

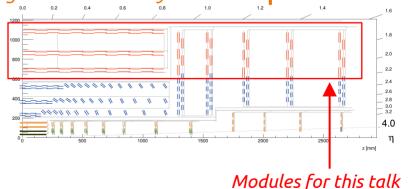
Commissioning and study of a CMS 2S module with 40MHz readout

Martin Delcourt on behalf of the joint CMS Tracker Group-MUonE test beam analysis group

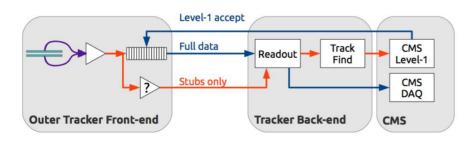
15th of April 2024

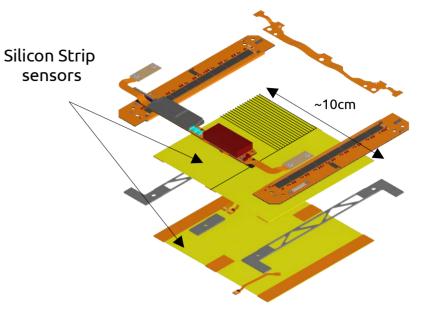
12th Beam Telescopes and Test Beams Workshop

CMS tracker upgrade


 The CMS silicon strip tracker will be undergoing a major upgrade for the High-Luminosity LHC

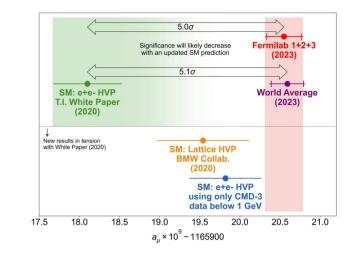
Current CMS detector

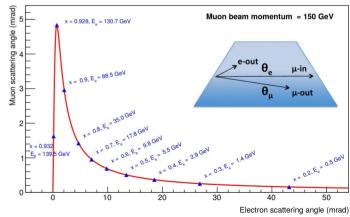

- The goal is to maintain its outstanding performance under
 - A higher **instantaneous** luminosity
 - A higher **integrated** luminosity
- Main requirements of the new detector
 - Improved granularity
 - Radiation hardness
 - Participate in L1 trigger decisions



2S modules

- The outer-layers of the upgraded detector will be populated by "2Strip modules"
 - Two 320µm silicon strip sensors
 - $\rightarrow\,2$ rows of 1016 90 $\mu m\,x$ 5cm strips each
 - Binary read-out
 - Sensor correlation to select "stubs" compatible with high transverse momentum particles
- Two simultaneous data-streams
 - Stub read-out at the full 40MHz rate
 - Full data read-out at up to 750kHz





2GeV cut \rightarrow ~10x data reduction

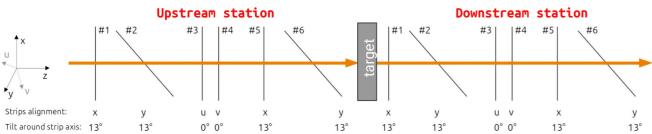
MUonE experiment

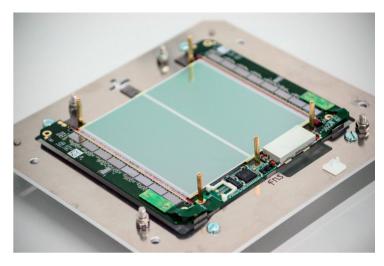
- The MUon ON Electron elastic scattering experiment (MUonE) is proposing an independent evaluation of a^{HLO}_µ
 - Longstanding tensions in muon anomaly $a_{\mu} = \frac{g-2}{2}$
 - Theoretical prediction limited by leading-order hadronic contributions
 - A precise measurement of the shape of the eµ ightarrow eµ cross section allows the extraction of $\Delta lpha_{
 m had}(t)$
- The experiment would use the SPS M2 beam at CERN
 - 40 tracking stations with a target and 6 detector planes
 - Calorimeter and muon filter for particle identification

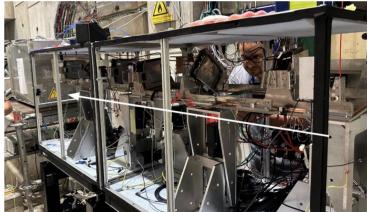
~ 100 cm

More info in Phys. Scr. 97 (2022) 054007 4

Synergies between CMS-TK and MUonE

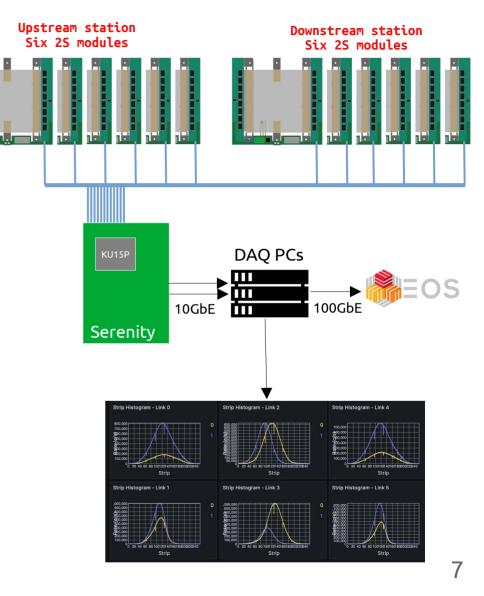

- 2S modules seem like a great choice as tracking detectors
 - High granularity
 - Low material budget
 - Stub stream sufficient to record all events
- Valuable for the CMS Tracker Group
 - Allows for DAQ & Commissioning tests of a "slice" of the detector
 - First results using 2S modules
- Extends physics impact using existing module production lines
- Some key differences:
 - Stub stream used as analysis data, not only for triggering
 - Very different geometry and beam properties
 - Beam in M2 is asynchronous, while in-time at the LHC


Memorandum of Agreement for the execution of the MUonE Test Run between the CMS-Tracker Group (CMS-TK) and the MUonE Collaboration (MUonE) collectively named the Signatories



Beam tests

- A series of test runs were carried-out
 - Up to twelve prototype 2S modules in two stations
 - Either perpendicular to beam, or at a 13° tilt to maximize charge sharing
 - "x,y" orientation, or rotated 45° in "u,v" orientation
- Beam used
 - 160 GeV muons
 - In spills of a few seconds, asynchronous
 - Average rate of up to ~1 muon every 25ns



Read-out

- Front-end electronics:
 - Generate hits from signals crossing thresholds within 25ns bins
 - Two sensors combined to generate stubs
 - Each module side aggregates stubs in 200ns packets
 - Module read out by a single optical fiber pair
- Acquisition boards:
 - Serenity boards with KU15P FPGA
 - Up to 36 optical links (12 used)
 - Multiple 10GbE links to DAQ (2 used)
- DAQ computers:
 - Buffering, packaging, DQM, shipping
 - Direct 100GbE connection to EOS

Commissioning – Timing scan

- In order to operate optimally, the module timing is tuned
 - To be in time with particles at the LHC
 - To be synced with other modules in M2 beam
- The internal module clock can be offset in steps on 1ns
 - Scanning all modules but the first, used as reference
 - Looking at events with a single stub in reference, isolated in time
 - Computing fraction of events with a stub measured in given module

Unique stub

Х

Delav = 12ns

Ζ

Tilt around strip axis: 13


Strips alignment:

#2

y

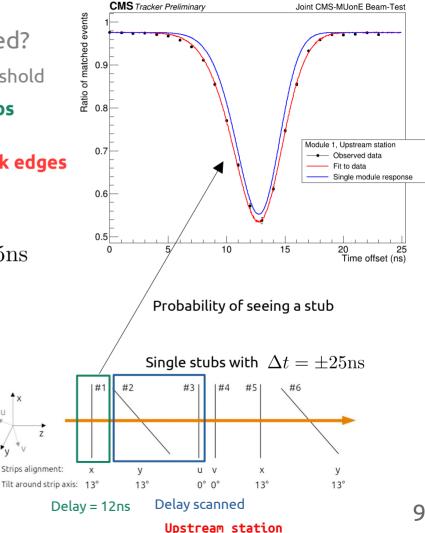
 13°

Upstream station

8

Downstream station

A single scan gives us all timing offsets


The ratio of matched events is impacted by timing even for "Any time" selection (yellow)

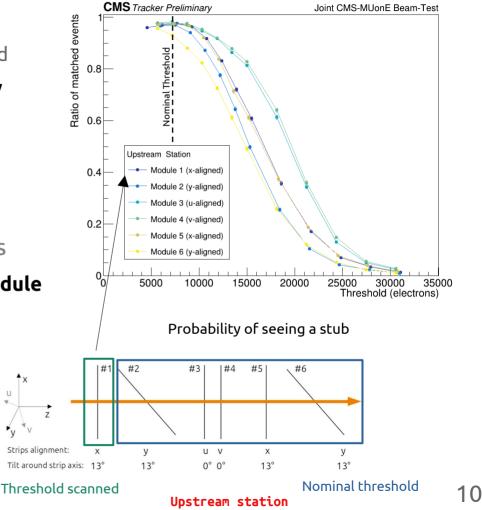
Time induced inefficiency?

Commissioning – Timing scan

- Why do we see less stubs when modules aren't synced?
 - Modules configured to generate hits when signal crosses threshold
 - \rightarrow Hits generated in different time bins will not create stubs
 - → Time walk and noise will generate inefficiencies
 - In this configuration, we expect **dead-time at the 40MHz clock edges** → Caused by internal hit detect logic
- This was measured directly
 - Selecting events with a stub in modules 2 & 3 with $\Delta t = \pm 25 \mathrm{ns}$
 - \rightarrow Selceting particles passing near the clock edge
 - No other module sees more than one stub
- Single module response extracted from simulation
 - Toy MC assuming all modules identical
 - Assumes time response modelled as error functions Useful for CMS to model out-of-time inefficiencies

Useful for MUonE to understand how to best configure and tune the modules

U


Commissioning – Threshold scan

- 2S modules are binary detectors
 - The charge threshold to generate hits has to be tuned
 - Most straightforward way: maximise stub efficiency
- Requires other modules to be used as reference
 - A single module can be scanned at a time...
 Twelve modules here, many more in final system
- For events with a single stub in all other modules
 - Probability of seeing at least a stub in scanned module

Peak can be used to tune the setup

Modules grouped by geometry!

Acceptance effect and different angles leading to different charge sharing

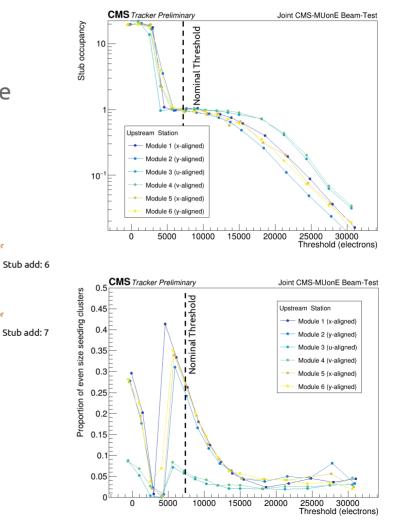
Commissioning – Threshold scan, alternative methods

Seeding sensor

Seeding sensor

5

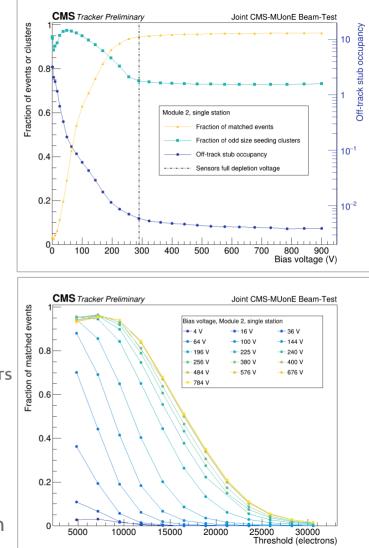
2


2

3

- Other methods explored to tune threshold
- Stub occupancy used to determine lowest acceptable threshold
- Stub parity used to get ideal resolution
 - Stub address is the position, in half-strip units of seeding cluster
 - We can use this to know if the seeding cluster is of
 - Odd size : 1 or 3 strips fired
 - Even size : 2 or 4 strips fired

Ideal resolution when odd fraction = even fraction = 50%


Three different ways to tune threshold All yield similar values

Commissioning – Bias scan

- Similarly, bias voltage has to be tuned
 - Regularly required during operations to compensate for radiation damage
- Three observable assessed
 - Fraction of matched events
 - Bias \rightarrow depletion depth \rightarrow charge \rightarrow detection probability
 - Off-track stub occupancy
 - Lower bias \rightarrow higher bulk capacitance \rightarrow higher noise
 - Fraction of odd seeding clusters
 - Higher bias → depletion → wider clusters → less single strip clusters
 - Doesn't require other modules

 → Can be done with a single slow ramp using stub stream
- Impact of threshold on bias scan
 - Threshold scans for different biases performed
 - Similar results for any bias bigger than the ~290V full depletion voltage

Conclusion

- The CMS Silicon Strip Tracker will be upgraded for the HL-LHC
- The MUonE experiment is proposing to use 2S modules to shed light on muon g-2 anomaly
- A joint beam-test campaign is underway
 - Great success for CMS:
 - First full 40MHz readout of 2S modules in beam
 - Valuable test system to better understand detector
 - Great success for MUonE:
 - Very promising results from test run
 - Hints at possible better module configuration for this beam
 - Continuous progress in integration, DAQ, alignment, reconstruction ...
 - See Michael McGinnis poster on 40MHz track fitting Wednesday
- And much more to come!

