

Future Hadron Colliders If we live to see them

Elliot Lipeles

Outline

What is possibly on the horizon?

What physics can it do?

What do we need from the detector to do that?

Overview of the options

	Preceded by ee machine				
	Must Remove FCC-ee first	Could be in tunnel simultaneous	ly		
From Snowmass "Implementation	CERN	China	Fermilab	Gulf of Mexico	Houston New Orles
lask force Report	FCC-hh	SPPC	FNAL Site Filler	Coll. under sea	
CM energy \sqrt{s} , TeV	100	125	24	100 - 500	
Perimeter, km	91.2	100	16	1,900	
Number of IP	4	2	2	2	
Bending field, T	17	12 - 20	24.4	3.5	
Peak lumi./IP (multipl.), $10^{34} cm^{-2} s^{-1}$	5-30 (1000)	10	3.5	50	
Total power consumption, MW	560	400	200 - 300	200,000 !	
					Simple magnets, no tunnel, but needs to stay aligned floating in
Advanced Irc Superconductors ter (Nb3Sn)	n + High- nperature	More sp	eculative		a ocean!
"C Needs ~20 year eas R&D program im lar de	ould be be sier to plement on a ge scale the manding Nb3Sn"				

5

Elliot Lipeles

UNIVERSITY of PENNSYLVANIA

- ~100 TeV schedule driven by R&D and cost
- I6T+ magnets not ready
- Need to spread out tunnel cost from magnet cost (ee machines are cheaper)

~100 TeV schedule driven by R&D and cost

- I6T+ magnets not ready
- Need to spread out tunnel cost from magnet cost (ee machines are cheaper)

Considered a lower energy hh as an alternative to ee machine?

- E.g. a 6T magnets in a 91 km tunnel as a "Low energy" FCC-hh (~37 TeV)
- Issues:
 - Not cheap enough (I don't have numbers on this)
 - Let's not be too cheap with a generation of minds
 - Then you never do ee (where does 100 TeV not supersede ee?)
 - Maybe 100 TeV will be less appealing to build if already have 37 TeV

~100 TeV schedule driven by R&D and cost

- I6T+ magnets not ready
- Need to spread out tunnel cost from magnet cost (ee machines are cheaper)

Considered a lower energy hh as an alternative to ee machine?

- E.g. a 6T magnets in a 91 km tunnel as a "Low energy" FCC-hh (~37 TeV)
- Issues:
 - Not cheap enough (I don't have numbers on this)
 - Let's not be too cheap with a generation of minds
 - Then you never do ee (where does 100 TeV not supersede ee?)
 - Maybe 100 TeV will be less appealing to build if already have 37 TeV

Constraints on Naturalness scale like E², so

- (30/14)~7 ... a good step
- (100/30)~7 ... another good step
- (100/14)~50 ... no matter what your view of how unnatural things are now. At that point a "natural" explanation is pretty constrained

~100 TeV schedule driven by R&D and cost

- I6T+ magnets not ready
- Need to spread out tunnel cost from magnet cost (ee machines are cheaper)

Considered a lower energy hh as an alternative to ee machine?

- E.g. a 6T magnets in a 91 km tunnel as a "Low energy" FCC-hh (~37 TeV)
- Issues:
 - Not cheap enough (I don't have numbers on this)
 - Let's not be too cheap with a generation of minds
 - Then you never do ee (where does 100 TeV not supersede ee?)
 - Maybe 100 TeV will be less appealing to build if already have 37 TeV

Constraints on Naturalness scale like E², so

- (30/14)~7 ... a good step
- (100/30)~7 ... another good step
- (100/14)~50 ... no matter what your view of how unnatural things are now. At that point a "natural" explanation is pretty constrained

HE-LHC was a 27 TeV option involved high-field magnets in LHC tunnel, but no longer consider feasible

- Magnet time scale is a problem
- Physics studies still give relevant intermediate point

Higgs Discovery

Physics Program

- Thermal Dark Matter
- Coupling measurements
- Higgs-Self Coupling
- Energy = Precision

Top Partners (stop squark ++)

Easiest way cancel top-loop contribution to Higgs mass is with a top partner

Elliot Lipeles

UNIVERSITY of PENNSYLVANIA

Compressed Higgsinos (difficult end of SUSY for hh machine)

"Natural" SUSY wants like Higgsinos • Otherwise you start needing a fine-tuning HL-LHC, 3 ab⁻¹, 14 TeV HE-LHC, 15 ab⁻¹, 27 TeV LHC, 13 TeV ---- CMS Extr ---- CMS Extr CMS, 137 fb⁻¹ to get a light Higgs even with SUSY CMS (Dedicated) CMS (Dedicated) ATLAS, 139 fb⁻¹ ATLAS Extr — ATLAS Extr ---- ATLAS (Dedicated) FCC-hh, 30 ab⁻¹, 100 TeV CLIC and μ , 5 ab⁻¹ ---- CMS Extr — CLIC/μ, 3 TeV (√s/2) — ATLAS Extr ····· μ , 10 TeV ($\sqrt{s}/2$) --- μ, 30 TeV (√s/2) **EWK** Compressed CLIC/μ, 3 TeV (√<u>s</u>/2) μ, 30 TeV (√<u>s</u>/2) u, 10 TeV (<u>\sim s</u>/2) 500 GeV A (NLSP-LSP) Mass (GeV) Constraints for II+MET searches: $\chi_2^0 \rightarrow \chi_1^0 + \ell \ell$ \Box GeV .000 GeV (Dire 500 000 10^{4} 10^{2} 103 NLSP Mass (GeV) Monojet based limit covers Δm from ≈ 0 to unknown upper bound HL-LHC 14 TeV, 3 ab⁻¹ HE-LHC 27 TeV, 15 ab⁻¹ FCC-eh Monojet-like (Proj.) 3.5 TeV, 2 ab⁻¹ Just the shape of the Missing energy FCC-hh 100 TeV, 30 ab⁻¹ distribution = very generic constraint 10^{4} 10^{3} 10⁴ NLSP Mass [GeV]

Dark Matter

Minimal WIMPs:

- Electroweak multiplet coupled via SM gauge bosons
- Only free parameter in model is mass
- Requiring right thermal relic abundance gives specific mass target
 - Higgsino-like ~ 1.1 TeV
 - Wino-line ~ 2.8 TeV

Dark Matter

Minimal WIMPs:

- Electroweak multiplet coupled via SM gauge bosons
- Only free parameter in model is mass
- Requiring right thermal relic abundance gives specific mass target
 - Higgsino-like ~ 1.1 TeV
 - Wino-line ~ 2.8 TeV

Beyond Minimal WIMPs:

- Huge variety of targets and methods
- Notably coupling DM with new mediator leads to many possible mediator searches

Precision Higgs Coupling vs hh reach

Conservative Scaling for Upper Limit on Mass Scale Probed by Higgs Precision

Higgs Couplings vs Direct Searches

https://arxiv.org/abs/2209.13128

12

Higgs Couplings

Hadron machines make a lot of Higgs!

		$\mathrm{gg} \to \mathrm{H}$	VBF	WH	ZH	${ m t}{ m t}{ m H}$	HH
fcc-hh	N_{100}	24×10^9	2.1×10^9	$4.6 imes 10^8$	$3.3 imes 10^8$	9.6×10^{8}	$3.6 imes 10^7$
HL-LHC	N_{100}/N_{14}	180	170	100	110	530	390

FCC coupling	Observable	Parameter	Precision	Precision
consitivity			(stat)	(stat+syst+lumi)
Sensitivity	$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \to \gamma \gamma)$	$\delta \mu / \mu$	0.1%	1.45%
estimates	$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \rightarrow \mu \mu)$	$\delta \mu / \mu$	0.28%	1.22%
	$\mu = \sigma(H) \times B(H \rightarrow 4\mu)$	$\delta \mu / \mu$	0.18%	1.85%
	$\mu = \sigma(\mathbf{H}) \times \mathbf{B}(\mathbf{H} \rightarrow \gamma \mu \mu)$	$\delta \mu / \mu$	0.55%	1.61%
.	$\mu = \sigma(HH) \times B(H \rightarrow \gamma \gamma) B(H \rightarrow b\bar{b})$	$\delta\lambda/\lambda$	5%	7.0%
I hese are way beyond	$R = B(H \rightarrow \mu \mu)/B(H \rightarrow 4\mu)$	$\delta R/R$	0.33%	1.3%
anything possible in a	$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	$\delta R/R$	0.17%	0.8%
lepton collider for	$R = B(H \rightarrow \gamma \gamma) / B(H \rightarrow 2\mu)$	$\delta R/R$	0.29%	1.38%
	$R = B(H \rightarrow \mu \mu \gamma) / B(H \rightarrow \mu \mu)$	$\delta R/R$	0.58%	1.82%
these rare modes	$R = \sigma(t\bar{t}H) \times B(H \rightarrow b\bar{b}) / \sigma(t\bar{t}Z) \times B(Z \rightarrow b\bar{b})$	$\delta R/R$	1.05%	1.9%
	$B(H \rightarrow invisible)$	$B@95\%{ m CL}$	1×10^{-4}	2.5×10^{-4}
			/	

Loop couplings can be a catch all for lower energy particles that were somehow missed

FCC-hh CDR: https://cds.cern.ch/record/2651300

Higgs Self-Coupling

Connection to order of electroweak phase transition

Need strongly 1st order transition to generate matter anti-matter asymmetry

Energy = Precision

Effective Field Theory operator BSM effects generally grow with energy

This leads to an energy = precision logic

Roughly 10% at 1 TeV ~ 0.1% at 100 GeV

https://arxiv.org/abs/1712.01310

	\mathbf{SM}	BSM
$q_{L,R}\bar{q}_{L,R} o V_L V_L(h)$	~ 1	$\sim E^2/M^2$
$q_{L,R} \bar{q}_{L,R} o V_{\pm} V_L(h)$	$\sim m_W/E$	$\sim m_W E/M^2$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\pm}$	$\sim m_W^2/E^2$	$\sim E^2/M^2$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\mp}$	~ 1	~ 1

Energy = Precision

SM

Effective Field Theory operator BSM effects generally grow with energy

BSM

This leads to an energy = precision logic

Roughly 10% at 1 TeV ~ 0.1% at 100 GeV

https://arxiv.org/abs/1712.01310

	\mathbf{SM}	BSM
$q_{L,R}\bar{q}_{L,R} o V_L V_L(h)$	~ 1	$\sim E^2/M^2$
$q_{L,R} \bar{q}_{L,R} o V_{\pm} V_L(h)$	$\sim m_W/E$	$\sim m_W E/M^2$
$q_{L,R}\bar{q}_{L,R} \rightarrow V_{\pm}V_{\pm}$	$\sim m_W^2/E^2$	$\sim E^2/M^2$
$q_{L,R}\bar{q}_{L,R} \to V_{\pm}V_{\mp}$	~ 1	~ 1

Precision EWK

precision reach on effective couplings from SMEFT global fit

Snowmass Precision Measurements Report (European Strategy very similar)

Issues:

- I) HL-HLC limits are already met with CMS 35 fb⁻¹ result
 - That's ~1/100th the final data
 - This probably due to projects based on leptonic instead of semileptonic measurement
- 2) No fcc-hh or other future hadron collider?
 - Sensitivity probably grows with E²

Comment from Snowmass Precision Report: "At this point, not enough information was available to include pp colliders beyond the LHC (such as HE-LHC or a O(100)-TeV collider) in the global fit. It is likely that these machines have superior sensitivity to many energy-dependent operators, such as 4-fermion operators involving quarks and several operators that mediate multi-boson interactions."

https://arxiv.org/abs/2209.08078

★ = CMS WV (lvJ): https://arxiv.org/pdf/1907.08354.pdf

aTGC	Expected limit
λ_Z	[-0.0060, 0.0061]
Δg_1^Z	[-0.0070, 0.0061]
$\Delta \kappa_Z$	[-0.0074, 0.0078]

Example that has been done

Purple band is (HL)-LHC $WZ \rightarrow \ell \nu \ \ell \ell$

Details...

- This is much lower than limits on Snowmass plot!
- Analysis could certainly be more sophisticated.
- Semileptonic is likely more sensitive

https://arxiv.org/pdf/1712.01310.pdf

Exotic Signatures

Exotic Signatures like Long-Lived Particles can be very clean

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh	
$E_{ m cm}$	TeV	14	14	27	100	
Peak av. PU events/BC, nom-		25	130(200)	435	950	
inal (ultimate)		(50)			(~175 for early	phase)
Charged part. flux at 2.5 cm,	$ m GHzcm^{-2}$	0.1	0.7	2.7	8.4(10)	
est. (FLUKA)						
1 MeV-neq fluence at 2.5 cm,	$10^{16}{ m cm^{-2}}$	0.4	3.9	16.8	84.3~(60)	
est. (FLUKA)						
Total ionising dose at 2.5 cm,	MGy	1.3	13	54	270 (300)	
est. (FLUKA)						

Detector Radiation Issues...

Already, HL-LHC innermost pixel layer might not make it past ~2 ab⁻¹

From FCC-hh CDR: "Novel sensors and readout electronics have to be developed for the innermost parts of the tracker"

Radiation levels where we want inner pixel detectors are insane!

(Early phase ~5x less only slightly insane)

FCC-hh CDR: https://cds.cern.ch/record/2651300

Elliot Lipeles

UNIVERSITY of PENNSYLVANIA

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh	
$E_{ m cm}$	TeV	14	14	27	100	
Peak av. PU events/BC, nom-		25	130(200)	435	950	
inal (ultimate)		(50)			(~175 for early ph	lase
$b\overline{b} \ p_T^{\rm b} > 30 { m GeV/c}$ rate	MHz	0.02	0.08	1	8	
Jets $p_T^{\text{jet}} > 50 \text{GeV/c}$ rate	MHz	0.2	1.1	14	90	
$W^+ \rightarrow l + \nu$ rate	kHz	0.12	0.6	5.8	23	
$ W^- \rightarrow l + \nu$ rate	kHz	0.1	0.5	4.5	19	
$\mathbf{Z} \rightarrow ll$ rate	kHz	0.02	0.1	1	4.2	

Trigger...

From FCC-hh CDR:" This essentially means that today's offline algorithms have to be migrated to the trigger"

Rates of electroweak physics are close to the LHC first-level trigger rates

FCC-hh CDR: https://cds.cern.ch/record/2651300

Hadron Colliders Provide Great Reach

Biggest Issue is that not only will I not be likely to see it, my junior graduates students may not either

- We know how to build a good step in energy now
 - This would advance:
 - Higgs Self-coupling / Electroweak Phase Transition
 - Dark Matter (and mediators)
 - Naturalness
- Comparison with precision are not complete...
- There are large detector challenges but at least to a lower luminosity (HL-LHC-like) phase no miracles have to happen

Backup

Elliot Lipeles

UNIVERSITY of PENNSYLVANIA

Exotic Higgs...

 Actual LHC limit (not sure if current) https://arxiv.org/pdf/2111.12751.pdf https://arxiv.org/pdf/2109.02447.pdf
 Extrapolated assuming sqrt(Lumi)

μμμμ

Parton Luminosity Ratios

https://arxiv.org/pdf/1504.06108.pdf

https://arxiv.org/pdf/1707.03399.pdf

Higgs Couplings vs Direct Searches

Higgs Cross-section vs sqrt(s)

Precision Physics Constraints

Naturalness Papers vs Time

Stop mass in light of I25 GeV

