

12th edition of the Beam Telescopes and Test Beams Workshop April 15-19 2024, Edinburgh, UK

On-beam test for the LHC Phase-II CMS Electromagnetic PbWO4 calorimeter

Giulia Lavizzari on behalf of the CMS Collaboration

LHC Phase II

The High Luminosity upgrade of the LHC (HL-LHC) at CERN will provide **unprecedented instantaneous and integrated luminosities**

New challenges:

- **Higher number of collisions** per bunch crossing (40 to 200)
 - requires better discrimination of spurious events
- Higher radiation levels
 - detectors need to be more radiation tolerant
- More stringent requirements: longer latency (from 3.5 μs to 12 μs) and higher trigger rates (from 100 kHz to 750 kHz)
 - detectors need to have longer pipelines and faster readout

The CMS electromagnetic calorimeter (ECAL)

key role in the **detection of electrons and photons** for the CMS experiment at LHC

- homogeneous, fine grained, high-resolution calorimeter
- PbWO₄ scintillating crystals
 - avalanche photodiodes (APD) in barrel
 - vacuum phototriodes in endcaps

Upgrade for Phase II:

- endcaps and forward calorimeters will be replaced by HGCAL
- barrel:
 - full refurbishment of electronics
 - crystals + APDs will not change, but will be operated at lower temperature
- further goal: time resolution
 - 30 ps for electromagnetic showers above 50 GeV

ECAL barrel upgrade: new electronics

Very Front End cards

- CATIA (analog ASIC)
 - 2x transimpedance amplifier
- LITE-DTU (digital ASIC)
 - 2x 12-bit ADCs sampling at 160 MHz
 - gain selection and data transmission unit
- Front End cards
 - LpGBT optical transmission system
- Low Voltage Regulator cards
- Barrel Calorimeter Processor (BCP)
 - high-end FPGAs
 - \circ from VME to ATCA protocols

Off-detector

ECAL barrel upgrade: new electronics

• Very Front End cards

- CATIA (analog ASIC)
 - 2x transimpedance amplifier
- LITE-DTU (digital ASIC)
 - 2x 12-bit ADCs sampling at 160 MHz
 - gain selection and data transmission unit
- Front End cards
 - LpGBT optical transmission system
- Low Voltage Regulator cards
- Barrel Calorimeter Processor (BCP)
 - high-end FPGAs
 - \circ from VME to ATCA protocols

faster analog electronics

- larger analog bandwidth
- sampling rate from 40 to 160 MHz, with 12-bit resolution
- loss-less data compression mechanism

→ better time resolution → better noise discrimination

fast optical links

powerful off-detector processor

- trigger objects reconstructed off-detector
- → 25x more granular trigger primitives

Off-detector

ECAL recent Test Beams

H4 test beam line at the North Area of the CERN SPS: e^+/e^- (20 - 300 GeV, $\Delta p/p < 0.5\%$)

Main goals:

- timing and energy resolution
 - test system stability

2021:

- 5 VFE cards tested
 - only 25 crystals, with custom electronic chain for the test
 - data for physics performance evaluation

2022:

- Commissioning of the full readout chain (similar setup to 2023)
 - few data taken for physics → mainly system commissioning and stability tests

ECAL 2023 Test Beam

H4 test beam line at the North Area of the CERN SPS: e^+/e^- (20 - 300 GeV, $\Delta p/p < 0.5\%$)

Main goals:

- timing and energy resolution
 - test system stability

2023:

- The whole electronic chain is mounted on a spare SuperModule (SM36), identical to the ones in ECAL
 - 25 crystals x 9 readout units
 - full-setup test, very close to real detector conditions!
 - first time taking physics data with BCPs
- **Upgrade laser monitoring**, between e⁺/e⁻ fills
 - laser is used in ECAL to monitor crystal transparency

Hardware setup

- SM36 is equipped with **9 readout towers**, read by **2 BCPs**
- Scintillators and other detectors on the beamline to give triggers and time/position reference

CAEN DT5495

DAQ: physics events

- SPS signals warn the system of an **incoming beam spill**
- Trigger given by plastic scintillator
- Acquisition allowed if we have trigger & no BUSY flags

DAQ: laser

- Laser runs happen during **interspill**, i.e. when SPS is not sending e⁺/e⁻
- Trigger generated internally, allows for laser to fire and for BCPs to acquire data

Software structure

Multi-application distributed system

(C++, python, javascript)

- ZeroMQ library for communication
- **Rogue** library for hw interface
- **Vue.js** library for web pages (web gui and error monitor)
- MongoDB as database to store configuration settings

System control and data flow

TB results: general considerations

Electron signal amplitude *A* **and time** *t*⁰ are reconstructed with a **template fit**:

 $f(x) = A \cdot template(t - t_0)$

templates via sw oversampling in frequency domain

ECAL Preliminary Beam test 2023, H4/SPS **ECAL** Preliminary Beam test 2023, H4/SPS 1 6 2000 100 GeV iq (crystal coordinates) counts 0.8 1500 0.6 A.u. 5 1000 0.4 0.2 500 0 Ω -20 20 40 60 52 -4053 54 Time (ns) in (crystal coordinates)

Electron impact position in a matrix of n

crystals is reconstructed based on the

energy deposits in each crystals:

Timing resolution

Obtained using data collected with **beam firing between two crystals**

Energy resolution

Computed using data obtained by firing the **beam at the center of a single crystal**

2.2

2.0

CMS ECAL *Preliminary*

Beam Test 2023, H4/SPS

Conclusions

- Test beam was successful
 - Few stability issues (spotted promptly thanks to monitoring system → online/offline solutions)
 - Collected large dataset for physics performance evaluation
- Results obtained so far are **compatible** with the specifications
- More to come in terms of analysis

BACKUP slides

SPS injection scheme

Very pure e^+/e^- beam, $\Delta p/p < 0.5\%$ (20 - 300 GeV)

picture from Giacomo Cucciati

Readout units scheme

picture from Chiara Amendola

WEB GUI

Log area

Select Log Level

INFO 🗸

cumentation Web GUI Webcam DQM

Run: 0	Spill: 0
--------	----------

Application status	Application Status Active Triggers Timestamp Host Name Pid Log					
	Merged ev. in run	Run ev. rate (Hz)	Nr. of bad spills	Start Time S	Stop Time	Initia
						Read
	0	0	0	Invalid Date II	nvalid Date	Rea
Run statistics	Morgod ov in spill	Trigger rate (Hz)	Spill duration (s) Spill size (ME	Transfor rate (MR/s)	Choo
	merged ev. in spin	mgger rate (Hz)	Spin duration (s	5) Spin Size (Mil	s) Transfer face (MD/s)	ECA
0 Table p	0	0	0	0	0	Choo
					ECA	
	Table pos. (mm)	Sensors temp. (°C)	Humidity (%)	Dew point (°C)	Lauda temp. (°C)	DRs li
		0	0	0	0	
	Log Text:					
	2018-10-11 00:39:08 551 - INEO - Initialized!					

picture from Giacomo Cucciati

Error monitor

Clear History

2021 TB data: linearity

Single crystal response in terms of average amplitude of the signal (in ADC counts) w.r.t. the energy of the incident electron-beam. In the lower panel we report the deviation of the reconstructed energy (in ADC count) with respect to the linear fit. Maximum deviation from linearity is < 0.3%.

2022 TB data: pulse shape vs APD spike

Comparison of the pulse shape from a scintillation event and a signal induced by a direct hit in the avalanche photodiode. The latter was identified using topological constraints. Pulses are re-aligned in time to the first sample of the rising edge. The solid line are the templates of the two signals.

