The Bright Side of Multiple Scattering

or

Medical Imaging via electronCT

Paul Schütze,
F. Burkart, M. De Silva, K. Dojan, A. Herkert,
S. Ruiz Daza, S. Spannagel, H. Wennlöf
12th Beam Telescopes and Test Beams Workshop
17th April 2024

FOR GRAND CHALLENGES

- High-energy particles undergo multiple Coulomb scattering in the electric fields of close by nuclei
 - ➔ Particle is deflected stochastically
 - ➔ Scattering angle distribution
- Total deflection theoretically described by Molière
 - Approximation on central width by Highland / Lynch / Dahl

$$\theta_0 = \frac{13.6 \,\mathrm{MeV}}{\beta c p} \sqrt{\frac{l}{X_0}} \left(1 + 0.038 \ln\left(\frac{l}{X_0}\right)\right)$$

- *l* : Projected path length in the material X_0 : Radiation length
- $\varepsilon = l/X_0$: Material budget

- Stochastic deflection leads to deterioration of the position resolution for tracking detectors
 - ➔ Usage of light & thin materials

- Stochastic deflection leads to deterioration of the position resolution for tracking detectors
 - ➔ Usage of light & thin materials

Can be used to gain information on traversed objects

BTTB12

→ Muon Tomography H2

Paul Schütze | electronCT

- Stochastic deflection leads to deterioration of the position resolution for tracking detectors
 - ➔ Usage of light & thin materials

b

Can be used to gain information on traversed objects

→ Muon Tomography H2

• Goal: Perform imaging (medical/industrial) of macroscopic objects using electrons

- Motivation:
 - Radiotherapy using Very-High Energy Electrons (VHEE, 100 250 MeV) under wide investigation – powerful tool when combined with FLASH therapy
 - Imaging is mostly accomplished via conventional CT or MRI
 - ➔ Change of reference system
 - electronCT uses energies applied also in treatment for medical imaging
 - \rightarrow Synergy: use the same accelerator for imaging and treatment
 - ➔ Accuracy: obviate change of reference system or patient relocation
 - ➔ In-situ: tumor location via eCT

Bending magnets

Patient

Bending mag

©CERN

- Goal: Perform imaging (medical/industrial) of macroscopic objects using electrons
- Technique: Use pencil beam to raster the sample & perform beam profile measurement downstream of the sample
 - Beam traversal position at sample defines pixel of obtained image
 - Measured quantity: width of beam profile for given beam position
 - → Calibration to material budget traversed by beam

- Goal: Perform imaging (medical/industrial) of macroscopic objects using electrons
- Technique: Use pencil beam to raster the sample & perform beam profile measurement downstream of the sample
 - Beam traversal position at sample defines pixel of obtained image
 - Measured quantity: width of beam profile for given beam position
 - ➔ Calibration to material budget traversed by beam
- Requirements:
 - Well-controlled, small beam spot @ sample **ARES**
 - Precise relative movement beam vs. sample **4D Stage**
 - High repetition rate for fast image recording
 - Fast detectors with large dynamic range Timepix3

The ARES Accelerator

- **ARES** (Accelerator Research experiment at SINBAD) as an excellent facility for proof-of-concept measurements
- Conventional electron S-band linear RF accelerator
 - Ultra-short electron bunches (FWHM < 10 fs)
 - Bunch charge 0.5 pC few pC (and lower)
 - 155 MeV energy
 - 10 Hz repetition rate
- In-air experimental area
 - $\mathcal{O}(250 \ \mu\text{m})$ beam spot at sample, dominated by scattering at beam window

https://kt.cern/technologies/timepix3

Timepix3 Detector

- Detector readout ASIC by CERN, NIKHEF, Uni Bonn
 - Pixel Pitch: 55 x 55 μm
 - Pixel Matrix: 256 x 256
 - Total Area: 14 x 14 mm
- Used in both High Energy Physics and Medical Applications
- Here:
 - Bump bonded to 100 µm thick, planar silicon detector
 - Readout mode options:
 - Data-driven: continuous readout \rightarrow event building in post-processing
 - Frame-based readout tested with few issues, requires further testing
 - Data acquisition systems:
 - Katherine Readout System, TrackLab software

Paul Schütze | electronCT | BTTB12

electronCT Setup

- Medical phantoms on x-y- ϕ motion/rotation stage
 - "Alfred": gelatinous tissue, solid skull
 - "Berta": solid (resin), detailed skeleton
- Timepix3 assembly on fixed stand downstream
- Minimising distances for beam size & occupancy
 - Limited by mechanics divergence influences spatial resolution

Scanning techniques

- Scan tool implemented to perform two- or three-dimensional scans:
 - 2D: x + y
 - 3D: x + y + φ
- Continuous motion along x, steps in y and φ

Paul Schütze | electronCT | BTTB12

doi:10.1088/1361-6560/acc566

* A Little Furry Rat for electronCT Development ** Brave Experimental Rodent for Tomographic Applications

Results

Beam Profile Measurements Corryvreckan beam monitor

- Bunch-by-bunch beam monitoring from TPX3 data
- Beam parameter optimisation
 - Low charge
 - ➔ Low dose to sample or patient
 - ➔ Prevent saturation of detector
 - Low emittance
 - Transverse bunch profile dominates spatial resolution for small samples and affects the sensitivity
- Beam characterisation
 - Transverse bunch size as a function of longitudinal position

eCT 2D Measurement

- Each data point in an image represents the width of the beam at the detector for the given stage position
- Good contrast reached
 - Skull distinguishable from tissue
 - Features like ears, eyes and teeth visible
- High resolution achievable
 - Here limited by beam size (~0.2 mm)
- Empty bins correspond to missing frames (DAQ issue)

eCT 2D Measurement – Berta

- High resolution 2D scan: 100 x 100 μm
 - Resolve ribs, arms and skull
 - Skeleton distinguishable from tissue
 - No organs or tumours inserted

- Repeat 2D imaging at various rotation angles ...
 - The sequence of motions doesn't matter in the end we require the time-resolved information from the x-y-φ stage to assign each data frame (bunch) to a point in the 3D parameter space

- Repeat 2D imaging at various rotation angles ...
- For each row of the parameter space ...

- Repeat 2D imaging at various rotation angles ...
- For each row of the parameter space plot the pixel value vs x-φ ("Sinogram")

- Repeat 2D imaging at various rotation angles ...
- For each row of the parameter space plot the pixel value vs x-φ ("Sinogram")
- Perform an *inverse radon transform* (here: filtered back projection) to obtain a single slice (x-z) of the sample
- Image artefacts under investigation Potential sources:
 - Non-linearity of beam width as a function of material budget
 - Variation of incoming beam parameters throughout measurement

Paul Schütze | electronCT | BTTB12

electronCT – 3D

- Phantom features well visible from tomographic reconstruction (f.l.t.r.):
 - Skull (no brain inserted) + paws
 - Shoulder + spine
 - Lung + spine
 - Abdomen (empty) + spine

Proof-of-concept for small-size phantoms

Paul Schütze | electronCT | BTTB12

Conclusions

Status Quo & Outlook

- electronCT concept studied @ARES
 - Measurement of beam widening from scattering
 - Concept proven via 2D & tomographic measurements
 - High measurement times (O(few hours)) limited by acc. repetition rate
- Next steps towards medical imaging ...
 - **Simulations**: benchmark/improve analysis & reconstruction, contrast, explore limitations, estimate dose ...
 - Calibration & characterisation measurements
 - Reduce
 measurement time

Backup

Simulation Setup

- Allpix Squared Semiconductor Simulation Framework
 - Particle-matter interaction integrated via Geant4
- Beam:
 - Electrons, 155 MeV
 - Beam size: 100 µm
 - Divergence: none (dominated by scattering at window)
 - Particles per bunch: 1000 (0.16 fC)
- Medical rat phantom
 - Simulation:
 - Cylinder, paper, Ø 18 mm (tissue)
 - Cylinder shell, aluminum, 6 mm < \emptyset < 7 mm (bone)

Bunch Profile – Simulation & Measurement

- Simulation setup:
 - Beam traverses phantom at different positions
- Widths calculated from fits to projections: $(\sigma_x + \sigma_y)/2$
 - w/o phantom: saturation of front-end, beam spot ~320 um
 - w/ phantom: no saturation, still room on sensor
- High resemblance with in-beam measurement

- · Goal: Measurement of the scattering angle at the SUT
- Strategy: single-particle tracking before and after the sample under test using so-called beam telescopes
- Four steps:
 - Illuminate full sample with a GeV charged particle beam
 - Measure the hits in the **pixel sensor** planes in front of and behind it
 - Reconstruct **particle trajectories** through the telescope
 - Extract the **width** of the kink angle distribution & estimate material budget per image cell
- Initial tests: EUDET telescopes (Mimosa26 sensor)
 @ DESY II Test Beam Facility

Paul Schütze | electronCT | BTTB12

- · Goal: Measurement of the scattering angle at the SUT
- Strategy: single-particle tracking before and after the sample under test using so-called beam telescopes
- Four steps:
 - Illuminate full sample with a GeV charged particle beam
 - Measure the hits in the **pixel sensor** planes in front of and behind it
 - Reconstruct **particle trajectories** through the telescope
 - Extract the **width** of the kink angle distribution & estimate material budget per image cell
- Initial tests: EUDET telescopes (Mimosa26 sensor)
 @ DESY II Test Beam Facility

Paul Schütze | electronCT | BTTB12

- CMS Phase II Tracker Upgrade
 - CF foam with cooling pipe, CFRP plates & glue joints
 - All features visible & quantifiable
- ATLAS ITk Upgrade
 - Measurement of support structures & electronics
- Potential:
 - Quantification of material budget possible
 - Simulations show good performance for large range of objects up to a few millimeters of lead

- Repeat projection measurement for various angles
- Generate sinograms from individual images
- Perform inverse Radon transform for tomographic reconstruction

