

Artwork by Sandbox Studio, Chicago with Ana Kova

"The Future of High Energy Physics: A New Generation, A New Vision" March 24-29, 2024

Zahra Tabrizi

Neutrino Theory Network fellow

Northwestern University

Fantastic Beasts and How to Find Them With Neutrino Detectors

Oscillation Experiments

New Physics Searches

Observable: rate of detected events

~ (flux)×(det. cross section) × (oscillation)

Zahra Tabrizi, NTN fellow, Northwestern U.

Goal:

- Going beyond the oscillation;
- Fully leveraging the potential of these multi-billion dollar experiments;

Physics goals of near detectors:

Primary role: Understanding Systematic Uncertainties

- Test SM predictions
- Search for BSM physics

Neutrino Experiments as Dark Sector factories!

Credit: Kevin Kelly

The huge fluxes of neutrinos and photons can be used for BSM searches

Neutrino Experiments as Dark Sector factories!

				Litentes per ton year
High beam		Ideal to investigate	$ u_{\mu}$ CC Total	1.64×10^{6}
luminosity + Large		rare/new neutrino	$ u_{\mu}$ NC Total	5.17×10^{5}
fiducial mass		interactions	$ u_{\mu} - e$	135
Light Z' Searches for LFV Heavy Neutral Leptons	ght ark tter ALPs	 "Heavy N Neutrino Abdullahi arXiv: 23: "Probing mode", Brdar, Du PRD (202 "Axion-lil Closing ti Brdar, Du PRL (202: "Z's in ne Ballett, H PRD (201 	eutral Leptons via Axion-Li Facilities", , de Gouvea, Dutta, Shoema L1.07713 [hep-ph] new physics at DUNE oper tta, Jang, Kim, Shoemaker, 3) Re Particles at Future Neutr ne Cosmological Triangle", tta, Jang, Kim, Shoemaker, L) utrino scattering at DUNE", ostert, Pascoli, Perez-Gonza 9)	ke Particles at aker and ZT, ating in a beam-dump ZT, Thompson and Yu, 'ino Experiments: ZT, Thompson and Yu, 'alez, ZT and Funchal,

Events per ton-year

Light Dark Matter

Credit: Kevin Kelly

Photons at the target kinetically produce Dark Photons, which decay into dark matter:

$$\mathcal{L} \supset -rac{arepsilon}{2} F^{\mu
u} F'_{\mu
u} + rac{M^2_{A'}}{2} A'_{\mu} A'^{\mu} + |D_{\mu}\phi|^2 - M^2_{\phi} |\phi|^2$$
 $D_{\mu} = \partial_{\mu} - ig_D A'_{\mu}, \ g_D = \sqrt{4\pilpha_D}$

Light Dark Matter

DM signal: elastic scattering on electrons

Proposing a movable target system at DUNE

Credit: Kevin Kelly

We can dump protons directly to the dump area!

Gains:

- Shorter distance between the source and the detector \rightarrow more DM signal;
- Charged mesons absorbed in the Al beam dump before decay;
- The ν flux decreases \rightarrow Much less ν background.

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu PRD (2023)

Light Dark Matter at Targetless DUNE

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu PRD (2023)

Target-less DUNE can probe the parameter space for thermal relic DM in only 3 months!

https://cajohare.github.io/AxionLimits

by theory and cosmology;

Why is

(QCD axion);

DM candidates;

Axion-Like Particles (ALPs)

particle physics experiments

ALPs at Neutrino Experiments

Credit: Kevin Kelly

Using photons to produce ALPs:

ALP production

ALP detection

Inverse Primakoff scattering

ALP decay

Primakoff process: Coherent conversion of $\gamma \rightarrow a$ with Z^2 enhancement

3/28/2024

Zahra Tabrizi, NTN fellow, Northwestern U.

ALP- γ at DUNE

ALP- γ at Target-less DUNE

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu PRL (2021)

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu PRD (2023)

- The only lab-based constraints!
- Can probe QCD-axion
- 3 months target-less DUNE can do better than 1 yr GAr

Precision Measurements at Oscillation Experiments

3/28/2024

○ Tons of data;

- Identify neutrino flavor;
- More sensitive to some HE operators;

Goal:

A systematic analysis of NP using neutrino experiments; Connecting the results to other precision experiments;

EFT Workflow:

3/28/2024

Zahra Tabrizi, NTN fellow, Northwestern U.

 ν_{β}

EFT at neutrino experiments

We proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Observable: rate of detected events

 \sim (flux) \times (det. cross section) \times (oscillation)

Falkowski, González-Alonso, ZT, JHEP (2020)

depend on the kinematic and spin variables

$$\mathcal{M}^{P}_{\alpha k} = U^{*}_{\alpha k} A^{P}_{L} + \sum_{X} [\epsilon_{X} U]^{*}_{\alpha k} A^{P}_{X}$$
$$\mathcal{M}^{D}_{\beta k} = U_{\beta k} A^{D}_{L} + \sum_{X} [\epsilon_{X} U]_{\beta k} A^{D}_{X}$$

Corrections on fluxes/cross sections

$$\sigma^{Total} = \sigma^{SM} + \varepsilon_X \sigma^{Int} + \varepsilon_X^2 \sigma^{NP} \sim \sigma^{SM} (1 + \varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})$$

$$\phi^{Total} = \phi^{SM} + \varepsilon_X \phi^{Int} + \varepsilon_X^2 \phi^{NP} \sim \phi^{SM} (1 + \varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})$$

EFT at neutrino experiments

• Observed rate at the experiment: $R_{Obs} = 10^4 v_{\mu}$ $\sqrt{R_{obs}} = 10^2 \nu_{\alpha} \equiv \Delta R$ Uncertainty: $R_{Th} = R_{SM}(1 + C \epsilon^2) = R_{SM} + \Delta R$ From theory: $c = 10^{3}$ $\epsilon < \frac{10^{2}}{10^{3} \times 10^{4}} \sim 3 \times 10^{-3}$ $C \epsilon^2 = \frac{\Delta R}{R_{SM}}$ Limit on ϵ : $\frac{v \left[246 \ GeV\right]}{\sqrt{\epsilon}} = 4.5 \text{ TeV}$ **New Physics Limit:** 0 $C \propto \frac{\sigma_{NP}}{\sigma_{SM}} \text{ or } \frac{\phi_{NP}}{\phi_{SM}}$

0

0

0

FASERv

- Downstream of ATLAS at of 480 m: ۰
- Ideal for detecting high-energy neutrinos at LHC; ۲
- 1.1-t of tungsten material;
- Several production modes; .
- Pion and Kaon decays are the dominant ones; ۲

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Zahra Tabrizi, NTN fellow, Northwestern U.

kaon decay

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Zahra Tabrizi, NTN fellow, Northwestern

EFT at FASERv

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021) ϵ

 $\Lambda \equiv v / \sqrt{\epsilon_X} [\text{TeV}]$

 10^{-3}

- 10^{-1} 10^{-2} 1 L=150 fb⁻¹, 90% C.L. Cons./Opt. $[\epsilon_P^{\mathsf{ud}}]_{\mu\tau}$ HL-LHC \rightarrow π decay $[\epsilon_P^{\rm us}]_{\mu\tau}$ ⊢ ► K decay $[\epsilon_R^{\mathrm{ud}}]_{ au \mathrm{e}}$ $\rightarrow v_e \rightarrow v_\tau$ α $[\epsilon_R^{\mathrm{us}}]_{\mathrm{e} au}$ K decay $[\epsilon_R^{us}]_{\mu\tau}$ K decay $[\epsilon_R^{cs}]_{\tau e}$ D_s decay $[\epsilon_R^{cs}]_{\tau\mu}$ D_s decay $[\epsilon_T^{\mathsf{ud}}]_{\mu\mu}$ 10^{-1}
- **FASER**y: colored bars ٠
- Top: Conservative/Optimistic flux uncertainties
- Bottom: High luminosity LHC

- Neutrino detectors can identify flavor: 81 ٠ operators at FASERv
- New physics reach at multi-TeV ۲
- Complementary or dominant constraints ٠

10

Long Baseline Accelerator Experiments

• 0.1-5 GeV: Cross section is much more involved!

J.A. Formaggio, G. Zeller, Reviews of Modern Physics, 84 (2012)

EFT at Neutrino-Nucleus Quasi-Elastic Scattering

Kopp, Rocco, <u>ZT</u> arXiv: 2401.07902

> Extracting 10 TeV physics from GeV neutrino experiments!

Indirect Searches: Future Directions

- EFT global fit in neutrino oscillation experiments;
- Extraction of oscillation parameters in presence of general new physics;
- Preparing a public software package and implementing the EFT results: e.g. GLoBES-EFT;
- Comparison between the sensitivity of oscillation and other low/high energy experiments;

Neutrino Oscillation at Muon Colliders? Unlikely?

At TeV energy range, the relevant baseline to see oscillation is 10^6 (10^8) km for atmospheric (solar) oscillation parameters.

A neutrino detector at the moon? We are not there yet!

Neutrino Fixed Target Experiment at a Muon Collider

- Equal numbers of electron/muon (antí)neutrínos;
- Very high luminosity for both muon and electron flavor content;
- > Well known neutrino energy spectra at tens of GeV;
- > Very well determined beam intensity;

Detector

Precision in Neutrino Cross Section Measurements:

FASER Collaboration, 2020

Currently no high energy ν_e beam
 A lot of ν_{μ} , but not well known beam

The Physics Case for a Neutrino Factory 2203.08094

- Well known beam, direct extraction of the x-sections with much greater precision
- DIS dominates, we can probe nucleon structure at low Bjorken x and high Q^2

W/O a Dedicated Neutrino Detector:

• High energy Muon Collider as a high energy Neutrino Collider

Could provide constraints to Non-standard Interactions that are complementary to low-energy probes!

Talk by Ian Low at ACE

SMEFT:

Flavor-conserving 4-lepton operators

• vertex corrections to the Z and W interactions with leptons:

$$\begin{split} \mathcal{L}_{\text{SMEFT}} &\supset \frac{g_L}{\sqrt{2}} \left[W^{\mu +} \overline{\nu}_a \overline{\sigma}_\mu (1 + \delta g_L^{We_a}) e_a + \text{h.c.} \right] + \sqrt{g_L^2 + g_Y^2} Z^{\mu} e_a^c \sigma_\mu \left(-s_\theta^2 Q_f + \delta g_R^{Ze_a} \right) \overline{e}_a^c \\ &+ \sqrt{g_L^2 + g_Y^2} Z^{\mu} \sum_{f=e,\nu} \overline{f}_a \overline{\sigma}_\mu \left(T_3^f - s_\theta^2 Q_f + \delta g_L^{Zf_a} \right) f_a, \end{split}$$

SMEFT:

Chirality-conserving 2 lepton-2 quark operators

	With lepton doublets	Without lepton doublets	
$\mu^+\mu^-$ $\mu^\pm u$ $\nu \overline{\nu}$	$\begin{split} & [O_{\ell q}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \ell_a) (\overline{q}_b \overline{\sigma}^\mu q_b) \\ & [O_{\ell q}^{(3)}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \sigma^i \ell_a) (\overline{q}_b \overline{\sigma}^\mu \sigma^i q_b) \\ & [O_{\ell u}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \ell_a) (u_b^c \sigma^\mu \overline{u}_b^c) \\ & [O_{\ell d}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \ell_a) (d_b^c \sigma^\mu \overline{d}_b^c) \end{split}$	$\begin{split} &[O_{eq}]_{aabb} = (e^c_a \sigma_\mu \overline{e}^c_a) (\overline{q}_b \overline{\sigma}^\mu q_b) \\ &[O_{eu}]_{aabb} = (e^c_a \sigma_\mu \overline{e}^c_a) (u^c_b \sigma^\mu \overline{u}^c_b) \\ &[O_{ed}]_{aabb} = (e^c_a \sigma_\mu \overline{e}^c_a) (d^c_b \sigma^\mu \overline{d}^c_b) \end{split}$	$\mu^+\mu^-$

Chirality-Violating 2 lepton-2 quark operators

• vertex corrections to the Z and W interactions with leptons:

$$\begin{split} \mathcal{L}_{\text{SMEFT}} &\supset \sqrt{g_L^2 + g_Y^2} Z^{\mu} \sum_{q=u,d} \left[\overline{q} \overline{\sigma}_{\mu} \left((T_3^q - s_{\theta}^2 Q_q) + \delta g_L^{Zq} \right) q + q^c \sigma_{\mu} \left(-s_{\theta}^2 Q_q + \delta g_R^{Zq} \right) \overline{q}^c \right] \\ &+ \left[W^{\mu +} \overline{u} \overline{\sigma}_{\mu} \left(V_{ud} + \delta g_L^{Wq_1} \right) d + \text{h.c.} \right]. \end{split}$$

 \square $\mu^+\mu^-
ightarrow e^+e^-$, no radiation \square $\mu^+\mu^-
ightarrow e^+e^-$, with radiation \square $\mu^+\mu^-
ightarrow e^{\pm}
u$, (radiation only)

> Bigaran, Buttazzo, De Gouvea, Han, Jaffredo, Low, Ma. ZT, Xie, **In Preparation**

If we become more inclusive we might find the beast right here!

i'm now going to open the FLOOR to questions.

Zahra Tabrizi, NTN fellow, Northwestern U. CARTOONCOLLECTIONS.CO

Back up Slides

Production and Detection of Dark Matter

Production and Detection of ALPs

Axion Like Particles (ALPs) at DUNE:

Photon Flux from GEANT4 Simulation

G4 y flux stacked histogram

V. Brdar, B. Dutta, W. Jang, D. Kim, I. Shoemaker, **ZT**, A. Thompson, J. Yu Phys.Rev.Lett. 126 (2021) 20, 201801

Axion Like Particles (ALPs) at DUNE:

• Coherent π^0 production $\nu + A \rightarrow \nu + A + \pi^0$

In GAr:

- We expect ~ 10⁶ NC events;
- Vetoing events with hadronic activity remove ~ 80%;
- A cut on the opening angle removes the rest;

EFT ladder

SMEFT: minimal EFT above the weak scale

Zahra Tabrizi, NTN fellow, Northwestern U.

EFT ladder WEFT: Effective Lagrangian defined at a low scale $\mu\,{\sim}\,2\,{\rm GeV}$

At the scale m_Z WEFT parameters ε_X map to dim-6 operators in SMEFT

$$\begin{split} [\epsilon_L]_{\alpha\beta} &\approx \frac{v^2}{\Lambda^2 V_{ud}} \left(V_{ud} [c_{Hl}^{(3)}]_{\alpha\beta} + V_{jd} [c_{Hq}^{(3)}]_{1j} \delta_{\alpha\beta} - V_{jd} [c_{lq}^{(3)}]_{\alpha\beta1j} \right. \\ [\epsilon_R]_{\alpha\beta} &\approx \frac{v^2}{2\Lambda^2 V_{ud}} [c_{Hud}]_{11} \delta_{\alpha\beta} \\ [\epsilon_S]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alphaj1}^* + [c_{ledq}]_{\beta\alpha11}^* \right) \\ [\epsilon_P]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alphaj1}^* - [c_{ledq}]_{\beta\alpha11}^* \right) \\ [\hat{\epsilon}_T]_{\alpha\beta} &\approx -\frac{2v^2}{\Lambda^2 V_{ud}} V_{jd} [c_{lequ}^{(3)}]_{\beta\alphaj1}^* \end{split}$$

Falkowski, González-Alonso, ZT, JHEP (2019)

- All ε_X arise at O(Λ^{-2}) in the SMEFT, thus they are equally important.
- No off-diagonal right handed interactions in SMEFT.

Falkowski, González-Alonso, ZT, JHEP (2020)

Due to the pseudoscalar nature of the pion, it is sensitive only to axial (ε_L - ε_R) and pseudo-scalar (ε_P) interactions.

Production

$$p_{LL} = -p_{RL} = 1, \quad p_{PL} = -p_{PR} = -\frac{m_{\pi}^2}{m_{\mu}(m_u + m_d)},$$

$$p_{RR} = 1, \quad p_{PP} = \frac{m_{\pi}^4}{m_{\mu}^2(m_u + m_d)^2}.$$

$$\sim -27$$

$$\pi^{-} \begin{cases} \mathbf{d} & \overset{\mathsf{W}^{-}}{\underset{\mathbf{u}}{\overset{}}} & \overset{\mathsf{\overline{v}}_{\mu}}{\underset{\mu^{-}}{\overset{}}} \\ \pi^{-}(\mathbf{d}\overline{\mathbf{u}}) \rightarrow \mu^{-} + \overline{\mathbf{v}}_{\mu} \end{cases}$$

• Larger $p_{XY} \Rightarrow$ smaller ϵ !

 $\boldsymbol{\phi}^{Total} \sim \boldsymbol{\phi}^{SM}(1 + \boldsymbol{\varepsilon}_X \ \boldsymbol{p}_{XL} + \boldsymbol{\varepsilon}_X^2 \ \boldsymbol{p}_{XX})$

$$egin{aligned} &\langle 0 | \, d \gamma^\mu \gamma_5 u \, | \pi^+(p_\pi)
angle &= i p_\pi^\mu f_\pi \ &\langle 0 | \, ar d \gamma_5 u \, | \pi^+(p_\pi)
angle &= -i rac{m_\pi^2}{m_u + m_d} f_\pi \end{aligned}$$

Huge overall flux normalization for pion decay!

3/28/2024

Pion

decay

Zahra Tabrizi, NTN fellow, Northwestern U.

Falkowski, González-Alonso, ZT, JHEP (2020)

$$\begin{split} p_{LL,\alpha}^{D,cs} &= p_{RR,\alpha}^{D,cs} = -p_{LR,\alpha}^{D,cs} = 1 \,, \\ p_{PL,\alpha}^{D,cs} &= -p_{PR,\alpha}^{D,cs} = -\frac{m_{D_s}^2}{m_{\ell_\alpha}(m_c + m_s)} \simeq -1.6, \, -27, \, -5.5 \times 10^3 \qquad \text{for } \alpha = \tau, \, \mu, \, e \\ p_{PP,\alpha}^{D,cs} &= \frac{m_{D_s}^4}{m_{\ell_\alpha}^2(m_c + m_s)^2} \simeq 2.5, \, 710, \, 3.0 \times 10^7 \qquad \qquad \text{for } \alpha = \tau, \, \mu, \, e \end{split}$$

• Larger $p_{XY} \Rightarrow$ smaller ϵ !

 $\phi^{Total} \sim \phi^{SM}(1 + \varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})$

Production

Large overall flux normalization for charm decay as well!

Charm

decay

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Detection

DIS

EFT at FASERv

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- > Results are statistics dominated: $\nu_e \sim 1000$, $\nu_{\mu} \sim 5000$, $\nu_{\tau} \sim 10$
- > Optimistic systematic uncertainties: 5% on v_e , 10% on v_{μ} , 15% on v_{τ}
- > Conservative systematic uncertainties: 30% on ν_e , 40% on ν_{μ} , 50% on ν_{τ}

Other FPF Experiments

Rates scale linearly wrt volume/Luminosity: X

> diagonal $\varepsilon \sim ({}^{X_2}/_{X_1})^{1/2}$ off-diagonal $\varepsilon \sim ({}^{X_2}/_{X_1})^{1/4}$

FASERv2:
75 times more events,
~ 9 (3) times better
sensitivity for (off-)
diagonal elements;

- FLArE10: 40 times more events, ~ 6 (2.5) times better sensitivity;
- FLArE100: 300 times more events, ~ 17 (4) times better sensitivity;

Neutrino Oscillation at Muon Colliders? Unlikely?

At TeV energy range, the relevant baseline to see oscillation is 10^6 (10^8) km for atmospheric (solar) oscillation parameters.

A neutrino detector at the moon? We are not there yet!

Neutrino Fixed Target Experiment at a Muon Collider

W/O a Dedicated Neutrino Detector:

• High energy Muon Collider as a high energy Neutrino Collider

Could provide constraints to Non-standard Interactions that are complementary to low-energy probes!

Talk by Ian Low at ACE

SMEFT:

Flavor-conserving 4-lepton operators

• vertex corrections to the Z and W interactions with leptons:

$$\begin{split} \mathcal{L}_{\text{SMEFT}} &\supset \frac{g_L}{\sqrt{2}} \left[W^{\mu +} \overline{\nu}_a \overline{\sigma}_\mu (1 + \underbrace{\delta g_L^{We_g}}_L) e_a + \text{h.c.} \right] + \sqrt{g_L^2 + g_Y^2} Z^\mu e_a^c \sigma_\mu \left(-s_\theta^2 Q_f + \underbrace{\delta g_R^{Ze_g}}_R \right) \overline{e}_a^c \\ &+ \sqrt{g_L^2 + g_Y^2} Z^\mu \sum_{f=e,\nu} \overline{f}_a \overline{\sigma}_\mu \left(T_3^f - s_\theta^2 Q_f + \underbrace{\delta g_L^{Zf_g}}_L \right) f_a, \end{split}$$

SMEFT:

Chirality-conserving 2 lepton-2 quark operators

	With lepton doublets	Without lepton doublets	
$\mu^+\mu^-$ $\mu^\pm u$ $\nu \overline{ u}$	$\begin{split} &[O_{\ell q}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \ell_a) (\overline{q}_b \overline{\sigma}^\mu q_b) \\ &[O^{(3)}_{\ell q}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \sigma^i \ell_a) (\overline{q}_b \overline{\sigma}^\mu \sigma^i q_b) \\ &[O_{\ell u}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \ell_a) (u^c_b \sigma^\mu \overline{u}^c_b) \\ &[O_{\ell d}]_{aabb} = (\overline{\ell}_a \overline{\sigma}_\mu \ell_a) (d^c_b \sigma^\mu \overline{d}^c_b) \end{split}$	$\begin{split} &[O_{eq}]_{aabb} = (e^c_a \sigma_\mu \overline{e}^c_a) (\overline{q}_b \overline{\sigma}^\mu q_b) \\ &[O_{eu}]_{aabb} = (e^c_a \sigma_\mu \overline{e}^c_a) (u^c_b \sigma^\mu \overline{u}^c_b) \\ &[O_{ed}]_{aabb} = (e^c_a \sigma_\mu \overline{e}^c_a) (d^c_b \sigma^\mu \overline{d}^c_b) \end{split}$	$\mu^+\mu^-$

Chirality-Violating 2 lepton-2 quark operators

• vertex corrections to the Z and W interactions with leptons:

$$\begin{split} \mathcal{L}_{\text{SMEFT}} &\supset \sqrt{g_L^2 + g_Y^2} Z^{\mu} \sum_{q=u,d} \left[\overline{q} \overline{\sigma}_{\mu} \left((T_3^q - s_{\theta}^2 Q_q) + \delta g_L^{Zq} \right) q + q^c \sigma_{\mu} \left(-s_{\theta}^2 Q_q + \delta g_R^{Zq} \right) \overline{q}^c \right] \\ &+ \left[W^{\mu +} \overline{u} \overline{\sigma}_{\mu} \left(V_{ud} + \delta g_L^{Wq_1} \right) d + \text{h.c.} \right]. \end{split}$$

 $\square \mu^+\mu^-
ightarrow e^+e^-$, no radiation \square $\mu^+\mu^-
ightarrow e^+e^-$, with radiation \square $\mu^+\mu^-
ightarrow e^{\pm}
u$, (radiation only)

> Bigaran, Buttazzo, De Gouvea, Han, Jaffredo, Low, Ma. ZT, Xie, **In Preparation**