A Digital SiPM as 4D Tracking Prototype

Exploring the Potential of CMOS SPAD Arrays

Inge Diehl, Finn Feindt, Ingrid-Maria Gregor, Karsten Hansen, Stephan Lachnit, Daniil Rastorguev, Simon Spannagel, Tomas Vanat, **Gianpiero Vignola**

BTTB12 Edinburgh, 19 April 2024

Motivation

Possible Application of CMOS SiPMs

As an alternative to analog SiPM

- Reduce complexity of DAQ chain with CMOS electronics
- New in-chip features:
 - Noise suppression
 - Full hitmap readout
 - Photocounting
 - Trigger logic
 - Parameters tuning (e.g. quenching)
- Customized cost-effective solution

As candidate for new applications in HEP

- Multi optical-fiber readout
- 4D-Tracking of MIPs

Example of analog SiPM

DESY digital SiPM

Optical-fiber multiple readout with digital SiPM <u>https://doi.org/10.1016/j.nima.2022.167033</u>

4D-Tracking https://dx.doi.org/10.1088/1361-6633/aa94d3

DESY dSiPM Specifications

ASIC in LF 150 nm CMOS

Layout

- In LFoundry 150 nm CMOS technology
- Main matrix: 32 x 32 pixels (4 SPADs per pixel)
- Sensor area: 2.2 x 2.4 mm²
- Test structures in the chip periphery

Features

- Full hit matrix readout and timing measurements
- 4 x 12-bit Time to Digital Converters with ~95 ps timing resolution
- Pixel masking
- In chip trigger logic
- 2-bit in-pixel hit counting
- Readout is frame based (3 MHz frame rate)

For details on ASIC see: I. Diehl et al 2024 JINST 19 P01020

DESY. | A Digital SiPM as 4D Tracking Prototype BTTB12 | Gianpiero Vignola 19-April-2024

ASIC design of the DESY dSiPM

DESY II Test Beam Setup

March 2023 & February 2024

Beam momentum used: ~ 2-5 GeV/c

Synchronization: Trigger Logic Unit (TLU) and EUDAQ2

Active cooling: Stable DUT temperature down to 0 °C

Beam telescopes:

March 2023: EUDET type telescope with Mimosa26 February 2024: ADENIUM telescope with ALPIDE

dSiPM testbeam setup March 2023

hitmap

Plastic scintillator with a hole used as VETO for Trigger

- · Anticoincidence with other scintillators
- Trigger only in a ROI slightly larger than DUT
- · Allows to save disk space and maximize yeld

Material Budget Image (AAD)

Material budget image for DUT alignment

Corryvreckan modules: [TrackingMultiplets] [AnalysisMaterialBudget]

Device Under Test

Bare Prototypes and Coupling with Thin LYSO

Testbeam March 2023

- 2DUT aligned with the trigger area
- Only bare silicon exposed (light shielded)
- Device treated as a MIP detector

Testbeam February 2024

- 2DUT aligned with the trigger area
- DSiPM coupled with thin LYSOs (100 & 200 µm thick)
- Device treated as a MIP detector

DESY dSiPM Spatial Resolution

normalized n of entries

 10^{-1}

 10^{-2}

 10^{-3}

10-4

In MIP Detection Using Bare Prototypes

Associated cluster size

- Mainly one, no visible charge sharing
- Large gap between pixels to avoid crosstalk
- Cluster size of MIP and noise event compatible

Spatial residuals

- Defined as the difference between cluster position in DUT and interpolated track in the same z-position
- Double peak structure (inefficiency in the pixel centre)
- Small noise contribution (in blue) ٠
- Std Dev of signal ~20 µm in x and y (dominated by DUT resolution) •
- Spatial resolution compatible with pitch/sqrt(12) ($\sim 20 22 \mu m$)

DESY dSiPM Timing Performances

In MIP Detection Using Bare Prototypes

Time residuals

- Defined here as the difference between the DUTs timestamps (dSiPM1 – dSiPM2)
- Can be used to determine dSiPM + TDC time res.
- Time resolution measured: 46 ± 5 ps (Fast Component)
- Limited mainly by TDC resolution (~95 ps)

Slow component

- Slower component only in the 15 % of the entries
- Visible as ns tails in time residuals
- Slow component correlated to SPAD periphery
- Probably due to MIP interaction in low E-field regions

DESY. | A Digital SiPM as 4D Tracking Prototype BTTB12 | Gianpiero Vignola 19-April-2024

DESY dSiPM Efficiency

In MIP Detection Using Bare Prototypes

Direct MIP detection

- Main limit is the fill factor (~30%)
- Maximum efficiency in the SPAD centre
- Track resolution O(4 µm)
- Measured value is slightly larger than the fill factor
- Small OV dependence
- No temperature/sample dependence observed

Overcome efficiency limits

- Along with the DCR represents the main limit for 4D-Tracking
- Use larger SPADs (and not 4 x small)
- Use design/processes with slimmer SPAD isolation
- Explore the coupling with thin radiators (next slides)

DSiPM pixel picture

dSiPM MIP Detection Efficiency

DESY. | A Digital SiPM as 4D Tracking Prototype BTTB12 | Gianpiero Vignola 19-April-2024

Thin Radiator Concept for DESY dSiPM

Increase Efficiency and "Reduce" Noise, Towards 4D-Tracking

Following the thin radiator coupling concept already explored with SiPM in MIP detection [1] [2] [3]

DESY dSiPM + thin LYSO scintillators:

- Higher number of photons/µm produced
- Thinner converter -> cluster of photons
 - Preserve spatial resolution on DUT
 - Strongly suppress DCR noise (>> 1 SPAD firing)

Associated cluster size

- Large clusters (high number of scintillation photons)
- Signal clusters can be distinguished from noise (usually 1-2 SPADs)
- Strong noise suppression cutting on cluster size

Cluster Size Comparison

- Cluster size increases with overvoltage (SPAD PDE increase)
- Thicker the LYSO larger the cluster size (number of photons)
- Small increase of clustersize with temperature (higher DCR)

dSiPM + LYSO Spatial Resolution

In MIP Detection

Spatial residuals

- Defined as the difference between cluster center in DUT and interpolated track in the same z-position
- Gaussian distribution (double peak structure no longer visible)
- Sigma ~33 μm (100 μm LYSO) and ~38 μm (200 μm LYSO)
- Spatial resolution compatible with ~pitch/2
- Residuals VS OV trends under investigation

dSiPM + LYSO Efficiency

In MIP Detection

dSiPM_0 Pixel efficiency map

Efficiency using thin radiator

- Unifor in-pixel efficiency (SPADs position no longer visible)
- From ~33% (bare silicon) to ~99% using Thin LYSO
- No particular OV or temperature/sample dependence observed

Ψ

Time residual

Time residuals

- Defined here as the difference between the DUTs timestamps ٠
- Can be used to determine dSiPM + circuit time res. ٠
- Core has a FWHM ~ 350 ps ٠
- Overvoltage dependence currently under investigation .

Important slow component

- A considerable fraction of the events has a time resolution in the O(1ns), long tails in time residuals
- Asymmetry related to the different LYSO thickness ٠
- Probably related to slow LYSO component and small PDE .
- Strategies to reduce the slow component under investigation

Summary DESY digital SiPM

CMOS SiPMs R&D

- dSiPMs can be an interesting alternative to analog SiPM
- Combination of SPAD and CMOS electronics in the same silicon die opens new application possibilities & reduces complexity

DESY dSiPM & MIP 4D Tracking

- DSiPMs may represent a possible candidate technology for 4D-tracking
- DESY dSIPM used in a test beam setup as particle detector

Bare Silicon:

- Spatial resolution of the O(20 µm)
- Efficiency comparable to the fill factor (~ 33%)
- Time resolution O(50 ps) sigma

DSiPM + Thin LYSO

- Spatial resolution of the O(35 µm)
- Efficiency>99% with strong noise suppression
- Time resolution <1 ns

	dSiPM	dSiPM+LYSO
Signal Cluster Size	~ 1	10 – 40
Spatial Resolution	~ 20 µm	~ 35 µm
Efficiency in MIP detection	~ 33 %	> 99 %
Dark Counts (Noise)	O(MHz)	O(Hz)*
Time Resolution	~ 50 ps	< 1ns *

*currently under investigation

Thank you.

References: BTTB11: Test Beam Characterization of a digital SiPM in 150 nm CMOS Technology BTTB11: Timing Characterization of a digital SiPM I. Diehl et al, Monolithic MHz-frame rate digital SiPM-IC with sub-100 ps precision and 70 µm pixel pitch S.Lachnit, Time Resolution of a Fully-Integrated Digital Silicon Photo-Multiplier F.Feindt et al, The DESY digital silicon photomultiplier: Device characteristics and first test-beam results

Gianpiero Vignola gianpiero.vignola@desy.de

Deutsches Elektronen-Synchrotron DESY Notkestraße 85, 22607 Hamburg 1C, O1.331, ATLAS

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).

DSiPM TB4 Timing

Not exactly as expected, work in progress

IV Curves & Dark Count Rate

Basic Chip Characterization

- Detailed characterization performed on several samples (Chip4 shown in figures)
- IV & Dark Count Rate studies performed with controlled temperature (from -25 to 20 °C) and humidity (~ 0 %) in a dark environment
- Measurements compatible with expectations

DESY dSiPM Characterisations

Exploring the Potential of Digital SPADs

Studies possible thanks to digital features

- Effect of quenching transistor tuning in senor response
- Pixel masking: effect on IV and DCR reduction
- Pixel crosstalk characterisation: studying the correlation between avalanche position and CT probability in neighbours

Crosstalk studies as function of avalanche position

DESY. | A Digital SiPM as 4D Tracking Prototype BTTB12 | Gianpiero Vignola 19-April-2024

Pixel Design & Readout

4 SPAD Layout

Pixel Layout & electronics

- 4 SPADs sharing one Frontend and additional readout electronics
- Fill factor ~30% (limited by SPAD dimension available)
- Quenching Transistor (V_{Quench})
- Masking Circuitry
- In-pixel Hit counter

Readout concept

- The ASIC is divided into four identical quadrants (16 x 16 pixel units)
- Outputs of all pixels are combined in a wired-OR
- The fastest pixel signal triggers a running 12-bit TDC
- Validation logic to discard undesirable events
- The Hit matrix is readout via a 16-to-1 multiplexer

Microscope picture of a pixel

Microscope picture of the Chip

Readout concept of a 16-by-16 pixel unit (Quadrant)

Additional characterizations

Validation Logic & Dead Time

Validation logic

- A 4-step validation logic is implemented in every quadrant
- Every step can be configured to be an AND or OR gate
- A flag bit is generated for event validation within 2 ns
- Successfully validated using laser pulses and masking

Quenching & Dead Time

- In 2-bit mode is it possible to count laser pulses within the frame
- Consecutive pulses can be distinguished only if the discriminator threshold is crossed (non-overlapping pulses)
- Pulse length can be tuned by acting on Vquench Transistor (Global Setting)

Schematic representation of the Validation Logic

Dead Time vs V_{Quench} (chip4)

DAQ System in Test Beam

AIDA TLU Core

DESY. | A Digital SiPM as 4D Tracking Prototype BTTB12 | Gianpiero Vignola 19-April-2024

TestBeam data reconstruction

Using Corryvreckan Framework

- Corryvreckan use hit ^(c) (pixels above threshold) and Clusters ^(c) (groups of adjacent hits) to reconstruct particle trajectories.
- DUT response is then investigated on associated events

DSiPM tesbeam setup

- Real Track
- Hit
- Cluster
- Cluster center
- Reconstructed
 Track
- Residuals

http://cern.ch/corryvreckan

Possible Solution to Increase Efficiency

And "Reduce" DCR Noise

MIP detection with analogue SiPMs

- High detection efficiency observed while detecting MIP
- High number of SPADs firing
- Correlation between MIP response and SiPM packaging
- Effects attributed to Cherenkov light produced in commercial SiPMs protection materials (~0.6-1.5 mm Epoxy resin or Silicone)
- Benefits:
 - High efficiency of SiPM in direct MIP detection
 - Low DCR contamination (high threshold)
 - Multipurpose detector (single photon and MIP)

References

- F.Carnesecchi, G.Vignola et al. Direct detection of charged particles with SiPMs, 2022
- F.Carnesecchi, G.Vignola et al. Understanding the direct detection of charged particles with SiPMs, 2023

F.Carnesecchi, B.Sabiu et al. Measurements of the Cherenkov effect in direct detection of charged particles with SiPMs, 2023

Which samples?

I'll go for Chip10 & Chip11 (LYSO 100 & 200)

Sr-90 in ELAB4

- 2 days campaign with Sr-90 in ELAB4 last week 2024
- Using Eudaq for data taking & Corry For analysis
- Geant4 simulation trend confirmed:
 - 100 & 200 LYSO similar
 - 500 LYSO clusters too big (poor spatial performances)

Temperature on Chip ~25C

<u>Logbook</u>

DESY. | A Digital SiPM as 4D Tracking Prototype BTTB12 | Gianpiero Vignola 19-April-2024

dSiPM_0 Cluster size

Which samples?

Overvoltage ~1.5 Temperature on Chip ~25C

DESY. | A Digital SiPM as 4D Tracking Prototype BTTB12 | Gianpiero Vignola 19-April-2024

Residuals vs OV

As Funtion of Overvoltage

Time Residuals

Correction Applied

Selection & corrections

- Only 1 Frame decoded
- ROI quadrant center
- DNL correction
- Delay correction*
- Timestamps from Cluster center

Time residual

Timing considerations

Time Residuals components

dSiPM Timestamp: Fast, Slow, None

https://www.sciencedirect.com/science/article/pii/S0168900218302286

LYSO Timestamp: Fast if we catch one prompt ph

Updated Version of Time Residuals

Interesting outcome

entries

entries

498

499

500

501

502

Time residual

Mean time residual in-pixel map Standard deviation time residual in-pixel map residualTime 335459 Entries 100 um Mean 502.4 Std Dev 0.7943 [su] eme 502 time [ns] y [mm] y [mm] 104 0.03 0.03 0.02 0.02 10³ 0.9 502.6 0.01 0.01 0.8 10^{2} 502.4 ſ 0.7 504 50 time_{ref}-time_{dut} [ns] 501 502 503 499 500 505 Time residual -0.01 -0.01 0.6 502.2 residualTime 200 um Entries 366285 501.3 Mean -0.02 -0.02 Std Dev 0.6418 0.5 10⁴ 502 -0.03 -0.03 0.4 100 um **00 um** 10³ -0.03 -0.02 -0.01 0.02 0.03 -0.03 -0.02 -0.01 0.02 0.03 0.01 0 0.01 0 x [mm] x [mm] 10²

PRELIMINARY

503 504 time_{ref}-time_{dut} [ns]

Let's Play Chess

Similar Performances Whith Half Active Area!

cluster size

Size distribution of associated clusters

0 50

Using Cluster Center,

dSiPM_0 Chip efficiency map

Run 1826, 2 OV chip10-100um LYSO

150 200 250

x_{track}-x_{hit} [μm]

100