Results from the Timepix4 Telescope

Daan Oppenhuis — on behalf of the Timepix4 Telescope group BTTB12 — 17 April 2024

People involved

Testbeam crew

Nikhef: Kazu Akiba, Martin van Beuzekom, Tjip Bischoff, Robbert Geertsema, Kevin Heijhoff, Daan Oppenhuis, Ganrong Wang CERN: Federico De Benedetti, Wiktor Byczynski, Victor Coco, Raphael Dumps, Mohammadtaghi Hajheidari *IGFAE*: Edgar Lemos Cid, Efrén Rodríguez Rodríguez *TU Dortmund*: Elena Dall'Occo, David Rolf University of Manchester/CERN: Tim Evans University of Oxford: David Bacher, Rui Gao, Fernanda Goncalves Abrantes, Tommaso Pajero University of Birmingham: Dan Johnson, Marcus Jonathan Madurai *University of Glasgow*: Naomi Cooke, Aleksandrina Docheva

And acknowledgements to everyone making this possible, including

Richard Bates, Vincent van Beveren, Henk Boterenbrood, Paula Collins, Maarten van Dijk, Martin Fransen, Abraham Gallas Torreira, Thierry Gys, Vladimir Gromov, Bas van der Heijden, Malcolm John, Xavi Llopart, Loris Martinazolli, and Heinrich Schindler

Timepix4: Hybrid pixel detector readout ASIC

D. Oppenhuis

BTTB12

Telescope configuration

Plane assemblies (all Timepix4v2)

- Eight telescope planes with n-on-p planar silicon sensors:
 - 4 x 300 µm sensors for spatial resolution (angled)
 - 4 x 100 µm sensors for time resolution (perpendicular)
 - Sensor upgrades are anticipated (LGAD, 3D, ...)
- Several DUT assemblies:
 - 50 μm, 100 μm, and 200 μm n-on-p planar silicon
 - 300 µm p-on-n
 - 2 x 250 µm iLGAD sensor 55 and 110 µm pitch
 - Cooled using glycol at 20 °C

Upstream telescope arm

BTTB12

Microchannel plate (MCP) time reference

- Two MCPs provide precise time references to study timing performance of telescope
- Placed at the end/far downstream to not hinder other groups in same beam area (large material contribution)
- Combined MCP resolution: 12 ps

MCPs

BTTB12

	24	ps
0	3	

Hitmap 8 planes

- H8 beamline at SPS / CERN
- 180 GeV/c mixed beam
- To optimize time and spatial resolution:
- charge calibration
- timewalk correction
- clock correction

row

hitmap N18 300 µm

hitmap N38 100 µm

hitmap N10 100 µm

hitmap N34 300 µm

17 April 2024

BTTB12

row

row

Charge calibration

- Per pixel calibration with test pulses
- Pixel to pixel ToT variation due to differences in discharge current
- Calibration needed to optimize spatial (and temporal resolution)

D. Oppenhuis

BTTB12

17 April 2024

Nikhef

Spatial resolution

- Four innermost planes rotated 9° around x and y to enhance charge sharing between pixels
- Charge-weighted mean gives cluster position
- Single plane resolution: **4.3 μm**
- Pointing resolution at DUT: 2.7 μm (Mixed hadron beam 180 GeV/c)
- Working on η corrections to improve spatial resolution

BTTB12

Time resolution

- ~210-220 ps

BTTB12

Time resolution

- ToA measurement with 640 MHz voltage-controlled oscillator
- Per superpixel VCO corrections
- After Timewalk+VCO corrections: ~168-185 ps
- Track time: 4 × 100 µm orthogonal planes : 90 ps

Frequency per SPixel

BTTB12

Inverted LGAD on Timepix4 as DUT

- Tested 250 µm thick iLGADs with 55/110 µm pitch (Tpx3 sized)
- Low-gain avalanche diodes (LGADs) use charge multiplication to deliver larger input signals
- Small pixel size cannot be achieved in standard LGAD technology (without losing efficiency)
- Inverted LGADs (iLGADs) solve this by placing the gain layer on the backside
- Sensors produced by Micron and provided by Glasgow

A. Doblas et al Sensors 2023, 23, 3450 [DOI: 10.3390/s23073450]

17 April 2024

BTTB12

 \mathbf{V}

Nikhef

Grazing angle measurements

- Grazing angle measurement used to determine time resolution for different depth in the sensor
- Selection of clusters without δ-rays
- Average cluster time as time reference
- Operated at (too) low threshold

ToA [ns]

Timewalk

- Earlier signal close to read-out electrode •
- Worse time resolution close to read-out electrode lacksquare
- Multiple bands in timewalk curve
- Timewalk correction as function of depth

BTTB12

17 April 2024

Nikhef

Timewalk correction per depth

D. Oppenhuis

BTTB12

BTTB12

Future research

- New sensors:
- Focus will move from telescope to DUTs
- Probe larger parameter space of iLGADs (threshold, angle, voltage)
- New devices:
- Trench isolated LGAD (RD50 batch with 55x55 matrices, from FBK)
- 3D (two types, very old sensors from CNM + RD50 3D-DS timing from CNM)
- 300 um PiN devices (baseline for AIDAinnova timing layers, from CNM)
- AIDAinnova WP6 prototypes when available (TI-LGAD, iLGAD, 3D pillar & trench)

K. Heijhoff et al 2021 JINST 16 P08009 [DOI: 10.1088/1748-0221/16/08/P08009

Conclusion

- Stable operation of complete telescope
- Continue to improve time/spatial resolution via additional corrections
- Current specifications:
- Spatial resolution: 2.7 µm
- Cluster time resolution: 185-168 ps
- Track time resolution (timepix4 only): 90 ps
- MCP resolution: 12 ps
- Ready to move on to faster sensor technologies

BACK-UP SLIDES

Timepix4: Hybrid pixel detector readout ASIC - 24.7 mm

- Developed by CERN, Nikhef, and IFAE
- 65 nm CMOS
- 448×512 pixels, 55×55 µm² pitch
- Simultaneous measurement of time and charge deposition (by measuring time over threshold)
- Time-bin size of 25 ns/128 = 195 ps (Timepix3: 1.56 ns)
- Max rate: 360×10⁶ hits/cm²/s (160 Gb/s for single chip)

Hybrid detector

Sensor Bump bonds **Readout electronics**

X. Llopart et al 2022 JINST 17 C01044 [DOI: 10.1088/1748-0221/17/01/C01044]

BTTB12

17 April 2024

Nikhef

		Timepix3 (2013)	Timepix4 (2019
hnology		130nm – 8 metal	65nm – 10 meta
el Size		55 x 55 µm	55 x 55 µm
el arrangement		3-side buttable 256 x 256	4-side buttable 512 x 448
sitive area		1.98 cm ²	6.94 cm ²
	Mode	TOT and TOA	
Data driven (Tracking)	Event Packet	48-bit	64-bit
	Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm
	Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel
Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-
	Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixe
	Max count rate	~0.82 x 10 ⁹ hits/mm ² /s	~5 x 10 ⁹ hits/mm ²
Fenergy resolution		< 2KeV	< 1Kev
A binning resolution		1.56ns	195ps
A dynamic range		409.6 µs (14-bits @ 40MHz)	1.6384 ms (16-bits @ 4
dout bandwidth		≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)
get minimum threshold		<500 e⁻	<500 e⁻

Time measurement in Timepix4

Coarse and fine time measurement – 40 MHz and 640

MHz
^
op
)b1110
- 3

Speedy Plxel Detector Readout 4 (SPIDR4)

D. Oppenhuis

BTTB12

Micro channel plate detectors

- Time reference to study telescope timing
- Considering installing Timpix4 plane to VETO events with nuclear interactions
- Current time resolution: 17 ps (single MCP)
- Combined MCP resolution: 12 ps

D. Oppenhuis

Assembly cooling

- All assemblies have a 3D-printed titanium cooling block
- Cooled using glycol at 20 °C
- Could go to -20 °C in the future
- Plan to mill PCB to have direct thermal contact with Timepix4

Track pointing resolution

- PCB adds 1.8 % X_o (ASIC + sensor adds 0.8–1.0 % X_o)
- Milling out PCB would improve resolution to 2.2 µm
- Investigating "eta corrections" for nonlinear charge sharing
- Other possible improvements:

BTTB12

17 April 2024

Nikhef

Time resolution

- Thin sensors reduce time errors due to Landau fluctuations
- Perpendicular to beam to maximise signal charge in single pixel
- Reduced signal size reduces analog front-end performance

25

- Time measurement depends on signal size

17 April 2024

BTTB12

Inverted LGAD on Timepix4 as DUT (first glance)

BTTB12

Grazing angle measurements

- Grazing angle measurements probe different depths of the sensor
- Can be used to determine thickness by measuring cluster length at various angles
- Sensors are thin, but not flat

N161, Pixel pitch 55um, Thickness 100um, Run 5196

30

N161, Pixel pitch 55um, Thickness 100um, Run 5196

BTTB12

Timepix4 front-end

Clock distribution – Column digital locked look (DLL)

- The column DLL distributes the clock along the columns
- The adjustable delay buffers (ADBs) precisely define the clock phase in each pixel group
- Controller tunes the total delay to 25 ns
- Possible to set the delay manually
- Individual ADB stations can be bypassed

iWoRID 2018 X. Llopart et al 2019 JINST 14 C01024

Timepix4 – Analog front-end jitter

- Time resolution in h⁺ mode limited to 75–105 ps depending on DAC settings
- Pixel capacitance decreases the time resolution (see R. Ballabriga et al NIM A 1045 (2023) 167489 [DOI: 10.1016/j.nima.2022.167489])

D. Oppenhuis

- Bottom half: $1.547 \text{ ns} \pm 20 \text{ ps}$ Top half: $1.583 \text{ ns} \pm 14 \text{ ps}$
- resolution (few %)
- methods of increasing complexity

K. Heijhoff et al 2022 JINST 17 P07006 [DOI: 10.1088/1748-0221/17/07/P07006]

- timing performance of telescope
- beam area
- interactions

D. Oppenhuis

BTTB12

- understood

D. Oppenhuis

Charge calibration with test pulses

