# MuPix11 Quality Control Ensuring Functionality of the Mu3e Pixel Sensors

#### The Mu3e Experiment

- Search for the cLFV  $\mu^+ \rightarrow e^+ e^- e^+$  decay
- SM Branching fraction  $<1 \times 10^{-54}$



## Observation of cLFV would be evidence of

HV-MAPS technology is essential for reducing material in the detector **HV-MAPS** 

High-Voltage Monolithic Active Pixel Sensor

#### HV-MAPS:

- Feature high reverse bias voltage
- Integrate readout electronics on the sensor

deep n-well

• Can be thinned to a thickness of 50 µm

## The MuPix11 Sensor:

- 180 nm HV-CMOS process up to -120 V
- Substrate: Low-Ohmic (80  $\Omega$ cm & 370  $\Omega$ cm)
- Diode: deep, reversed biased n-well
- Thickness: 50 μm or 70 μm (30 μm/50 μm depletion)

#### <u>Challenges of Thinned Sensors:</u>

• Warping



Increases handling damage

physics beyond the standard model.

#### The Mu3e pixel tracking detector:

- Momentum resolution < 0.5 MeV
  - $\rightarrow$  Low material budget

The pixel detector will employ **2844** MuPix11 sensors

DOI: 10.1016/j.nima.2021.165679

## The Quality Control Tests

- Pre-installation functionality evaluation
- Five individual chip tests
- Each test evaluates an essential function
- All five tests must be passed for a sensor to qualify for installation

| QC Test | Tested Function                            | Fail Criteria          |
|---------|--------------------------------------------|------------------------|
| IV Scan | Pixel biasing for good efficiency and time | High leakage current a |

# The Quality Control Setup

<u>A MuPix11 Sensor</u>

- Single-chip probe card with a needle contact mechanism
- Fast, temporary and minimally invasive connection
- Light- shielded

Modified from I. Perić

DOI: 10.1016/j.nima.2013.05.006

• DAQ compatible with the final experiment

Pressure adjustment





• Increase in leakage current if the depletion zone

reaches the (SSC-) damage layer.

High leakage current

**Reduced SNR** 

- Sub-surface cracks (SSC)
  - Increased leakage current
- Increased handling damage

• Reduced yield

|                   | resolution                                           | low depleted volumes  |        |
|-------------------|------------------------------------------------------|-----------------------|--------|
| LV Power- On      | Powering of key on-chip circuitries (amplifier, line | LV current not in     |        |
|                   | driver, comparators, clocking, LVDS driver)          | functional range      |        |
| Internal Voltages | Optimisation of the voltages supplied to             | Incorrect voltages    |        |
|                   | the internal power grid                              | received              |        |
| VDAC Scans        | Ability to set key voltage DACs (amplifier, line     | Unsuitable voltage or | Sensor |
|                   | driver, comparators, and selected baselines)         | current response      |        |
| LVDS Links        | Data transmission                                    | Errors $(8b/10b)$ in  | Needle |
|                   |                                                      | transmitted data      |        |



Probe card CAD (PTSL)

<u>Probe card for MuPix11 QC (L. Vigani)</u>



1) Institute of Physics, Heidelberg University, fuchs@physi.uni-heidelberg.de