Charge Collection in HV-MAPS

Bundesministerium für Bildung und Forschung

19.04.2024 BTTB 12 rkolb@physi.uni-heidelberg.de Ruben Kolb On Behalf of the HD HV-MAPS Collaboration Physikalisches Institut Heidelberg

High Voltage - Monolithic Active Pixel Sensors (HV-MAPS)

Ruben Kolb

Monolithic: Readout and active volume on same chip

[I.Peric, P. Fischer et al., NIM A 582 (2007) 876, modified]

Characteristics:

Reverse-biased diode realised as deep n-well in p-substrate

Depletion depth

- Fast charge collection via drift in depleted volume
- Time over Threshold (ToT)

$$n\propto \sqrt{
ho_{
m substrate}\cdot U_{
m ext}}$$

information \rightarrow charge equivalent

HV-MAPS Roadmap

[D. Immig, Straggling with Ultra-Thin HV-MAPS]

19.04.2024

Ruben Kolb

TelePix1 (Run2021 V2)

- Small scale (5×5 mm²) R&D sensor
- In-pixel electronics contain amplifier and comparator

Substrate [Ωcm]
Thickness [µm]
Matrix [Pixel]
Pixel Size [µm²]
Sensor size [mm ²]

20, 370 , > 5000		
50, 100, 300, 740		
29 x 124		
165 x 25		
5 x 5		

Charge Deposition and Collection in HV-MAPS

- HV applied on top, no back bias
- Fast charge collection $\leq O(ns)$ in depleted volume via drift
- Diffusion in undepleted volume

Time [ns]	Gaussian spread σ [µm]
500	61.2 ± 2.4
750	75 ± 3
1000	87 ± 3

 \rightarrow How large is the contribution from diffusion?

Charge Deposition and Collection in HV-MAPS

Ruben Kolb

- \rightarrow Main observables: **ToT**, cluster size
- Compare at same HV and configuration for different thicknesses
- → 50 um, 100 um, 740 um (unthinned)

Cluster Size Study @ DESY

- Cluster size increases with amount of undepleted substrate
- Second Pixel in the cluster shows larger delays
 - → Diffusion is a slower process than drift

19.04.2024

Ruben Kolb

Cluster size study with Strontium-90

> 600 μ m of undepleted substrate \rightarrow similar increase in cluster size \bullet $\sigma_{\rm diffusion} \approx 60 \, {\rm um}$

19.04.2024

Cluster size study with Strontium-90

> 600 μ m of undepleted substrate \rightarrow similar increase in cluster size \bullet

19.04.2024

Pixel to Pixel ToT Variations

- Fe55: Monoenergetic x-ray source 5.9 keV
 - → creates ~1634 e-h pairs¹
 - → Similar pixel response expected
- Full sensor ToT has large FWHM

¹e-h creation energy: W = 3.65 eV

Pixel to Pixel ToT Variations

- Fe55: Monoenergetic x-ray source 5.9 keV
 - → creates ~1634 e-h pairs¹
 - → Similar pixel response expected
- Full sensor ToT has large FWHM
- Large variation in pixel median
 ToT for Fe55 source is observed
 - → Variation from Chip to Chip
 - → Calibration necessary

¹e-h creation energy: W = 3.65 eV

Amplifier Behavior

- Use of injection circuit $Q_{\text{Inj}} = U_{\text{Inj}} \cdot C_{\text{Inj}}$
- Reliable, artificial signal source

- Injection study conducted with a **single** pixel
- Logarithmic amplifier response (empirical)
- Non-linear calibration needed

Calibration Method

D. Dannheim et al., "Corryvreckan: a modular 4D track reconstruction and analysis software for test beam data"

- Calibration in Corryvreckan \rightarrow two new modules developed
- Analysis on per pixel level
- Exponential calibration function

Charge =
$$1634 \,\mathrm{e} \cdot \exp(\mathbf{a}(\mathrm{ToT} - \mathrm{ToT}_{\mathrm{Fe}}))$$

- Uses gradient to achieve electron calibration of signal
- Allows for sensor to sensor comparison

Cross-check: Injection Capacitance

- Subset of 200 Pixels lacksquare
- Q_{Fe} Calculate C_{Inj} lacksquare
- → Design value: C_{Ini} = 1 fF
- **Experimental capacitance** ${\color{black}\bullet}$ matches design value very well

Calibration of Iron-55

Entries	547275
Mean	1634
Std Dev	174.2

Calibrated ToT Studies @ DESY

- Subset of 200 Pixels
- Clear separation of charge spectra
- Mean electron collection:
 3386 e (50 μm) 4420 e (100 um)
- → 30 % more charge collected
- MPV shifted by 1000 e

Strontium-90 Spectrum: -15 V Bias Voltage

- MPV of thick sensor shifted by O(2000 e) \bullet
- Larger FWHM for thicker sensor
- Diffusion increases the variation in \rightarrow collected charge
- Significant contribution from diffusion

19.04.2024

Strontium-90 Spectrum: -130 V Bias Voltage

- MPV of thick sensor shifted by O(2000 e)
- Diffusion leads to expected constant ${\bullet}$ offset in charge collection

19.04.2024

Conclusion & Outlook

Conclusion:

- Cluster size & delay in cluster increases with undepleted substrate
- 30% more collected charge in 100 µm sensor
- → Significant contribution of diffusion to the signal is observed!

Next Steps:

- Calibration for full sensor
- Allpix² simulation to compare with measurements
- Prepare Corryvreckan pull request for *ChargeAnalyzer* & *ChargeCalibration* modules

Charge = $1634 \,\mathrm{e} \cdot \exp(\mathbf{a}(\mathrm{ToT} - \mathrm{ToT}_{\mathrm{Fe}}))$

Questions?

19.04.2024

Berger-Seltzer Formula

19.04.2024

Ruben Kolb

21

P [MeV]

Strontium-90 Calculated Spectrum

- Low energy electrons do not reach the detector
- Additional shift of spectrum towards lower energies by energy loss in air

Calculated Strontium-90 & Yttrium-90 Spectrum

Calibration of Iron-55 - Single Pixel

Single pixel calibrated charge spectrum

19.04.2024

