The H2M Pixel Sensor Prototype: Laboratory Characterization

Rafael Ballabriga, Eric Buschmann, Michael Campbell, Raimon Casanova Mohr, Dominik Dannheim, Ana Dorda, Finn Feindt, Philipp Gadow, Ingrid-Maria Gregor, Karsten Hansen, Lennart Huth, Iraklis Kremastiotis, Stefano Maffessanti, Lucia Masetti, Younes Otarid, Christian Reckleben, Sara Ruiz Daza, **Judith Schlaadt**, Simon Spannagel, Tomas Vanat, Gianpiero Vignola, Håkan Wennlöf

12th Beam Telescopes and Test Beams Workshop Edinburgh, April 19th, 2024

HELMHOLTZ

MAPS for Future Lepton Colliders

Future Lepton Colliders

- Various existing proposals: CEPC, FCC-ee, CLIC, ILC, etc.
- Challenging requirements for tracking and vertex detectors:

CLIC	Vertex Detector
Timing Resolution	~ 5 ns
Spatial Resolution	< 3 µm
Mass Constraint	~ 0.2%X ₀
Power Dissipation	< 50 mW/cm ²
Hit Detection Efficiency	> 99.5%

K. Dort et al. doi:10.22323/1.390.0836

Monolithic Active Pixel Sensors (MAPS)

- Single sensor and fully integrated readout electronics
- Thinner devices with less multiple Coulomb scattering
- Small collection electrodes: low sensor capacitance beneficial to SNR
- Smaller feature size (e.g. 65 nm): higher density of logical circuits
- ← See talks by L. Mendes,

M.A. del Rio Viera and poster by S. Ruiz Daza

The H2M (Hybrid-to-Monolithic) Prototype

H2M Pixel Sensor Prototype

Common design and testing effort between

Development goals

- Study challenges of porting a known hybrid pixel detector architecture in a monolithic chip
- Exercise digital-on-top design flow and methodology in monolithic process
- Design and test a compact digital cell library

Existing prototypes

- Designed and fabricated in 65 nm CMOS imaging process
- Currently 5 samples under investigation

H2M Pixel Sensor Prototype

Sensor specifications

- Pixel matrix: 64 × 16 pixels
- Pixel pitch: 35 × 35 µm²
- Total sensitive area: 2.24 × 0.56 mm²
- Relatively thin epitaxial layer: 10 µm
- Total thickness: 50 µm

N-gap sensor layout

- Additional n-doped layer with gaps around pixel edges
- 2.5 µm gap size
- Improve charge collection from pixel edges and corners

Analog Pixel Front-End

Analog Pixel Front-End

Analog Pixel Front-End

Digital Pixel Logic

Based on 8-bit in-pixel counter with 4 different acquisition modes

- Frame-based acquisition modes
 - Active window defined by external shutter signal
 - Time of arrival (ToA)
 - Time over threshold (ToT)
 - Photon counting
- Triggered binary readout

Example: photon counting mode

- Triggering on discriminator falling edge
- 10 ns binning
- Counts number of threshold crossings (i.e. amplified signal exceeds global threshold) within shutter window

Laboratory Characterization

Noise Based Pixel Trimming

Signal detection is limited by noise effects

- Pixel baseline fluctuations
- Pixel threshold inhomogeneities
- ⇒ Minimize threshold dispersion of pixel matrix by means of per-pixel threshold *tuning_dac*

Procedure

- Repeat threshold scan for all *tuning_dac* settings
- Determine individual pixel thresholds
- Choose trimming target within range of all pixels
- Find matching *tuning_dac* setting via linear fit
- Create mask file with per-pixel *tuning_dac* setting

Trimmed Pixel Matrix

- Reduced threshold dispersion
- No trends in map of *tuning_dac* distribution
- Threshold *tuning_dac* makes use of full dynamic range

Pixel count sum (whole matrix), bias voltage: -1.2 V

• Approximately 0.5 % of the pixels not tuneable

DESY. | The H2M Pixel Sensor Prototype: Laboratory Characterization | Judith Schlaadt | BTTB12 | 19/04/2024

Pixel Row

Front-End Parameter Optimization

8-bit global biasing dac_itrim

- Varies bias voltage of threshold *tuning_dac* to adjust tuning step size
 - ⇒ affects dynamic range of *tuning_dac*, amount of tuneable pixels and threshold dispersion
- Compromise between low threshold dispersion and high amount of tuneable pixels
- Choose operation point for different bias voltages based
 on these results
 - \Rightarrow already reasonable operation point at default settings
 - ⇒ settings might require changes in the future e.g. for different samples

Test Beam Operation @ DESY II

Test Beam Operation

DESY II test beam facility

- \hookrightarrow See talk by R. Diener et al.
- Beamline 22
- ~ 5.0 GeV electron beam
- ALPIDE reference telescope with
 - \sim 3 µm pointing resolution
- ↔ See talk by A. Herkert
- Trigger: TelePix2
- ↔ See poster by A. Wintle
- H2M: ToA mode

Untrimmed Pixel Matrix

Hit maps

- Comparably homogeneous but also noisy pixels for high hit detection thresholds
- Noise dominated and non-operational for reduced hit detection thresholds

Hit Maps

Trimmed and untrimmed pixel matrix

- Hit detection threshold set well above individual pixel thresholds
- Comparable fake hit rate

Trimmed matrix

- Masking of three non-tuneable pixels during trimming procedure
- Homogeneous distribution
- Fully functional at lower hit detection threshold compared to untrimmed matrix

Summary & Outlook

Summary

- Full hybrid design ported into monolithic chip in
 65 nm CMOS imaging process
- Successful first laboratory measurements
 - Implementation of noise based trimming procedure
 - Optimization of trimming procedure by means of global *dac_itrim*
 - Pixel threshold trimming already in desired range at default settings
- Chip features work as intended
- Test beam operation @ DESY II and SPS
 - See poster by S. Ruiz Daza

Outlook

- In-depth studies of different H2M prototypes
- Charge calibration for the test beam characterization of the samples

Contact

Deutsches Elektronen-	Judith Schlaadt
Synchrotron DESY	Tangerine
www.desy.de	judith.schlaadt@desy.de

Backup Slides

DAC Scans - Expected Behaviour Observed

Frame-based Acquisition Modes

Time-of-arrival (ToA)

- Triggering on discriminator falling edge
- Counts number of acquisition clock cycles (duration of 10 ns) until shutter window closes
- End of shutter window set via external trigger signal

Time-over-threshold (ToT)

- Triggering on discriminator falling edge
- Counts number of acquisition clock cycles until discriminator signal rising edge (even after shutter window closes)
- ToT ~ collected charge (after calibration)

Pixel Digital Logic: Frame-based Acquisition Modes

- Discriminator output: readout or masking
- Digital test pulses: enabling overwrites discriminator output
- Shutter asynchronous state machine (ASM): discards trigger outside of shutter window
- Acquisition logic (ACQ. LOGIC): produces signal based on used acquisition mode
- Synchronising logic (SYNC. ASM): synchronises signal to acquisition clock
- Counting \rightarrow data stored in 8-bit linear-feedback shift register (LFSR); 8-bits for pixel configuration
 - Readout: 8-bits shifted from top to bottom of column
 - Configuration: 8-bits shifted from bottom to top of column and set to pixels

Triggered Binary Readout

- Counter preset with trigger latency value
- Triggering on discriminator falling edge
 ⇒ starts counter at preset value
- Carry signal produced as soon as counting reaches overflow
- External strobe signal provided, synchronised with acquisition clock
- Hit: carry and strobe signal in coincidence
- Variable configuration: pixel stores its own hit or combines data from group of pixels

Pixel Digital Logic: Triggered Binary Readout

- External strobe signal is distributed analogously to shutter signal
- Hit when carry and strobe signal are in coincidence: flip-flop (FF0) is set
 - ⇒ Result registered to flip-flop (FF1) after delay (one clock cycle after strobe signal rises)
 - \Rightarrow Readout of FF1
- Possible to combine information of several pixels via not_top_pixel configuration of pixel below:
 - not_top_pixel = 0: hit will be stored in FF1 and read out
 - not_top_pixel = 1: FF0 is input to FF0 of pixel below; information of both pixels is ORed and result is stored in FF1 of pixel below

DESY. | The H2M Pixel Sensor Prototype: Laboratory Characterization | Judith Schlaadt | BTTB12 | 19/04/2024

Tuning DAC

Mapping

- Implemented in peary
- tuning_dac 0: most negative comparator offset voltage
- tuning_dac 7: zero comparator offset voltage (no shift)
- *tuning_dac* 14: most positive comparator offset voltage

Threshold *tuning_dac* control bits for dac_itrim 82 nA

tuning_DAC			2		Comp.	Comp. offset
<0>	<1>	<2>	<3>	DAC#	current (nA)	voltage (mV)
0	0	0	0	0	+370.6	+41
0	1	0	0	2	+318.8	+35
0	0	1	0	4	+266.4	+29
0	1	1	0	6	+213.8	+23
0	0	0	1	8	+161.0	+17
0	1	0	1	10	+107.8	+12
0	0	1	1	12	+54.3	+6
0	1	1	1	14	0	0
1	1	1	1	15	0	0
1	0	1	1	13	-54.3	-6
1	1	0	1	11	-107.8	-12
1	0	0	1	9	-161.0	-17
1	1	1	0	7	-213.8	-23
1	0	1	0	5	-266.4	-29
1	1	0	0	3	-318.8	-35
1	0	0	0	1	-370.6	-41

Pixel Retrimming

Re-evaluation of fractions of the matrix

- Two additional noise scans with *tuning_dac* setting above and below the initial one
- Redo linear fit in this region of interest
 - \Rightarrow changes *tuning_dac* setting for approx. 25% of the pixels
- Retrimming only slightly reduces threshold
 dispersion
 - Trimming: $(6.21 \pm 0.02) \text{ mV}$
 - Retrimming: $(6.17 \pm 0.03) \text{ mV}$
 - \Rightarrow stable voltage supply within pixel matrix

Estimation of Threshold Dispersion

- Integer *tuning_dac* settings can cause offset Δy to intended trimming target $\Rightarrow \Delta y = m \cdot \Delta x \in [0,m]$
- Estimation for whole matrix: consider average pixel slope \bar{m} and statistical distribution of offset Δy

$$\Rightarrow \sigma_{\text{offset}} = \frac{\bar{m}}{\sqrt{12}}$$

• Offsets for all pixels and baseline noise contribute to threshold dispersion of whole pixel matrix

$$\Rightarrow \sigma_{\text{total}} \approx \sqrt{\sigma_{\text{offset}}^2 + \sigma_{\text{noise}}^2}$$

- Noise approximation σ_{noise} via averaged standard deviation of gaussian fits

 \Rightarrow Trimming procedure results in threshold

dispersion σ in desired range

Caribou Data Acquisition System

Zynq-Board:

- User connects via ssh/Ethernet
- Runs Linux system with DAQ and control software
- An FPGA runs custom hardware blocks for data processing

CaR board (Control and Readout Board):

- Physical interface between Zynq-Board ↔ Chipboard
- Contains all peripherals needed to interface and run the chip (eg. adjustable voltage/current references, pulser control...)

Chipboard:

- Application-specific detector carrier board
- Mostly passive components + detector chip