# PRIMA, High-Intensity Electron Beamline at DESY

BTTB12, 15.04.2024 Edinburgh Dohun Kim,

Sven Ackermann, Heiko Ehrlichmann, Dennis Haupt, Lennart Huth, Felix Sefkow, Marcel Stanitzki



## **Motivation of High Intensity Beam**



Why is a Powerful Beamline needed?

#### High number of particles/electrons

- 1. For precise measurement to characterise small detectors
- 2. To verify readout performances of sensors with high intensity beams
- 3. To irradiate sensors with high energetic electrons

# **High Intensity Electron Beamline**



**PRIMary-beam test Area : PRIMA** 

#### • PRIMary-beam test Area(PRIMA)

- Injected electron beam cycles around DESY II ring
- $\circ$   $\qquad$  Beam is extracted to a dump at DESY II, if it not transported
  - Beam can be upcycled
  - Dipole and two quadrupole magnets transport beam into PRIMA facility
- Extracted beam from DESY II
  - 1x10<sup>5</sup> to 3x10<sup>10</sup> e/bunch
  - 6.25 Hz extraction rate
  - Extraction between 500 MeV and 6 GeV



#### **PRIMA Facility**



# **User Facility Requirement**

- Precise knowledge of beam position
  - Observed extraction instabilities
  - Resolved by two quadrupole magnets



#### **Right extraction timing**



# **User Facility Requirement**



- Precise knowledge of beam position
  - Observed extraction instabilities
  - Resolved by two quadrupole magnets
- Understanding radiation environments
- Providing possibly small, homogeneous dose over a DUT



# **User Facility Requirement**



- Precise knowledge of beam position
  - Observed extraction instabilities
  - Resolved by two quadrupole magnets
- Understanding radiation environments
- Providing possibly small, homogeneous dose over a DUT
- Beam Monitoring



# Simulation and Modelling



- FLUKA is MC framework for the interaction and transport of particles in materials
  - It is optimized for calculation of radiation environments
  - It estimates the beam profile after transport and interaction in materials
- Full Beamline implemented including detailed structures close to the beam in FLUKA



#### **Measurement Devices**

#### • Radiation monitor, PANDORA

- Scintillator
  - Photon > 50 keV
  - High energetic neutron > 20 MeV
- Moderated <sup>3</sup>He tube
  - Low energetic neutron < 20 MeV
- Beam current monitor
- Beam screen



<sup>3</sup>He Tube







# **Radiation Background Study**



Comparing simulation and real data

- Radiation background study
  - Number of extracted electrons are provided by DESY II
  - Beam size in simulation is tuned to particle ratio of PANDORA neutron background measurement

| Neutron Background Study |             | 6 GeV Electron Beam |                                             | 500 MeV Electron Beam |                                             |
|--------------------------|-------------|---------------------|---------------------------------------------|-----------------------|---------------------------------------------|
|                          |             | Eq-Dose<br>[mSv/h]  | # ex. electrons<br>[10 <sup>9</sup> /bunch] | Eq-Dose<br>[mSv/h]    | # ex. electrons<br>[10 <sup>9</sup> /bunch] |
| Position A               | Simulation  | 18.3 ± 0.9          | 9,8                                         | 1.85 ±0.08            | 11.6                                        |
|                          | Measurement | 19.3 ± 0.4          | 9,7 ± 0.2                                   | 1.95 ± 0.09           | 11.6 ± 0.5                                  |
| Position B               | Simulation  | 10.8 ± 0.7          | 9.6                                         | 1.82 ± 0.01           | 9.6                                         |
|                          | Measurement | 14.6 ± 1.2          | 9.6 ± 0.2                                   | 2.00 ± 0.11           | 9.6 ± 0.2                                   |

#### Good agreement of simulation and data



10<sup>10</sup>

nt Rate [uSv/h]

Equiv

Ambient Dose 105

 $10^{4}$ 

10<sup>10</sup>

10<sup>8</sup>

107

106

10<sup>5</sup>

Ambient Dose Equivalent Rate [uSv/h]

450

400

350

300

[편 <sup>250</sup>

> 200

150

100

# Shielding

#### Simulation & Measurement

- Harsh radiation environment •
  - Need to protect electronics from neutrons 0
  - Need to eliminate neutron in the area to study effects of 0 electrons only
    - Two concrete blocks
    - Boronated Polyethylene under DUT table



140

120

100

80

60

z [cm]

Table

Polyethylene

# **Ongoing Studies**

Simulation & Measurement

- Beam profile
  - Beam size, divergence and emittance are going to measured using two scintillating screens
- Beam collimation to reduce beam intensity from GHz to MHz
  - $\circ$   $\qquad$  Increased beam size by a quadrupole magnet will be collimated
  - $\circ \qquad \text{It will be focused again by a quadrupole magnet}$











- Stable beam extraction has been established
  - Quadrupoles correct and stabilize beam position
- Simulation matches data and allows for predictions
- Background effects are suppressed by shielding
- First high rate studies to be performed after final beam commissioning
- Beam collimation study is ongoing to study particle rate

#### BACKUP

# **Beam Stability**



**Beam Position and Size** 

- Mains frequency synchronizes all magnet system at DESY II
  - Its fluctuation correlates beam stability
  - Uncertainty of extracting time ~ extracting angle
    - It causes change of beam position and beam size
    - Increases unexpected hit to materials at beam pipe
    - Radiation background is changed





## **Saturation Effect**

| 6 GeV Electrons   | 10 <sup>7</sup> per bunch | 8.5x10 <sup>8</sup> per bunch |                |
|-------------------|---------------------------|-------------------------------|----------------|
| Simulated<br>Dose | Photon                    | 39.8 ± 0.3                    | 1691.5 ± 12.8  |
| [µSv/h]           | Neutron                   | 60.9 ± 2.1                    | 2588.3 ± 89.3  |
| Measured<br>Dose  | Photon                    | 33.5 ± 3.9                    | 220.1 ± 2.6    |
| [μSv/h]           | Neutron                   | 65.3 ± 19.3                   | 2405.1 ± 134.1 |

## Shielding

0

0

•

#### **Simulation & Measurement**

Harsh radiation environment

electrons only

-

Need to protect electronics from neutrons

Two concrete blocks

Need to eliminate neutron in the area to study effects of

Boronated Polyethylene under DUT table



| Radiation Monitor nearby Beam Dump                      |                     |                    |  |  |  |  |
|---------------------------------------------------------|---------------------|--------------------|--|--|--|--|
| Neutron                                                 | Before Installation | After Installation |  |  |  |  |
| Simulated Eq-Dose<br>[10 <sup>-9</sup> mSv/h per bunch] | 3.05 ± 0.11         | 1.83 ± 0.06        |  |  |  |  |
| Measured Eq-Dose<br>[10 <sup>-9</sup> mSv/h per bunch]  | 2.87 ± 0.10         | 1.89 ± 0.10        |  |  |  |  |

