A Silicon Pixel Tracker for future **µSR Experiments**

Enabling more precise investigation of magnetic and superconducting materials

BTTB 12 - Edinburgh

Lukas Mandok On behalf of the HD-HVMAPS collaboration Physikalisches Institut Heidelberg 16.04.2024

Muon Spin Rotation/Relaxation/Resonance

Material Science Technique

Measure local magnetic fields

Material Science Technique	Measure local magnetic fields
Battery materials	Superconducting materials

Material Science Technique	Measure local magnetic fields
Battery materials	Superconducting materials
Implant spin polarized muons in sample material	luon spin es in internal d external gnetic field

Material Science Techniqu	ue Measur	e local magnetic fields
Battery materials	Sup	erconducting materials
Implant spin polarized muons in sample material	Muon spin evolves in inter and externa magnetic fie	rnal al decay to Id positrons

µSR Method

μ SR Method

590 MeV Proton beam @PSI

µSR Method

Spin precession

µSR Signal

Positron rate: $N(t)/dt = B_0 + N_0 \cdot \exp(-t/\tau_{\mu}) \cdot [1 + A_0 G_{\perp}(t) \cos(\overline{\omega}_{\mu}t + \phi)]$

top view

Measure:

- Time of Arrival of μ^+ and e^+
- Temporal asymmetry between forward and backward signals

top view

Measure:

- Time of Arrival of μ^+ and e^+
- Temporal asymmetry between forward and backward signals

Limitations:

• No positional information of muon

top view

Measure:

- Time of Arrival of μ^+ and e^+
- Temporal asymmetry between forward and backward signals

Limitations:

- No positional information of muon
- Rate limitation
 - Maximal 1 muon per time frame
 - Limited observation time

top view

Measure:

- Time of Arrival of μ^+ and e^+
- Temporal asymmetry between forward and backward signals

Limitations:

- No positional information of muon
- Rate limitation
 - Maximal 1 muon per time frame
 - Limited observation time
 - \Rightarrow 40 kHz (18 kHz acceptance)

top view

Next Generation Quad Module

2×2 **MuPix11** Module

- (4×4) cm² active area
- * $50 100 \ \mu m$ sensor thickness

Next Generation Quad Module

2×2 **MuPix11** Module

- (4×4) cm² active area
- $50 100 \ \mu m$ sensor thickness

High-Voltage Monolithic Active Pixel Sensor

• 180 nm HV-CMOS technology

MuPix11:	Pixel Matrix:	256×250
	Pixel Size:	$(80 \times 80) \mu m^2$
More Information:	Time Binning:	8 ns
 Preiko Augustin Thomas Rudzki 	Datalink Speed:	3×1.25 Gbps

⇒ Poster Session (Mupix11 Quality Control)

Next Generation Quad Module

2×2 **MuPix11** Module

- (4×4) cm² active area
- * $50 100 \ \mu m$ sensor thickness
 - ⇒ reduce multiple Coulomb scattering

High-Voltage Monolithic Active Pixel Sensor

• 180 nm HV-CMOS technology

MuPix11:	Pixel Matrix:	256×250
	Pixel Size:	$(80 \times 80) \mu m^2$
More Information:	Time Binning:	8 ns
 Thomas Rudzki 	Datalink Speed:	3×1.25 Gbps

⇒ Poster Session (Mupix11 Quality Control)

Next Generation **Pixel-based Detector**

2-layer tracking using pixel sensors

2-layer tracking using pixel sensors
 Tracklet matching in Corryvreckan

- 2-layer tracking using pixel sensors
 Tracklet matching in Corryvreckan
- Basic vertex reconstruction

- 2-layer tracking using pixel sensors
 Tracklet matching in Corryvreckan
- Basic vertex reconstruction
 Differentiate between simultaneous events

- 2-layer tracking using pixel sensors
 Tracklet matching in Corryvreckan
- Basic vertex reconstruction
 Differentiate between simultaneous events
- Theoretical improvements:
 - \Rightarrow Increase muon rate by 10 100 times
 - ⇒ Increase observation time
 - ⇒ Several smaller samples at once
 - ⇒ Probe local domains within sample

- 2-layer tracking using pixel sensors
 Tracklet matching in Corryvreckan
- Basic vertex reconstruction
 Differentiate between simultaneous events
- Theoretical improvements:
 - \Rightarrow Increase muon rate by 10 100 times
 - ⇒ Increase observation time
 - ⇒ Several smaller samples at once
 - ⇒ Probe local domains within sample

Conceptual full-scale detector

- 2-layer tracking using pixel sensors
 Tracklet matching in Corryvreckan
- Basic vertex reconstruction
 Differentiate between simultaneous events
- Theoretical improvements:
 - \Rightarrow Increase muon rate by 10 100 times
 - ⇒ Increase observation time
 - ⇒ Several smaller samples at once
 - ⇒ Probe local domains within sample

Prototype detector

μSR Setup Testbeam Telescope

Transversal polarized surface μ⁺ beam
 @ PSI – PiE3 beamline (HAL 9500)

μSR Setup Testbeam Telescope

Transversal polarized surface μ⁺ beam
 @ PSI – PiE3 beamline (HAL 9500)

Goals

- Measuring vertex resolution < 1 mm
- Measuring spin rotation
- Mapping magnetic field in sample
- General setup characterization
- Measuring forward backward asymmetry
- Multiple sample / High-rate capability
- PID using charge deposition

• 3 data-links per sensor × 1.25 Gbps

Twisted pair cables

• 3 data-links per sensor × 1.25 Gbps

• 3 data-links per sensor × 1.25 Gbps

• 3 data-links per sensor × 1.25 Gbps

- 3 data-links per sensor × 1.25 Gbps
- Mu3e soft- and hardware

- 3 data-links per sensor × 1.25 Gbps
- Mu3e soft- and hardware

- 3 data-links per sensor × 1.25 Gbps
- Mu3e soft- and hardware
- Light sensitive sensors

- 3 data-links per sensor × 1.25 Gbps
- Mu3e soft- and hardware
- Light sensitive sensors

Results Vertex Resolution

- Sample
 - Improvised silverplate with various cutouts

0.6 mm 1.6 mm 1.1 mm

Results Vertex Resolution

Sample

 Improvised silverplate with various cutouts

0.6 mm 1.6 mm 1.1 mm

Results

 Intersection points of incoming muons and positron trajectories

Results Vertex Resolution

Sample

 Improvised silverplate with various cutouts

0.6 mm 1.6 mm 1.1 mm

Results

- Intersection points of incoming muons and positron trajectories
- Lateral vertex resolution $\leq 1 \text{ mm}$

- Sample
 - Aluminum disk
 - $\emptyset = 6 \text{ mm}$
 - $B_{\perp} = 6.3 \text{ mT}$

- Sample
 - Aluminum disk
 - $\emptyset = 6 \text{ mm}$
 - $B_{\perp} = 6.3 \text{ mT}$

- Sample
 - Aluminum disk
 - $\emptyset = 6 \text{ mm}$
 - $B_{\perp} = 6.3 \text{ mT}$

- Sample
 - Aluminum disk
 - Ø = 6 mm
 - $B_{\perp} = 6.3 \text{ mT}$

- Sample
 - Aluminum disk
 - Ø = 6 mm
 - $B_{\perp} = 6.3 \text{ mT}$
- Results
 - Low statistics (3 s)
 ⇒ large spread

- Sample
 - Aluminum disk
 - Ø = 6 mm
 - $B_{\perp} = 6.3 \text{ mT}$
- Results
 - Low statistics (3 s)
 ⇒ large spread
 - Same precession frequency and dampening rate

- Sample
 - Aluminum disk
 - Ø = 6 mm
 - $B_{\perp} = 6.3 \text{ mT}$
- Results
 - Low statistics (3 s)
 ⇒ large spread
 - Same precession frequency and dampening rate
 - Negligible background

Results Magnetic field mapping

Simulation

Sample

- Aluminum disk
- $\emptyset = 6 \text{ mm}$
- $B_{\perp} = 6.3 \text{ mT}$
- Results
 - Low statistics (3 s)
 ⇒ large spread
 - Same precession frequency and dampening rate
 - Negligible background
 - Combined vertex and spin measurement

Results Magnetic field mapping

Simulation

16.04.2024

Sample

- Aluminum disk
- $\emptyset = 6 \text{ mm}$

• $B_{\perp} = 6.3 \text{ mT}$

- Results
 - Low statistics (3 s)
 ⇒ large spread
 - Same precession frequency and dampening rate
 - Negligible background
 - Combined vertex and spin measurement

B 1

5 cm

Conclusion

Conclusion

☑ Successful proof-of-concept

Conclusion

- ☑ Successful proof-of-concept
- ☑ Comparable results to scintillators without background
- ☑ Successful proof-of-concept
- ✓ Comparable results to scintillators without background
- \bigcirc Good vertex resolution $\leq 1 \text{ mm} \Rightarrow$ probe magnetic field inside sample

- ☑ Successful proof-of-concept
- ✓ Comparable results to scintillators without background
- \bigcirc Good vertex resolution $\leq 1 \text{ mm} \Rightarrow$ probe magnetic field inside sample
- □ Further data analysis needed ⇒ increase statistics & setup characterization

- ☑ Successful proof-of-concept
- ✓ Comparable results to scintillators without background
- \bigcirc Good vertex resolution $\leq 1 \text{ mm} \Rightarrow$ probe magnetic field inside sample
- □ Further data analysis needed ⇒ increase statistics & setup characterization
- Multiple Sample measurements
 - large beam diameter

- ☑ Successful proof-of-concept
- ✓ Comparable results to scintillators without background
- \bigcirc Good vertex resolution $\leq 1 \text{ mm} \Rightarrow$ probe magnetic field inside sample
- □ Further data analysis needed ⇒ increase statistics & setup characterization
- Multiple Sample measurements
 - large beam diameter
- Test rate limitations
 - high-rate beamline

- ☑ Successful proof-of-concept
- ✓ Comparable results to scintillators without background
- \bigcirc Good vertex resolution $\leq 1 \text{ mm} \Rightarrow$ probe magnetic field inside sample
- □ Further data analysis needed ⇒ increase statistics & setup characterization
- Multiple Sample measurements
 - large beam diameter
- Test rate limitations
 - high-rate beamline

⇒ next testbeam in October

Thanks!

Backup

Tracklet matching with Corryvreckan

Tracklet matching with Corryvreckan
 Cuts: spatial, temporal, charge, angle

Tracklet matching with Corryvreckan
 Cuts: spatial, temporal, charge, angle

180 µm

Manufacturing discrepancies

Tracklet matching with Corryvreckan
 Cuts: spatial, temporal, charge, angle

180 µm

Manufacturing discrepancies
 Software alignment (difficult)

Tracklet matching with Corryvreckan
 Cuts: spatial, temporal, charge, angle

180 µm

Manufacturing discrepancies
 Software alignment (difficult)

Tracklet matching with Corryvreckan
 Cuts: spatial, temporal, charge, angle

180 µm

Manufacturing discrepancies
 Software alignment (difficult)

- Tracklet matching with Corryvreckan
 Cuts: spatial, temporal, charge, angle
- Manufacturing discrepancies
 Software alignment (difficult)

- Tracklet matching with Corryvreckan
 Cuts: spatial, temporal, charge, angle
- Manufacturing discrepancies
 Software alignment (difficult)

- Tracklet matching with Corryvreckan
 Cuts: spatial, temporal, charge, angle
- Manufacturing discrepancies
 Software alignment (difficult)

µSR Signal

