Qualification of pixel detectors for the upgrade of the ATLAS Inner Detector with beam tests

Juan Ignacio Carlotto

On behalf of ATLAS ITk

BTTB12 Workshop Edinburgh

15–19 april 2024

Large Hadron Collider upgrade

- The LHC next upgrade is the High-Luminosity LHC (HL-LHC) planned to start operation in 2029.
- It is expected to provide up to 200 proton-proton interaction per bunch crossing delivering about 4000 fb⁻¹ of data over 10 years.
- An upgrade of the ATLAS detector is needed to cope with the harsher radiation levels and with a much higher number of tracks.

ATLAS ITk upgrade

The ATLAS Inner Detector will be completely replaced with an all-silicon Inner Tracker (ITk). The challenges for this new detector are related to:

- Large number of tracks
 - High pixel granularity (small pitch)
- High radiation levels
 - Improved radiation hardness

Left picture shows a schematic depiction of the ITk Layout,

- 5 layers
 - 3D pixel sensors for the innermost layer (L0)
 - n-in-p planar silicon sensors for the other layers

ATLAS ITk upgrade

Radiation expected during the full sensor operation life:

- Inner system: $1.7 \cdot 10^{16} n_{eq}/cm^2$
- Outer system: $5 \cdot 10^{15} n_{eq}/cm^2$

Performance of pre-production sensors irradiated at these fluences going to be presented.

Simulation of radiation expected for HL-LHC ATLAS detector

/ 4000fb⁻¹]

10¹⁷

The requirement for these sensors to qualify is to meet a detection efficiency:

- For 3D pixel sensor (L0 layer):
 - Higher than 96% at perpendicular configuration or 97% at tilted configuration (see slide 9) after being irradiated at $1.7 \cdot 10^{16} n_{eq}/cm^2$
- For planar sensors (L1-L4 layers):
 - Higher than 97% after being irradiated at $5 \cdot 10^{15} n_{eq}$ /cm²

It is expected that the ITk pixel Inner system will be replace after 5 years of operation because of the radiation damage.

ITk planar sensors – quad module

ITk pixel detector is composed by different layers:

- L1: Inner system
 - Staves and rings
 - 50x50 μm² pixel planar sensors 100 μm active thickness.
- L2-L4: Outer system
 - Stave and rings
 - 50x50 μm²pixel planar sensors 150 μm active thickness.

- Single side process with guardring and pixels on the top side
- Parylene protection
 - Reinforce bonds and avoid corrosion
 - Prevent discharge between sensor and front-end
- The centre of the quad sensor has larger pixels with different geometries to extend the coverage of the sensor into the inter-chip gap

Pixel size

- **50x50 μm²**
- 100x100 μm²
- 50x100 μ m² or 100x50 μ m²

ITk 3D pixel sensors – triplet module

- Sigle side process
- Single read-out electrode in the center (n+ column) and four bias electrodes (p+ columns) at the corners
- Two different configurations

ITk pixel detector is composed by different layers:

- L0: Inner most system
 - Staves: Linear triplets
 - 25x100 μm² 3D pixel sensors with 1 electrode and 150 μm active thickness.
 - Rings: Rings triplets
 - 50x50 μm² 3D pixel sensors with 1 electrode and 150 μm active thickness.
 - Very high radiation hardness

6

Testbeam setup at SPS-CERN

- EUDET telescope with 6 Mimosa26 planes and trigger scintillators
- FE-I4 (MMC3 readout) plane and single ITkPixV1.1 (FBK 3D sensor) for track matching.
- Results were obtained using ITkPixV1.1 chip.
- 120 GeV pions
- Cold box: 2 deep temperature chillers driving external cooling circuits with silicon oil / ethanol:
 - Liquid/air heat exchanger inside the box
 - Additional cooling circuit only for quads
 - Pre-colling nitrogen (for humidity control)

Testbeam setup at SPS-CERN

Quad module setup

- Challenging cooling system for quads.
 - Additional cooling circuit only for quads with ethanol or silicon oil.
 - no material is added along beam's track
- Achieved < -15 °C on powered quad modules

- A special frame was fabricated to support the quad in the center.
- Data adapter and power cards are located from the top and bottom connected to the module pcb by pigtails.
- The holder is directly cooled down by two Peltiers (above and below the module), each cooled down by a copper heat exchanger cooled with silicon oil/ethanol.
- No material is added along beam's track to achieve the cooling

Testbeam setup at SPS-CERN

3D pixel setup

- 3D modules mounted on rigid PCB (single chip card, SCC) intended for testing individual bare module.
- Measurements were performed at different configuration angles:
 - 0° (perpendicular)
 - 15° (To avoid column effects)
- Reconstruction of the events with Corryvreckan
 - Introduce geometry of the experiment:
 - Position and inclination of the detectors
 - Pixel dimensions.
 - Default value was 50x50 μm^2
 - It was necessary to modify the program to adjust to 25x100 μm²
 - DUT clusters are also requested to match the expected position by tracks

beam

Modules tested during 2022/2023 testbeam

- Pre-production sensors were irradiated at:
 - KIT (23 MeV protons)
 - CERN IRRAD (24 GeV protons)
 - CYRIC (70 MeV protons)
 - Bonn (13 MeV protons)
- List of modules tested presented in this presentation:

Sensor	Manufacture place	Pixel dimension [µm ²]	Serial Number	Irradiation level [10 ¹⁶ n _{eq} /cm ²]	Place of irradiation
3D pixel	SINTEF	50x50	15	1	KIT
			4S	1.8 (not uniform)	KIT+IRRAD
	FBK	25x100	SCC29	1	КІТ
			SCC23	2.4 (not uniform)	IRRAD
			SCC24	2.3 (not uniform)	IRRAD
		50x50	SCC3	1.7 (not uniform)	IRRAD
Planar	НРК	50x50	KEKQ9	-	Not irradiated
			KEKQ16	0.43	CYRIC

Planar sensor from FBK and Micron (100 μ m and 150 μ m) were tested but analysis is still in process.

HPK Test beam results

HPK planar sensor

- 2 HPK 50x50 μ m² planar sensors were tested:
 - KEKQ9 (not irradiated)
 - KEKQ16 (irradiated up to $4.3 \cdot 10^{15} n_{eq}/cm^2$)
- KEKQ9 reaches the 98.5% hit efficiency at 20 V.
- While KEKQ16 reaches the 97% (requeriment for irradiated sensors) at 400 V.

SINTEF 3D pixel Sensors

- 2 SINTEF 3D 50x50 μm² pixel sensors were tested in different conditions:
 - Fluences
 - Unirradiated; $1 \cdot 10^{16} n_{eq}/cm^2$ and $1.8 \cdot 10^{16} n_{eq}/cm^2$
 - Angles
 - 0° (perpendicular) and 15°
- Hit efficiency specifications is reached at 1.8 $\cdot 10^{16}~n_{eq}~/cm^{2}$ on both angles.
 - 97% (15°) at 60 V
 - 96% (perpendicular) at 80 V
- Hit efficiency in the perpendicular configuration.
 - The hit efficiency is lower in the corners and the center of the pixel cell because of the columns

in-pixel x [µm]

FBK 3D pixel Sensors

Upper picture:

- Hit efficiency plot for SCC29 (25x100 μm²) and SCC3 (50x50 μm²) perpendicular and inclined configuration.
- At 1 ·10¹⁶n_{eq}/cm² fluence both reached the 97% hit efficiency required at 60 V.

Bottom picture:

- 3D FBK 50x50 μm² measured at target fluences in 2022 and 2023 Irradiated at IRRAD (not uniform irradiation)
- Efficiency reached 97% at 1.7 ·10¹⁶ n_{eq}/cm² with the 3% of disabled pixels at 130 V.

FBK 3D pixel Sensors

Upper picture:

- The irradiation fluency level in the SCC24 25x100 μm² to max.
 2.4 ·10¹⁶ n_{eq}/cm² (mean 1.7 ·10¹⁶ n_{eq}/cm²), similar results for SCC23.
- Picture shows the area where the testbeam experiment data was taken.

Bottom picture:

- Hit efficiency results
 - SCC23: Efficiency reaches 96% (normal incidence) even after irradiation at 2.5 ·10¹⁶ n_{eq}/cm² although with the 5% of disabled pixels at 160V that rapidly increasing at higher V_bias.
 - SCC24: Efficiency is close to 97% (inclined) in the area with mean fluence around 1.9 ·10¹⁶ n_{eq}/cm² with the 3% of disabled pixel at 150 V.

Further uniform irradiation of 25x100 3D pixel sensor is planner

Conclusion

- Verification of the detection efficiency performance of the pre-production sensors was presented.
 - SINTEF 3D pixel sensor 50x50
 - FBK 3D pixel sensor 50x50 and 25x100
 - HPK 50x50 planar sensor
- 3D pixel and planar sensors meet the specifications at the corresponding irradiation fluence.
- New test beam campaign in 2024 for more measurements to confirm results, to test remaining vendor/module type combinations, to test first modules with the final chip ITkPixV2.

Thank you for your attention

