BTTB 2023 – Edinburgh

Test Beam Results on 3D Pixel Sensors for the CMS Tracker Upgrade at the High-Luminosity LHC

Rudy Ceccarelli

on behalf of the CMS Tracker Group

CMS

17/04/2024

High Luminosity LHC and the CMS Pixel Upgrade

- In the High-Luminosity LHC (HL-LHC), the luminosity will reach $7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 200$ collisions per bunch-crossing
- The CMS experiment needs to be upgraded significantly for HL-LHC
- The silicon tracker of the CMS experiment will be completely replaced
 - Outer Tracker (OT) \rightarrow Strip Detectors
 - Inner Tracker (IT) → Pixel detectors (this Talk)
 - 4.9 m^2 of pixel surface and 2×10^9 channels
 - Tracking coverage up to $|\eta| = 4$
- Two types of sensors will be used in the Inner Tracker:
 - Standard "planar" pixel sensors and **3D** pixel sensors → Higher radiation resistance (this Talk)
 - In 3D sensors the drift path is perpendicular to the active thickness and 1/3 shorter
 - 3D sensors will be installed only in the innermost layer (only 30 mm from the beam line!)
- Active thickness (for both 3D and planar pixel sensors): $150\ \mu m$
- **Pixel size** (pitch): $25 \times 100 \ \mu m^2$ (6x smaller w.r.t. the present CMS tracker)

• • • •

Thermal Simulations

- Thermal properties of the innermost tracker layer were simulated for planar and 3D sensors
- The tracker will have a CO_2 cooling set at -33 °C
- In the innermost tracker layer, planar sensors would go in thermal runaway after large fluences
 - After $2.0 \times 10^{16} n_{eq}/cm^2$, CO₂ should reach at -45 °C to prevent it!
 - With 3D sensors, there is a margin of about of about 10 °C
 - In the second tracker layer planar sensors are a safe choice due to the lower fluences
- Thermal performance of 3D sensors good enough to select lighter design for cooling plate and mechanics (orange curve)

 T_{co2} (°C)

CMS 3D Sensors

- FBK (Trento, Italy), in collaboration with INFN, and CNM (Barcelona, Spain) were involved in the R&D of 3D sensors
- A low resistivity CZ silicon layer is bonded to a high resistivity FZ substrate (Direct Wafer Bond, Silicon-Silicon)
 - Total sensor thickness around 250 μ m (with 150 μ m active thickness)
 - The bias voltage is applied to the ohmic contact, on the backside of the sensor
- Columnar implants penetrate deep into the substrate from the same silicon face (Deep Reactive Ion Etching)
 - p^+ columns reach the backside of the sensor, hence the bias voltage
 - n^+ columns are connected to the readout chip (and they are 115 μm long for FBK and 130 μm for CNM)
 - The columns are filled with polysilicon; the column diameter is 5 μm in FBK and 8 μm in CNM

Side view of an FBK 3D sensor

Side view of a CNM 3D sensor (before thinning the support wafer)

The CMS Read-Out Chip: CROC

- The ReadOut Chip (ROC) is coupled to the sensor (bump-bonding)
 - Sensor + ROC \rightarrow Pixel module
- The CMS ROC (CROC) was designed by the RD53 Collaboration
 - Joint ATLAS-CMS effort established in 2013 to develop readout chips for the HL-LHC pixel detectors
 - **RD53A** was the first prototype, used for sensor R&D until the beginning of 2022
 - 76800 (50 \times 50 μm^2) pixel channels
- The CROC was available for testing late 2021
 - Extensively used for sensor R&D: first test beams with CROC modules in 2022
 - Final version submitted in October 2023 (CROCv2)
 - 145152 (50 \times 50 μ m²) pixel channels
- Various calibrations are needed to operate the pixel modules
 - The pixels channels can be tuned to average thresholds around $1000 e^-$ before irradiation
 - After irradiation, we aim to similar values (although with a higher noise)

Rudy Ceccar<u>elli</u>

CROC Module Irradiation Campaigns

- Four irradiation campaigns were performed at the IRRAD facility at CERN
 - 24 GeV protons \rightarrow Total Ionizing Dose TID = 0.5 GRad per $10^{16}n_{eq}/cm^2$
- Seven CROC modules can be irradiated at the same time
 - Tilted by 30° to achieve a uniform vertical irradiation
 - Horizontal scanning (scan span: 26 mm) to achieve a uniform horizonal irradiation
- Aluminum foils were used to estimate the received fluence with spectroscopy
 - The foils are divided into 20 smaller pieces (about $5 \times 5 \text{ mm}^2$)
 - Can be used to estimate the fluence in different (row and column) regions of the modules
- Irradiations were performed also at KIT, with **23 MeV** protons \rightarrow TID = 1.5 GRad per 10¹⁶ n_{eq}/cm²

Aluminum foil placed in the backside of the module, divided into 20 smaller pieces

SPS Irradiation Measurements

The measured fluences (n_{eq}/cm²) are reported in each rectangle for the corresponding sample

- Example of the spectroscopy of one aluminum foil (2023 campaign)
 - Three strips subsequently cut into smaller squares
 - Irradiation centered along Y and uniform along X (the direction of the scanning)
 - Region of Interest (**ROI**) can be defined for data analysis
- The spectroscopy results are **consistent** between the aluminum foils of different modules
 - 7% error on fluence, as estimated by IRRAD
- The innermost tracker layer should be replaced after an expected fluence $> 1.5 imes 10^{16} \ {
 m n_{eg}}/{
 m cm^2}$

Test Beams

- Test Beam Facilities:
 - CERN SPS (120 GeV pions)
 - **DESY** (5.2 GeV electrons)
- EUDET telescope
 - Six pixel planes equipped with MIMOSA26 sensors (18 μ m pitch)

Telescope Planes

BEAM

- Two arms: upstream and downstream triplets
- $2 \ \mu m$ resolution in each coordinate
- The Device Under Tests (**DUTs**) are kept inside a cooling box between the arms

DUTs

- Heat exchangers close do the DUTs
- Stable air temperature around -30 °C
- A rotation and translation stage allows to set the DUTs at different positions/angles
- In DESY we only used the upstream arm with irradiated modules
 - Beam degradation due to the cooling box
- "Corryvreckan" software was used for data analysis:

https://project-corryvreckan.web.cern.ch/project-corryvreckan/

SPS Test Beam

DESY Test Beam

Irradiated 3D Modules $(1.0 \times 10^{16} n_{eq}/cm^2)$

- Hit Efficiency vs. Bias Voltage for the irradiated 3D modules (two FBK, one CNM)
 - The efficiency is calculated inside a ROI of uniform Fluence ($1.0 \times 10^{16} \; n_{eq}/cm^2)$
 - The modules were tuned to an average threshold of $1000 \ e^-$
- FBK (CNM) sensors show stable noise behaviour up to 150 V (130 V): above that, the noise steeply increases
 - The acceptance is introduced to present a more coherent hit detection efficiency considering the effect of masked pixels
- Hit Efficiency plateau is $\sim 50 V$ wide and starts around $90 V \rightarrow$ Maximum value of $\sim 98\%$ at 130 V

Irradiated at IRRAD Tested at SPS

Irradiated 3D Modules $(1.0 \times 10^{16} n_{eq}/cm^2)$

- Since the columns are made by passive material, 3D sensors have intrinsic inefficiencies with orthogonal beam incidence
 - By rotating the DUTs the inefficiencies are recovered since incident particles always escape the passive material
- With a rotation angle as small as 8°, a hit-detection efficiency of **99**% is reached at **120** V
- The average cluster size increases with the rotation angle (as expected) improving the resolution

Irradiated at IRRAD Tested at SPS

Irradiated 3D Modules $(1.0 \times 10^{16} n_{eq}/cm^2)$

- The collected (cluster) charge distribution is fitted with a Landau distribution convoluted with a Gaussian distribution
- The MPV increases with the bias voltage (as the sensor depletes more)
- The maximum MPV is around 5500 electrons, about 50% less with respect to non-irradiated DUTs

Irradiated 3D Modules $(1.6 \times 10^{16} n_{eq}/cm^2)$

- Hit Efficiency vs. Bias Voltage for an irradiated 3D FBK module, with orthogonal beam incidence
 - The Fluence is **uniform** in this case ($1.6 \times 10^{16} n_{eq}/cm^2$) and the module was tuned to an average threshold of $1200 e^-$
- Hit Efficiency plateau is $\sim 30 V$ wide and starts around $110 V \rightarrow$ Maximum value of $\sim 97\%$ at 130 V
- By looking inside a pixel cell, inefficiencies at the corners of the cell are recovered by increasing the bias voltage

Irradiated at KIT

Tested at DESY

Irradiated 3D Modules $(1.6 \times 10^{16} n_{eq}/cm^2)$

- Hit Efficiency vs. Average Pixel Threshold of the module $\rightarrow 16\%$ efficiency drop when doubling the threshold
 - The higher the Fluence, the higher the effect (about 2% with $1.0 imes10^{16}~{
 m n_{eq}/cm^2}$)
- The charge sharing (hence the cluster size) decreases as the threshold increases
 - The resolution is also affected

Irradiated at KIT

Tested at DESY

Irradiated 3D Modules (> $1.7 \times 10^{16} n_{eq}/cm^2$)

- Hit Efficiency vs. Bias Voltage for three (heavily) irradiated modules (one FBK, two CNM), with orthogonal beam incidence
 - Given the (relatively high) Fluence gradient, two ROIs were selected: one at $1.7 \times 10^{16} n_{eq}/cm^2$ and one $2.2 \times 10^{16} n_{eq}/cm^2$
- Focusing on the ROI with the lower Fluence, for the FBK sensor the plateau starts around ~ 130 V and is ~ 30 V wide
 - After 160 V noise steeply increases
 - Maximum value of $\sim 97\%$ at 150 V
- At $2.2 \times 10^{16} n_{eq}/cm^2$ the efficiency is lower (but still ~ 90%): sensors in the innermost layer will be replaced earlier

Irradiated at IRRAD

Tested at SPS

Conclusions

- CMS decided to install **3D sensors** in the innermost tracker layer
 - Higher radiation resistance and better thermal performance (planar sensors would go in thermal runaway)

- **3D CROC** modules irradiated up to $1.6 \times 10^{16} n_{eq} cm^{-2}$ show excellent performances
 - Hit efficiency plateau is $\sim 30 V$ wide (before noisy behaviour) and starts around 110 V after a Fluence of $1.6 \times 10^{16} n_{eq} cm^{-2}$
 - Hit efficiency plateau is $\sim 50 V$ wide (before noisy behaviour) and starts around 90 V after a Fluence of $1.0 \times 10^{16} n_{eq} cm^{-2}$
 - After a Fluence of $2.2 \times 10^{16} n_{eq} cm^{-2}$ the 3D modules are still working, albeit with a reduced performance
 - The innermost tracker layer should be replaced after an expected fluence of $> 1.5 \times 10^{16} n_{eq}/cm^2$

• Results are compatible with those obtained with the 3D sensors coupled to the previous version of the chip, RD53A