|2 + |B−|2 determines the energy density in magnetic
fields.

On very large scales we expect no structure in the magnetic field spectrum,
k3PS ∝ knB and k3PA ∝ knH are expected to follow simple power laws.

On smaller scales the magnetic field evolves in the plasma. Below a damping scale it is
damped by the viscosity of the cosmic plasma,
PS = PA = 0 for k > kd (t). Here kd (t) is a time-dependent damping scale.
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Causality

If the magnetic field is generated e.g. during a phase transition, its correlation length is
finite. It is typically of the size of the largest bubbles when they coalesce and the phase
transition terminates. This is a fraction of the Hubble scale at the transition. On scales
larger than the Hubble scale, correlations vanish by causality.

Hence the correlation function is a function of compact support; and therefore its
Fourier transform is analytic. Usually this signifies white noise (flat) on large scales but
since we have to additional condition ∇ · B = 0, for magnetic fields we must require
PS ∝ k2 on large scales. Correspondingly nH must be odd and the physical
requirement |PA| ≤ PS then implies PA ∝ k3 (RD & Caprini, 2003 ).

For the energy density per log-k-interval this implies

dρB

d log(k)
∝ k5

The same holds for an incompressible velocity field, ∇ · v = 0 while for the
compressible case, ∇ · v ̸= 0, the velocity power spectrum is expected to be white
noise.

For magnetic fields generated during inflation, the correlation length is arbitrary and no
such causality arguments apply.
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Magnetic fields from inflation

The fact that magnetic fields from phase transitions tend to have rather small
coherence scales motivates to study what can be obtained from inflation. There, scales
which were initially inside the horizon grow very large and the annoying ’causality
constraint’ does not apply.

Let us first discuss a simple case where we couple the inflation to the electromagnetic
field (Ratra ’92).

S =

∫
d4x

√
−g
[
R +

1
2
(∂ϕ)2 − V (ϕ) +

I1(ϕ)
4

F 2
]

Another possibility is to couple Fµν (or the potential Aµ) to the curvature
(Turner & Widrow ’88)
With this modification in the action, the modified evolution equation for the
’renormalized’ electromagnetic potential A = aI1(ϕ)A in Fourier space becomes (in
Coulomb gauge)

Ä+

(
k2 − Ï1

I1

)
A = 0

This is a wave equation with a time-dependent mass term. We know how to calculate
the generation of its modes out of the vacuum.

Ruth Durrer (Université de Genève) Backreaction of Cosmic Magnetic fields Bernoulli Center EPFL 2024 8 / 28



Magnetic fields from inflation

The fact that magnetic fields from phase transitions tend to have rather small
coherence scales motivates to study what can be obtained from inflation. There, scales
which were initially inside the horizon grow very large and the annoying ’causality
constraint’ does not apply.
Let us first discuss a simple case where we couple the inflation to the electromagnetic
field (Ratra ’92).

S =

∫
d4x

√
−g
[
R +

1
2
(∂ϕ)2 − V (ϕ) +

I1(ϕ)
4

F 2
]

Another possibility is to couple Fµν (or the potential Aµ) to the curvature
(Turner & Widrow ’88)
With this modification in the action, the modified evolution equation for the
’renormalized’ electromagnetic potential A = aI1(ϕ)A in Fourier space becomes (in
Coulomb gauge)

Ä+
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Let us first discuss a simple case where we couple the inflation to the electromagnetic
field (Ratra ’92).

S =

∫
d4x

√
−g
[
R +

1
2
(∂ϕ)2 − V (ϕ) +

I1(ϕ)
4

F 2
]

Another possibility is to couple Fµν (or the potential Aµ) to the curvature
(Turner & Widrow ’88)

With this modification in the action, the modified evolution equation for the
’renormalized’ electromagnetic potential A = aI1(ϕ)A in Fourier space becomes (in
Coulomb gauge)

Ä+

(
k2 − Ï1

I1

)
A = 0

This is a wave equation with a time-dependent mass term. We know how to calculate
the generation of its modes out of the vacuum.
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Magnetic fields from inflation: example

For example if I1 ∝ aγ is a simple power law, we can compute the resulting magnetic
fields spectrum to

k3PB ∝ knB with nB =

{
4 − 2γ if γ ≥ −1/2
6 + 2γ if γ ≤ −1/2

During inflation we cannot assume that the Universe is highly conducting and the
electric field is damped. We therefore also have to compute the electric field spectrum.
One finds (Martin & Yokoyama ’08, Subramanian ’10)

k3PE ∝ knE with nE =

{
6 − 2γ if γ ≥ 1/2
4 + 2γ if γ ≤ 1/2

Since there is no infrared cutoff, the spectral index should not be negative otherwise
dρB

d log(k) ∝ k3PS ∝ knB or dρE
d log(k) ∝ k3PE ∝ knE diverges in the ir. This limits

−2 <∼ γ <∼ 2.
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Problems: backreaction, strong coupling & non-Gaussianity

On the other hand, if the spectrum is too blue, the fact that magnetic fields should not
dominate the energy density of the Universe leads to very stringent constraints on large
scales. Since the Hubble scale at the end of inflation is typically high, the spectrum
needs not be very blue for this to happen.

The only acceptable value is therefore γ ≃ 2 which, for a typical inflation scale of
Hinf ∼ 10−5MP yields

B ∼ 10−10G

on all scales. But for this case the spectrum of the electric field is very blue
k3PE(k) ∝ k4 and leads to strong back reaction.

For this result we have normalized I1 = 1 at the end of inflation. Since I1 is growing
rapidly during inflation this means that I1 ≪ 1 for most of the time during inflation. But
since charged particles couple to the canonically normalized field I1Fµν , their charge
during inflation has the renormalized value eN = e/I1 ≫ e.
Hence during inflation the electron charge was much larger than 1. In this regime we
cannot trust perturbation theory and our calculation does actually not apply
(Demozzi et al. ’09).
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Generation of helical magnetic fields during inflation

Especially the strong coupling problem motivated people to study what can be gained
from a helical coupling of the inflaton to the magnetic field. The idea was that this does
not mix with the electron charge, and because of the inverse cascade invoked by
helicity conservation in the evolution of the field after inflation, a bluer spectral index
might be admissible.

We start with the action

S =

∫
d4x

√
−g
[
R +

1
2
(∂ϕ)2 − V (ϕ) +

1
4

F 2 +
I2(ϕ)

4
F · F̃

]
where F̃µν = 1

2η
µναβFαβ is the dual of the electromagnetic field tensor.

Anber Sorbo (2010)

In this case the evolution equation for the two helicity modes of the vector potential,
A± = aA± (in Coulomb gauge) becomes

Ä± +
[
k2 ± k İ2

]
A± = 0 .

Again, a wave equation with time-dependent mass term. There are two main
differences to the non-helical case: Now one of the helicity modes is amplified while the
other is reduced depending on the sign of İ2, and the mass-term is proportional to k .
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Generation of helical magnetic fields during inflation

Both difference are very important: the first leads to helicity and the second is the
cause of the short duration of the amplification phase

RD, Hollenstein & Jain, 2010

Because the duration during which the mass term is relevant is always just the Hubble
exit time k ∼ H, before the Ä term is much larger and later the k2A term dominates,
the vacuum fluctuation of one mode are always amplified while those of the other mode
are suppressed. And this by the same, k -independent factor.
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Generation of helical magnetic fields during inflation

Since the vacuum fluctuations of the vector potential behave like k−1, this yields
PS ∝ PA ∝ k ,

dρB

d log(k)
∝ k4 , nB = 4.

Despite the inverse cascade rather low scale inflation is needed to satisfy dρB
d log(k∗)

< ρr

and obtain a significant correlation scales and amplitude after the inverse cascade.
(RD, Hollenstein & Jain, ’10)

Furthermore, the back reaction on the perturbations still leads to non-Gaussianities
(Barnaby, Namba & Peloso, ’11).

Another interesting mechanism to generate helical magnetic fields is via an initial non-
vanishing chirality, µ5 = µL − µR . At T >∼ 10MeV, due to the electroweak anomaly, only
the sum H + λµ5 is conserved where H is the magnetic helicity and λ is a
phenomenological parameter. Hence chirality can generate helical magnetic fields and
vice versa
(A. Boyarsky, J. Fröhlich & O. Ruchayskiy, ’12; Schober, Fujita & Durrer, ’20).
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Generation of helical magnetic fields during & after inflation by a
’spectator field’

Considered coupling of the electromagnetic field to a second, scalar field,
subdominant during inflation, a spectator field (Caprini & Sorbo, ’15) which
continues to role after inflation during reheating (RD & Fujita, ’19).

In this way can generate magnetic fields which are helical,
have a scale invariant spectrum and achieve an amplitude of about 10−16GeV today.

10 105 109
|kηi |

10-6

10-1

104

109

1014

B/Hinf
4

(RD & Fujita, 2019)

As soon as many charged particles are produced , magnetogenesis terminates.

In this model, back-reaction and strong coupling remain under control if we choose
a sufficiently low inflation scale, Hinf <∼ 105GeV.
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Higgs-Starobinsky inflation

Recently we (RD, Sobol &Vilchinskii, 2022) have also considered the generation of gauge fields
during Higgs-Starobinsky inflation.

S = SHS + SGF

SHS[gµν , h] =

∫
d4x

√
−g

[
−

M2
p

2

(
1 +

ξhh2

M2
p

)
R +

ξs

4
R2 +

1
2

gµν∂µh∂νh −
λ

4
h4

]
SGF =

∫
d4x

√
−g

[
−

1
4

FµνFµν −
(−R)n

2M2n
p

(
κ1FµνFµν + κ2Fµν F̃µν

)]
Even though SHS looks like a 3 parameter Lagrangian, the inflationary dynamics in Einstein frame
is single field inflation with an inflaton ϕ and only depends on

ξ =
ξ2

h
λ

+ ξs

To obtain the correct amplitude one needs

As =
N2
∗

72π2ξ
≃ 2 × 10−9 hence with N∗ ≃ 50 ξ ≃ 2 × 109

In Einstein frame the gauge field coupling becomes

SGF = −
1
4

∫
d4x

√
−ḡ

[
I1FµνFµν + I2Fµν F̃µν

]
with

Ij = δ1j + 2κj

(12π2As

N2
∗

)n(
e

√
2
3

ϕ
Mp − 1

)n
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Higgs-Starobinsky inflation : Results

The relevant coupling constants are
not the κj but κjcn

0 with
c0 = 12π2As

N2
∗

≃ 10−10.
To avoid strong coupling and to be in
the perturbative regime we just have to
request |κjcn

0 | ≪ 1.

for n = 1 we always obtain blue
spectra, nB = 4
(see Hollenstein et al. 2011).

for n = 2 the spectral index depends
on c0, nB = 4 − 256πκ2c2

0 .

for n > 2 the spectral index is scale
dependent but always red on very
large scales, i.e. require an ir cutoff.

RD, Sobol & Vilchinskii (2022)
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Higgs-Starobinsky inflation : Results
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RD, Sobol & Vilchinskii (2022)
For n = 2 and κ2 = 4 × 1017:
We can obtain red, scale invariant and blue spectra, depending on the value of κ1.
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Higgs-Starobinsky inflation : Results
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RD, Sobol & Vilchinskii (2022)
Especially at early times, the gauge field energy density is high and backreaction might
be important!
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Backreaction in Higgs-Starobinsky inflation : A non-perturbative
Lagrangian

In slow roll inflation the inflaton field, the scalar curvature and the Ricci tensor are
simple related since we are in nearly de-Sitter expansion. Therefore, models with
different gauge-field couplings are similar. We want a coupling which does not require
higher orders once the gauge field becomes large:
To study backreaction we (RD, Sobol &Vilchinskii, 2023) chose Starobinsky inflation
with

∆L =
ξs

4

[
1 +

κ1

M4
P

FµνFµν +
κ2

M4
P

Fµν F̃µν)
]−1

R2 =
ξs

4
1

∆(Fµν)
R2

with the free dimensionless parameters ξs, κ1 and κ2.

In the Einstein frame this becomes

S =

∫
d4x

√
−g
[
− M2

P

2
R +

3M2
P

4Ψ2 ∂µΨ∂µΨ− M4
P

4ξs

(1 −Ψ)2

Ψ2 ∆(Fµν)−
1
4

FµνFµν
]

Ψ = exp
(√2

3
ϕ

MP

)
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Backreaction in Higgs-Starobinsky inflation : The gradient expansion

To take into account backreaction we want to consider the effects of the gauge field on
the inflaton and on the expansion of the Universe.

For this we need to determine the quantum average of terms quadratic in the gauge
field, I1⟨E2 + B2⟩, I2⟨E · B⟩ where ⟨. . .⟩ denote the vacuum expectation value.
To this aim we apply the gradient expansion: we introduce the following quadratic
expressions

E (n) ≡ I1
an ⟨E · rotnE⟩,

G(n) ≡ − I1
2an ⟨E · rotnB + rotnB · E⟩,

B(n) ≡ I1
an ⟨B · rotnB⟩,

Maxwell’s eqn. result in a hierarchy of linear equations for these quantities which, in our
case, contain time dependent source terms which come from the boundary of the
k-integrals due to renormalisation (only modes with sufficiently large wave numbers are
excited) which we can calculate analytically. We then solve the hierarchy with cutoff at
n=150 numerically.
E (0) and B(0) determine the gauge field energy density while G(0) enters the axial
coupling to the inflaton.
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n=150 numerically.
E (0) and B(0) determine the gauge field energy density while G(0) enters the axial
coupling to the inflaton.
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Backreaction in Higgs-Starobinsky inflation : Results

We introduce the dimensionless quantities δacc =

∣∣∣∣ ϕ̈

V ′(ϕ)

∣∣∣∣, δSR =

∣∣∣∣ 3Hϕ̇

V ′(ϕ)

∣∣∣∣,
δBR =

∣∣∣∣ I′1(ϕ)(E (0) − B(0))− 2I′2(ϕ)G(0)

2I1(ϕ)V ′(ϕ)

∣∣∣∣ δED =
ρGF

ρinf
=

1
2 (E

(0) + B(0))
1
2 ϕ̇

2 + V (ϕ)
.
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Similar results had been found before V. Domcke et al. (2020)
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Backreaction in Higgs-Starobinsky inflation : Results

The effect of backreaction on the gauge field energy density:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*************

*
*

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

-40 -30 -20 -10 0

10-22
10-20
10-18
10-16
10-14
10-12
10-10

*****

*******
*******

*
*******

*
*******

*
******

***
*************************

*

●●●●
●

●
●●●●

●
●

●●●●●
●
●
●

●
●●●●

●●

●
●●●●

●
●●

●
●●●●

●
●
●
●●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

+++++
+
+++++++++

+++++
++++++++

++++++++
+++++++

+++++++++++++++++++++++++
+
+
+

* ●

+

-30 -20 -10 0

10-22
10-20
10-18
10-16
10-14
10-12
10-10

RD, Sobol & Vilchinskii (2022)

Ruth Durrer (Université de Genève) Backreaction of Cosmic Magnetic fields Bernoulli Center EPFL 2024 22 / 28



Backreaction in Higgs-Starobinsky inflation : Results

The effect of backreaction on the gauge field power spectrum :
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Magnetic fields are very small at the end of inflation and have a strong blue tilt, ∼ k4.
But: We have not considered the effect on fluctuations of the inflaton field and on
metric perturbations.
A full numerical lattice calculation has recently found (Figueroa, Lizerraga, Uria &
Urrestilla, 2023) that the ’oscillations’ may be spurious (washed out by couplings of
higher k modes).

Ruth Durrer (Université de Genève) Backreaction of Cosmic Magnetic fields Bernoulli Center EPFL 2024 23 / 28



Backreaction in a perturbed Friedman universe

(RD, R. von Eckardstein, D. Garg, K. Schmitz, O. Sobol & S. Vilchinskii,
arXiv:2404.19694 )

We consider a fully general Lagrangian

S[gµν , ϕ,Aµ] =

∫
d4x

√
−g
[
− M2

P

2
R +

1
2

gµν∂µϕ∂νϕ− V (ϕ)− 1
4

I1(ϕ) (FµνFµν)

−1
4

I2(ϕ)
(

Fµν F̃µν
) ]

In a perturbed Friedmann Universe

gµνdxµdxν = (1 + 2Ψ)a2dη2 − (1 − 2Φ)a2δijdx idx j

ϕ = ⟨ϕ⟩(η) + δφ = ϕc + δφ .

We consider only scalar perturbations but include also gauge field perturbations which
are generated via I1,2.

Fv = −a2I1(ϕc)

2M2
P

∂i

△εijk [(EjBk )− ⟨(EjBk )⟩]

Fρ , Fπ . . .
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An equation for the curvature perturbation

ζ = Φ+
H

H2 −H′ (Φ
′ +HΨ)

= Φ +
H

H2 −H′

( ϕ′
c

2M2
P
δφ+ Fv

)
ζ′′ + pζ′ + qζ = S(η, k ,Fv ,Fπ,F ′

π,E · B)

If backreaction can be neglected,

q = k2 , p = 2
H2 −H′

H +

(
H2 −H′)′
H2 −H′ = 2

z′

z

where z is the Mukhanov–Sasaki variable,

z =
aϕ′

c

H

Otherwise there are corrections containing E (0), B(0) and G(0)
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Generic solution

ζ(η, k) = ζin(η, k) + ζS(η, k)

Inflaton gauge fields.

ζS(η, k) =
∫ η

−∞
G(η, η′, k)S(η′, k ,Fv ,Fπ,F ′

π,E · B)dη′

This term is new and highly non-Gaussian. If close to scale invariance, its spectrum
and amplitude are strongly constrained by CMB observations. If blue it might lead to
the formation of primordial black holes.

⟨ζinζS⟩ = 0 ⟨ζS(k1)ζS(k2)ζS(k3)⟩ ̸= 0
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Continuation

An application to axion inflation where backreaction on the background evolution is
neglected is presented in the talk by Deepen Garg.

Including backreaction, effect on ζin.

Transition from inflation to radiation may lead in addition to the well known
’passive’ and ’compensated’ modes to a dangerous ’constant’ mode (see Bonvin,
Caprini & RD, (2011)).

Can there be any close to scale invariant solutions with negligible backreaction ?

Study blue spectra, primordial black holes?
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Conclusions

Magnetic fields are observed on all cosmological scales (even in voids) with
significant amplitudes. It is difficult to generate them by non-linear processes
inside galaxies and eject them into intergalactic space.

Fields generated by clustering at second order and due to the imperfect coupling
of electrons and protons after recombination are much too small to explain the
observed fields.

Fields generated in the early universe typically have blue spectra which are
processed by the turbulent plasma.

Magnetic fields generated during inflation are severely affected by backreaction,
even if their energy density remains small. It remains to be seen how this
backreaction affects the scalar metric perturbations generated during inflation in
’realistic’ models.

Discovering large scale magnetic fields especially in voids where they are not
processed further by galaxy formation processes would be a very strong sign of
their primordial nature.
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