

CERN Secondary Beamlines and Test Beams Facilities Overview

F. Metzger, E. Andersen, D. Banerjee, A. Baratto Roldan, J. Bernhard, M. Brugger, N. Charitonidis, M. van Dijk, L. Dyks, A. Goillot, M. Jebramcik, R. Murphy, L. Nevay, E. Parozzi, B. Rae, S. Schuh, F. Stummer (BE-EA) 15.04.2024

CERN Accelerator Complex

The CERN accelerator complex Complexe des accélérateurs du CERN

H⁻ (hydrogen anions) p (protons) ions RIBs (Radioactive Ion Beams) n (neutrons) p (antiprotons) e (electrons) μ (muons)

LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE-ISOLDE - Radioactive EXperiment/High Intensity and Energy ISOLDE // MEDICIS // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n_TOF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // Neutrino Platform

15.04.2024

Fabian Metzger | CERN Secondary Beamlines and Test Beams

SPS: protons @ 400GeV; ions @ 380GeV/Z PS: protons / ions @ 24GeV/Z

Maximum momenta available to the users in the PS/SPS Test Beam Facilities:

North Area $\rightarrow \leq 360 \text{GeV}/Z$ (secondary beam) or primary beams

East Area $\rightarrow \leq 16$ GeV (secondary beam only)

North Area

North Area Secondary Beamlines

Spill duration: 4.8s flat top Typically : 2 cycles / SPS supercycle for NA and ~ 3000 spills/day The 400 $^{\text{GeV}/c}$ primary beam is slowly extracted to three primary targets \rightarrow T2, T4 and T6

Characteristics of the beams

Parameter	T2 Target		T4 Target	
Beamline	H2	H4	H6	H8
p attenuated primary / secondary beam in $^{\rm GeV}/_c$	400/360	400/360	-/205	400/360
Maximum $\Delta p/p$ in %	±2.0	±1.4	±1.5	±1.5
Maximum intensity/spill (hadrons/electrons)	10 ⁷ /10 ⁶	10 ⁷ /10 ⁷	10 ⁷ /10 ⁵	10 ⁷ /10 ⁵
Available particle types	Primary protons or pure electrons or pure/mixed hadrons or pure muons			
Ion beam availability	Yes	Yes	No	Yes

- **T6 target** → Serves the **M2** beam that is currently used for the AMBER experiment
 - < 4.8×10^8 hadrons/spill with < 280 GeV/c (requires additional shielding around target); increase to 10^9 with improved shielding in future
 - $< 2 \times 10^8$ muons/spill with $< 280 \, \text{GeV}/c$
 - NA64 μ and MUonE will continue physics and test runs
- P42 beam also originates from the T4 target and transports the proton beam that has not interacted onto the T10 target to produce typically 75 ^{GeV}/_c kaon beams guided via K12 to NA62

EHN1 (B-887, Prevessin Site)

Telescopes in CERN North Area (SPS)

- Two telescopes installed permanently (not managed by BE-EA):
 - ACONITE in H6A
 - AIDA telescope in H6B
 - A mobile telescope AZALEA is also available
 - Contact: Andre Rummler or PS/SPS physics coordinator
- Properties:
 - 6 Mimosa-26 planes
 - TLU/EUDAQ based
 - Dedicated remote control PCs in control huts
 - High degree of usage and increasingly simultaneously
 - Separate x y table can be booked and installed behind telescopes serving larger DUTs
 - Remote controlled high voltage (ISEG modules with 8 channels up to – 500V and 8 channels up to –2000V)

Large aperture magnets for tests with beam

GOLIATH

- EHN1, H4 beamline
- Large classical dipole
- $160 \times 240 \times 360 \text{ cm}^3$
- <u>1.5T field</u>

CMS M1 magnet

- EHN1, H2 beamline
- Superconducting dipole
- 82cm gap, 1.4m diameter
- 3.0T field

Morpurgo

- EHN1, H8 beamline
- Superconducting dipole
- 1.6m diameter, 4m length
- 1.5T field

North Area

East Area

East Area Renovation

- The renovation was complected during LS2 and included:
 - Full refurbishment of East Hall with its beamlines and infrastructures
 - Upgrade of heating/ventilation, improved thermal insulation, wall and roof cladding, separated cooling for primary and secondary beamlines
 - Improved radiation protection
 - Improved equipment accessibility and faster repair times, primary beam dump just downstream of the primary target
 - Change in the beamline layout
 - Higher maximal *p* and improved selectivity of particle types
 - Completely new magnet powering scheme
 - Cycled powering leading to reduction of annual power consumption from 11 to 0.6GWh
 - Less magnet types for better maintenance

East Area Secondary Beamlines

Characteristics of the beams

Parameter	Т09	T10	T11	
$p_{ m max}$ of secondary beam in ${ m GeV}/{ m c}$	16	12	3.5	
$\Delta p/p$ in %	± 0.7 to ± 15			
Maximum intensity/spill (hadrons/electrons)	imum intensity/spill (hadrons/electrons) 10 ⁶			
Available particle types	Pure electrons (T09 only) or mixed electrons (T10) or mixed/pure hadrons or pure muons			

• T11 serves the CLOUD experiment which is a permanent installation

30 – **35**mrad vertical production angle

Multi-target configuration

Head	Material	Length (mm)	Diameter (mm)	Comments	
1	Be	200	10 + Al case	Electron enriched	
	W	3			-3 2
2	Al	100	10	Electron enriched	
	W	3			1
3	Al	200	10	Hadron	
4	Air	-	-	Empty	5 <u>.</u> 4
5	Al	20	10	Hadron	

East Area (B-157)

East Area

Ion beams

- Ion beams are available in the North and the East Area
 - Ion beam time needs to be defined for the future
- Primary and fragmented ion beams are available
- Availability for test beam users in H2/H4/H8 and T08
- NA61 has ion beam programs in the North Area
- Test beam users like Medipix, Nucleon, HERD, PAN request ion beams
- HEARTS/CHIMERA requested low energy ions in T08

Beam Instrumentation in the North and East Area

Threshold Cherenkov gas counters (XCET) and CEDARs → used for particle tagging

- In the East Area new high pressure XCETs are available that go up to 15bar
- Refrigerant gases like <u>R218</u> and <u>R134a</u> can be used for low momenta particle tagging
- Beam profile & intensity monitors:
 - Scintillators & Analog / Delay Multi Wire Chambers are installed in several positions along the beamlines
 - In the East Area Scintillating Fibre Hodoscopes (XBPF) are used as profile monitors
 - As part of the consolidation efforts under NACONS all Analog / Delay Wire Chambers will be replaced by XBPFs
- FISC scanners (only North Area):
 - Precise slower profile monitors
 - Can also be used for measurements of beam divergence

Access and Beam Control Software

• The beam can be controlled using the CESAR interface

- Magnet currents can be changed, collimators can be controlled, Threshold Cherenkov pressure can be set, beam files can be loaded, beam profiles and trigger information can be accessed etc.,
- A demo version of upgraded control software to be rolled out for test (not operation); beyond LS3 full implementation planned
- The zone can be accessed with a dosimeter and safety equipment without any other special access request
- 2-3 members from each user group are given the patrol rights following an on-site training to be able to close the zone for beam

Schedule and planning

- The beam time request must be sent to the PS/SPS physics coordinator ~ September/October for the following year (depends on injector schedule availability)
 - Short (< 1 week @ SPS or < 2 weeks @ PS) requests can be handled by the PS/SPS physics coordinator directly
 - Longer requests require recommendation by CERN physics committees (SPSC, LHCC, DRDC, INTC, RB)

The scheduling is based on priorities of different experiments and is defined by the SPS coordinator & scientific committees and approved by the CERN research board

- CERN offers a great variety of test beam options with beams ranging between $100^{\text{MeV}/c}$ to $400^{\text{GeV}/c}$
- The Experimental Areas include:
 - EHN1, EHN2 and ECN3 in the North Area
 - T9, T10 and T11 in the East Area
- Please contact in advance <u>Sps.Coordinator@cern.ch</u> and <u>sba-operation@cern.ch</u> to optimally use your beam time and the facilities
 - Visit <u>https://ps-sps-coordination.web.cern.ch/ps-sps-coordination/</u> for the updated version of the schedule and other useful information
 - Subscribe to *ps-sps-users* e-group
 - Visit <u>https://be-dep-ea.web.cern.ch/experimental-areas/beamline-responsibles</u> for further information on the various beamlines

Looking forward to seeing you at CERN!

home.cern