MACHINE LEARNING AT FUTURE COLLIDERS

JAVIER DUARTE* FUTURE OF HIGH ENERGY PHYSICS ASPEN CENTER FOR PHYSICS MARCH 29, 2024

INTRODUCTION

- Machine learning has already changed the way we do particle physics from trigger/data acquisition to event reconstruction, simulation, data analysis, and interpretation
 - It is an essential and versatile tool that we use to improve existing approaches
 - It enables fundamentally new approaches
- In this talk, I'll describe one thread where ML can shift/inform the paradigm

Snowmass CompF03 Report, arXiv:2209.07559 2

MULTILAYERED DETECTORS, E.G. CMS

Current and future Silicon' multilayered detectors...

Tracker Electromagnetic Calorimeter Hadron Calorimeter

Require complex reconstruction → particle-flow algorithm

Superconducting Solenoid	Iron retu	urn yoke inte	erspersed	
3 m	with 4 m	n Muon char 5 m	nbers 6 m	7

Electron

Charged Hadron (e.g. Pion)

Photon

3

PARTICLE-FLOW RECONSTRUCTION

- Particles interact with detector, leaving energy deposits and tracks
- individual subsystem)

Efficient combination of info. from complementary detector subsystems to produce a holistic, particle interpretation of the event (that improves on any

CONVENTIONAL PARTICLE-FLOW, E.G. PANDORA

Existing particleflow algorithms based on complex, handtuned heuristics work well

"Basic" reconstruction uses 56 algorithms:

J. S. Marshall: <u>https://indico.in2p3.fr/</u> **DISADVANTAGES OF CONVENTIONAL PARTICLE-FLOW** event/7691/contributions/42712

- Our heuristics fail in some ambiguous situations
- detectors, or port to new computational hardware or HPCs

Missing energy

Missing energy

Traditional PF algorithms can be tricky to extend, tune, apply to different/new

PARTICLE-FLOW AS A MACHINE-LEARNING TASK

- Can we instead formulate PF as an ML task (naturally "tunable" through retraining and portable to new hardware)?
- Learn a "set-to-set" function $f: X \to Y$, where {tracks, clusters} $\in X$ or
 - $\{\text{tracks, hits}\} \in X \text{ and } \{\text{particles}\} \in Y$

 $\{$ tracks, hits $\} \in X$

 $\{\text{particles}\} \in Y$

MLPF TIMELINE

MLPF IN e^+e^- COLLISIONS

*Corresponding author(s). E-mail(s): joosep.pata@cern.ch; Contributing authors: eric.wulff@cern.ch; fmokhtar@ucsd.edu; david.southwick@cern.ch; mezhang@ucsd.edu; maria.girone@cern.ch; jduarte@ucsd.edu;

- Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors
- Joosep Pata^{1*}, Eric Wulff², Farouk Mokhtar³, David Southwick², Mengke Zhang³, Maria Girone², Javier Duarte³
 - ^{1*}National Institute of Chemical Physics and Biophysics (NICPB), Rävala pst 10, 10143 Tallinn, Estonia.
- ²European Center for Nuclear Research (CERN), CH 1211, Geneva 23, Switzerland.
 - ³University of California San Diego, La Jolla, CA 92093, USA.

OPEN DATASET FOR ML RECONSTRUCTION STUDIES

- Gen. particles, reco. tracks and calorimeter hits, reco. Pandora PF particles in EDM4HEP format
- CLIC detector (<u>CLIC_o3_v14</u>) simulation with Geant4, reco. with Marlin interfaced via Key4HEP including Pandora PF reco.
- Processes generated with Pythia8 at $\sqrt{s} = 380 \,\mathrm{GeV}$
 - $e^+e^- \rightarrow t\bar{t}, q\bar{q}, ZH(\tau\tau), WW, t\bar{t} + PU10$
 - Single-particle: e^{\pm} , μ^{\pm} , K_{L}^{0} , n, π^{\pm} , γ between [1,100] GeV
- 2.5 TB, 6 million events in total

Particle Flow Reconstruction Scalable Neural Network Models and Terascale Datasets

https://www.coe-raise.eu/od-pfr

	1	Π
_	J.	U

OPEN DATASET FOR ML RECONSTRUCTION STUDIES

~300-500 / event

DATA PREPROCESSING FOR NODE PREDICTION

Formulate task as node prediction with data preprocessing Input set arranged in (arbitrarily ordered) matrix

$$x_i^{\text{track}} = \left[p_{\text{T}}, \eta, \phi, \chi^2, N_{\text{dof}}, \tan \lambda, D_0, \Omega = \text{sign}(q)/R, Z_0 \right]$$
$$x_i^{\text{cluster}} = \left[E_{\text{T}}, \eta, \phi, E_{\text{ECAL}}, E_{\text{HCAL}}, x, y, z, N_{\text{hit}}, \sigma_x, \sigma_y, \sigma_z \right]$$

Target set zero-padded to same size |X| = |Y|, with each output particle arranged in same array position as best-matched input element

$$y_i = [\text{PID}, p_{\text{T}}, E, \eta, \phi, q]$$

PID \in {none, charged hadron, neutral hadron, $\gamma, e^{\pm}, \mu^{\pm}$ }

Input set $X = \{x_i\}$

Target set $Y = \{y_i\}$

GRAPH NEURAL NETWORK APPROACH

- Convert input set to a locally, **sparsely** connected graph
- Message-passing NN to transform features
- Decode transformed inputs elementwise
- (During training) Compare to target set, optimize weights

Eur. Phys. J. C 81, 381 (2021) 13

GRAPH BUILDING COMPLEXITY

Naive nearest neighbors graph building: need to compare each pair of particles, $\mathcal{O}(N^2)$ complexity

 $\mathcal{O}(N^2)$ complexity plagues other SOTA ML approaches like transformers

T. Neylon, <u>https://unboxresearch.com/</u> <u>articles/lsh_post1.html</u>

LOCALITY-SENSITIVE HASHING

Divide space into bins, particles are connected if they are in the same bin

Hash function: particle features to bin index

T. Neylon, <u>https://unboxresearch.com/</u> <u>articles/lsh_post1.html</u>

LOCALITY-SENSITIVE HASHING

Simple to implement in TensorFlow, PyTorch, JAX using native operations: high portability to Nvidia, AMD, Intel Gaudi, etc. today

T. Neylon, <u>https://unboxresearch.com/</u> articles/lsh_post1.html

Randomized bins (hash functions) work even better!

LSH-BASED GNN

- One layer of scalable GNN based on Reformer [arXiv:2001.04451]
- Can stack them to form multilayered network that learns higher-level representations

HYPERPARAMETER OPTIMIZATION ON HPC

Many
 hyperparameters to
 tune, e.g. number of
 layers, hidden
 dimension of each
 layer, and LSH bin
 size

Requires large
 compute

IMPACT OF TUNING

• Tuning improves particle-level performance dramatically (trained on $q\bar{q}, t\bar{t}$)

Though we optimize a particle-level loss, also achieve better jet/MET resolution

PERFORMANCE AND GENERALIZATION

~50% improvement in jet response width over the baseline*

• Generalizes to samples (e.g., $e^+e^- \rightarrow WW \rightarrow hadrons$) never used in training

*Defined with gen. particle status = 1

SCALING

- event is in seconds

Baseline (untuned) algo. runs only on CPU, scales ~quadratically, runtime per

ML model scales linearly, runs in milliseconds per event on a consumer 8 GB GPU

FOUNDATION MODELS

"Foundation models" are large-scale models (e.g. GPT-3) trained on broad multimodal data and adaptable to a wide range of downstream tasks

FOUNDATION MODELS IN HEP

- Reconstruction in HEP is analogous to a foundation model
- With ML-based reconstruction, can take this analogy more literally and fine-tune reconstruction for different needs, e.g. analysis or new detector concepts

L. Heinrich, <u>https://indico.cern.ch/event/</u> 1330797/contributions/5776144/

SUMMARY

- ML-based event reconstruction improves physics performance at future colliders
- Scalable ML models improve computational performance
- Open datasets and code accelerate research

End-to-end optimization can enable **new paradigms**, e.g. fine-tuning MLbased reconstruction for different use cases (analysis, detector concepts, etc.)

Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors

Joosep Pata^{1*}, Eric Wulff², Farouk Mokhtar³, David Southwick², Mengke Zhang³, Maria Girone², Javier Duarte³

^{1*}National Institute of Chemical Physics and Biophysics (NICPB), Rävala pst 10, 10143 Tallinn, Estonia. ²European Center for Nuclear Research (CERN), CH 1211, Geneva 23, Switzerland. ³University of California San Diego, La Jolla, CA 92093, USA.

*Corresponding author(s). E-mail(s): joosep.pata@cern.ch; Contributing authors: eric.wulff@cern.ch; fmokhtar@ucsd.edu; david.southwick@cern.ch; mezhang@ucsd.edu; maria.girone@cern.ch; jduarte@ucsd.edu;

JAVIER DUARTE FUTURE OF HIGH ENERGY PHYSICS ASPEN CENTER FOR PHYSICS MARCH 29, 2024

BACKUP

RELATED WORK

Towards a Computer Vision Particle Flow *

Francesco Armando Di Bello^{a,3}, Sanmay Ganguly^{b,1}, Eilam Gross¹, Marumi Kado^{3,4}, Michael Pitt², Lorenzo Santi³, Jonathan Shlomi¹

¹Weizmann Institute of Science, Rehovot 76100, Israel ²CERN, CH 1211, Geneva 23, Switzerland ³Università di Roma Sapienza, Piazza Aldo Moro, 2, 00185 Roma, Italy e INFN, Italy ⁴Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France

arXiv:2003.08863

Reconstructing particles in jets using set transformer and hypergraph prediction networks

Francesco Armando Di Bello^{1,a}, Etienne Dreyer^{2,b}, Sanmay Ganguly³, Eilam Gross², Lukas Heinrich⁴, Anna Ivina², Marumi Kado^{5,6}, Nilotpal Kakati^{2,c}, Lorenzo Santi⁶, Jonathan Shlomi², Matteo Tusoni⁶

¹ INFN and University of Genova ²Weizmann Institute of Science ³ICEPP, University of Tokyo ⁴Technical University of Munich ⁵Max Planck Institute for Physics ⁶INFN and Sapienza University of Rome

CLIC DETECTOR MODEL

CLIC detector (<u>CLIC_o3_v14</u>)

Solenoidal Magnet

Superconducting magnet, magnetic field of 4 tesla

Tracking Detector

Silicon pixel detector, outer radius 1.5 metres

Vertex Detector

Ultra-low mass silicon pixel detector, inner radius 31 millimetres

Tracking detector

Material: 1–2% X₀ / layer Single-point resolution: 7 micrometres

Vertex detector

25 micrometre pixels Material: 0.2% X_o / layer Single-point resolution: 3 micrometres Forced air-flow cooling

Electromagnetic calorimeter

40 layers (silicon sensors, tungsten plates) Material: 22 $X_0 + 1 \lambda_1$

Hadronic calorimeter

60 layers (plastic scintillators, steel plates) Material: 7.5 λ

Learn more about the CLIC detector at clic.cern

<u>OPEN-PHO-EXP-2017-008</u> 27

HPC AI CHIPS

The HPC AI chip landscape is diversifying

AMD MI250X GPU

... we need flexible and portable codes to make use of these resources in the near future!

Intel Gaudi2 deep learning processor

PORTABILITY

Portable on CPU, Nvidia & AMD GPU, Intel Habana Gaudi chips

STACKING GNN-LSH

Can construct multilayered networks from the scalable GNN-LSH building block

BULK AND TAILS

Datasets are diverse so we have to particle types

Datasets are diverse so we have to predict the bulk and the tails well for all

PERFORMER-BASED TRANSFORMER

Alternative: scalable transformer based on the Performer architecture [arXiv:2009.14794]

One layer of kernel-based self attention with the FAVOR mechanism.

