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e+e-: Linear vs. Circular

2

• Linear e+e- colliders: higher energies (~ TeV)
• Can use polarized beams
• Collisions in bunch trains (~0.5% duty cycle)

• Trigger-less readout
• Power pulsing →  Significant power (& material) 

saving for detectors
• One interaction point with two detectors alternating with 

push-pull
• Circular e+e- colliders: highest luminosity at Z/WW/Zh

• Limited by synchrotron radiation above 350/400 GeV
• Beam continues to circulate after collision

• Detectors need active cooling (more material)
• Multiple interaction points
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Various proposals … 
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250/500 GeV 380/1500/3000 GeV 250/550 GeV
 … > TeV
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A quick comparison of parameters
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(Quick recap) Higgs at e+e- 

• ZH is dominant at 250 GeV
• Above 500 GeV 

• Hvv dominates 
• ttH opens up
• HH accessible with ZHH

5

The Energy Frontier 2021 Snowmass Report

https://arxiv.org/abs/2211.11084
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Polarization to compensate for luminosity 

One note on polarization

• 2 ab-1 of polarized running is essentially equivalent 
to 5 ab-1 of unpolarized running within SMEFT 
analysis
• Electron polarization is essential for this
• Positron polarization enhance signal cross 

section at very high energy
• it also allows more cross-checks of 

systematic errors.  
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arXiv:2209.07510
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https://arxiv.org/pdf/2209.07510.pdf
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New physics can show up with different patterns of deviations from the SM values

Precision and discovery potential
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arXiv:1506.05992
arXiv:2209.07510

Precision is complementary to direct searches at LHC
Important to have access to higher energies in case we find a discrepancy at 250 GeV

https://arxiv.org/abs/1506.05992v2
https://arxiv.org/abs/2209.07510
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HL-LHC projections are conservative, as they have still to be updated since 2018 

The Higgs self-coupling

8

O(20%) precision on the Higgs self-coupling would allow to exclude/
demonstrate at 5𝜎 models of electroweak baryogenesis

arXiv:2209.07510

https://arxiv.org/pdf/2209.07510.pdf
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Evaluate dependency as a function of CM and further analysis improvements

What is next for HH?

A lot of room for improvement by advanced analysis techniques:
flavor tagging, jet-clustering, kinematic fitting, matrix element method…

9
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arXiv:2209.07510

Review of ongoing studies for ZHH (talk, arXiv)

https://arxiv.org/pdf/2209.07510.pdf
https://agenda.linearcollider.org/event/10116/contributions/53011/attachments/39045/61526/EPS_HEP2023_Torndal_Rehearsal.pdf://arxiv.org/abs/2401.07564
https://arxiv.org/pdf/2311.16774.pdf
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Unique opportunities for theoretically clean precision observables

Top physics at e+e-

• The measurement of the tt cross-section with a threshold scan can determine the top mass with 50 MeV uncertainty 
• Global fits demonstrate e+e- sensitivity of10-100 times above HL-LHC for some operators top electroweak couplings 

at energies > 500 GeV
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arXiv:2205.02140
arXiv:2209.07510

https://arxiv.org/pdf/2205.02140.pdf
https://arxiv.org/pdf/2209.07510.pdf
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LC and CC have different & complementary energy reach and goals

(Recap) Physics benchmarks

Higher Energies, O(500) GeV
• ZHH and ttH: multi-(b)jets final state

• Set needs to resolve large secondary vertex decay lengths and collimated decays 
tt, top mass, O(350) GeV 
Higgs boson physics at 240-250 GeV

• Measurement of the total ZH cross section with <1% uncertainty
• Measure Higgs boson mass to 0.01% accuracy and branching ratio to invisible particles using 

Z recoil, with 0.1% or better uncertainty.
• Requirements on: charged track momentum and impact parameters, jet resolutions. 

Z pole run, TeraZ program, WW threshold 
• Precision measurement of electroweak parameters (sin2𝜽W, Z and W masses and widths, …
• Limits B field to 2 T
• Z width extraction - Requires excellent control of acceptance 

• Constraints on Tracking, LumiCal and forward Calorimeters
• Requirements for muon tracks from Z decays: angular resolution of 100 mrad to control 

the beam energy spread;  Stability of the track momentum scale (40 KeV/91 GeV ≈) 10-7 to 
control measurement of COM energy.

11
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Precision challenges detector design

(Higgs) physics requirements for detectors

ZH process: Higgs recoil reconstructed from Z decays
○Drives requirement on charged track momentum and jet 

resolutions 
○Drives need for high field magnets and high precision / 

low mass trackers 

Higgs → bb/cc decays: Flavor tagging at unprecedented 
level 
○Drives requirement on charged track impact parameter 

resolution → low mass trackers near IP
<0.3% X0 per layer (ideally 0.1% X0)

12

arXiv:2003.01116

https://arxiv.org/abs/2003.01116
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The goal of measuring Higgs properties with sub-% precision translates into ambitious requirements for detectors at e+e-

Current benchmarks and next steps

13

DOE Basic Research Needs Study on InstrumentationArxiv:2209.14111 Arxiv:2211.11084

• Requirements mostly driven by 
(Higgs) specific benchmarks 

• Technological advances can open 
new opportunities and additional 
physics benchmarks (i.e. H→ss) 
can add more stringent 
requirements

https://science.osti.gov/-/media/hep/hepap/pdf/202007/11-Fleming_Shipsey-Basic_Research_Needs_Study_on_HEP_Detector_Research_and_Development.pdf?la=en&hash=1D6CE7C7AEFCE124E6AA3A6914332B3F4D78A525
https://arxiv.org/pdf/2209.14111.pdf
https://arxiv.org/pdf/2211.11084.pdf
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DOE Basic Research Needs Study on InstrumentationArxiv:2209.14111 Arxiv:2211.11084

Focus topics for the ECFA study on Higgs / Top / EW factories should provide 
further detector design guidelines (2401.07564) by Spring 2025

• Requirements mostly driven by 
(Higgs) specific benchmarks 

• Technological advances can open 
new opportunities and additional 
physics benchmarks (i.e. H→ss) 
can add more stringent 
requirements
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The effects of beam-beam interactions have to be careful simulated for physics and detector performance

Importance of beam-beam background

• Beamstrahlung photons are radiated at the IP:
• Incoherent pair production
• Muon and Hadron photo-production

• Beamstrahlung widens the luminosity spectrum
• Enables collisions at lower  and softens initial state 

constraints  important for physics observables (ZH)
• Photoproduced jets affect clustering performance, JER, JES
• High flux in vertex barrel and forward sub detectors

• Increase in detector occupancy  Impacts detector design
• At low momentum incoherent pairs deflected by B field

s
→

→

14

Joint simulation/detector optimization effort 
ILC WG3 March 21 

arXiv:2403.07093 

p(min)
T [MeV] = 0.3 ⋅ B[T] ⋅

ρ
2

[mm] ≃ 10 MeV

https://indico.slac.stanford.edu/category/58/
https:/agenda.linearcollider.org/event/10257
https://arxiv.org/abs/2403.07093
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O(ns) timing capabilities as an additional handle to suppress beam induced backgrounds 

Current status of beam-background studies 

15

Parameter Value

Time resolution 1 ns-rms

Spatial Resolution 7 µm

Expected charge from 
a MIP

500 – 800 e/h

Minimum Threshold 200 e-

Noise < 30 e-rms

Power density < 20 mW/cm2

Maximum particle rate 1000 hits/cm2

Time distribution of hits per unit time and area:  ∼ 4.4⋅10−3 hits/(ns⋅mm2) ≃ 0.03 hits/mm2 /BX 
in the 1st layer of the vertex barrel SiD-like detector for ILC/C3

C3  time structure is compatible with ILC-like detector overall design and ongoing optimizations.

G. Marchiori (2023)
D. Ntounis (2023)

https://indico.cern.ch/event/1264807/contributions/5344221/attachments/2655841/4599495/2023_05_03%20-%20Constraints%20from%20accelerators%20to%20future%20ee%20factory%20experiments.pdf
https://agenda.infn.it/event/34841/contributions/207749/
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Beam Format and Detector Design Requirements 

16

ILC Trains at 5Hz, 1 train 1312 bunches 
Bunches are 369 ns apart

~1ms ~200ms

• Very low duty cycle at LC (0.5% ILC, 0.08% C3) allows for trigger-less readout and power pulsing
• Factor of 100 power saving for front-end analog power

• Impact of beam-induced background to be mitigated through MDI and detector design 
• O(1-100) ns bunch identification capabilities (hit-time-stamping) can further suppress beam-backgrounds and 

keep occupancy low - same as for FCC-ee

arXiv:2003.01116
FCC Mid Term Report

~700ns ~8ms
C3 Trains at 120Hz, 1 train 133 bunches 
Bunches are 5 ns apart

~150ns ~20ms
CLIC Trains at 50Hz, 1 train 312 bunches 
Bunches are 0.5 ns apart

https://arxiv.org/abs/2003.01116
https://new-cds.cern.ch/records/zh1gz-52t41


 Detector concepts
Different approaches to achieve same physics goals

Many synergistic R&D directions, a couple of highlights
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Detector concepts
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Yoke + Muon system

HCAL
ECAL
Tracking system
Vertex detector
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Vertex detector

Solenoid $$$

$$$

Magnet and Calorimeters are generally driving the cost (>30% each) of the detector
Optimizations and cost reduction are possible with targeted R&D
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Yoke + Muon system

HCAL
ECAL
Tracking system
Vertex detector

Solenoid $$$

$$$

Magnet and Calorimeters are generally driving the cost (>30% each) of the detector
Optimizations and cost reduction are possible with targeted R&D

SiD M. Breidenbach, 2005 SiD M. Breidenbach, 2005
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Detector Designs, a quick overview

19

SiD ILD CLD ALLEGRO

• Detector designs at all colliders features very similar strategies, main difference is in the B field
• FCC@Z limits B field to 2 T to avoid a blow up of the vertical beam emittance

• SiD/CLD/CLICdet -  Compact all silicon tracking systems with highly segmented calorimeters optimized for PFA
• CLD compensates the lower B field (2 T) with a larger tracking radius 

• ILD - Larger detector with TPC tracker with PFA calorimeter
• IDEA - Drift chamber with PID and dual readout calorimeter 
• Allegro - Drift chamber and silicon wrapper with timing information and noble gas calorimeter

ILC/C3 FCC

IDEA

CLIC
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Detector Designs, a quick overview
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ILD SID CLICdet IDEA CLD ALLEGRO
Vertex Inner Radius (cm) 1.6 1.4 3.1 1.2 1.2 1.2

Tracker technology TPC+Silico
n

Silicon Si Si+Drift Chamber Si Si+Drift Chamber

Outer Tracker Radius (m) 1.77 1.22 1.5 2 3.3 2

ECal thickness 24 X0 26 X0 22 X0 Dual RO 22 X0 22 X0

HCal thickness 5.9 𝛌0 4.5 𝛌0 7.5 𝛌0 7 𝛌0 6.5 𝛌0 9.5 𝛌0

HCal Outer Radius (m) 3.3 2.5 3.25 4.5 3.5 4.5

Solenoid field (T) 3.5 5 4 2 2 2

Solenoid length (m) 7.9 6.1 8.3 6 7.4 6

Solenoid Radius (m) 3.4 2.6 3.5 2.1 4 2.7

A tail of synergies and complementarity 

Timing? Ongoing R&D to exploit O(10ps) capabilities
BUT nowadays there are several technologies to achieve O(10) ps resolution
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Timing? Ongoing R&D to exploit O(10ps) capabilities
BUT nowadays there are several technologies to achieve O(10) ps resolution

CLICdp-Note-2017-001

B-field and tracker radius optimization driven by: 
PFA performance, vertex detector occupancy, technical considerations
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Several technologies are being studied to meet the physics performance 

Sensors technology requirements for Vertex Detector

• Sensor’s contribution to the total material budget is 15-30%
• Services cables + cooling + support make up most of the detector mass

• Sensors will have to be less than 75 µm thick with at least 3-5 µm hit 
resolution (17-25 µm pitch) and low power consumption

• Beam-background suppression 
• ILC/C3 - evolve time stamping towards O(1-100) ns (bunch-tagging)
• FCC, continuous r/o integrated over ~10µs with O(1) ns timing 

resolution for beam background suppression

21

Alice/ITS2

Physics driven requirements Running constraints Sensor specifications
𝝈
Material budget

r of the Inner most layer

Small Pixel
Thinning to
Low Power
Fast Readout
Radiation Tolerance

Cooling
Beam-background
Radiation damage

12-14 mm

 0.1%X0/layer
< 3 µm ~15µm

50 µm
20-50 mW/cm2

~1-10 µs
10 MRad, 1014 neq / /cm2

CERN-LHCC-2019-018
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ALICE: Bent MAPS for Run 4 
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Recent ultra-thin wafer-scale silicon technologies allow:
Sensor thickness of 20-40 μm  - 0.02-0.04% X0
Sensors arranged with a perfectly cylindrical shape 
            a sensors thinned to ~30µm can be curved to a radius of 10-20mm (ALICE-PUBLIC-2018-013) 
Industrial stitching & curved CPS along goals of ALICE-ITS3,  possibly with TJ 65 nm process 

Bending Si wafers + circuits is possible

Forced air flow at 8 m/s

CERN-LHCC-2019-018
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Recent ultra-thin wafer-scale silicon technologies allow:
Sensor thickness of 20-40 μm  - 0.02-0.04% X0
Sensors arranged with a perfectly cylindrical shape 
            a sensors thinned to ~30µm can be curved to a radius of 10-20mm (ALICE-PUBLIC-2018-013) 
Industrial stitching & curved CPS along goals of ALICE-ITS3,  possibly with TJ 65 nm process 

Bending Si wafers + circuits is possible

Forced air flow at 8 m/s

CERN-LHCC-2019-018

Synergies with every detector concepts at e+e-  
EIC detector plans to use ITS3 detector concept
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A diverse set of options targeting unprecedented precision

Tracking detectors
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arXiv:1306.6329
arXiv:1912.04601

e2019-900045-4
CLICdet post CDR

• Full silicon detectors (SiD, CLID, CLICdet) aiming at 0.1-0.15% X0 in the central region
• MAPS (TJ 65 nm) being investigated

• ILD features a TPC, which provides 3D track reconstruction exploiting timing of drift with low material budget 
• Pad (GEM or Micromegas) or pixelated (Gridpix) readout both achieve desired resolution

https://arxiv.org/abs/1306.6329
https://arxiv.org/abs/1912.04601
https://cds.cern.ch/record/2651299?ln=it
https://cds.cern.ch/record/2254048/files/CLICdp-Note-2017-001.pdf
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Combining different strategies for optimal PID performance across a wide pT range

Particle ID

24

arXiv:2202.03285
arXiv:1912.04601
e2019-900045-4

NIMA 1059 (2024)

Forty R. and Ullaland O. 
https://doi.org/10.1007/978-3-030-35318-6_7

https://arxiv.org/pdf/2202.03285.pdf
https://arxiv.org/abs/1912.04601
https://cds.cern.ch/record/2651299?ln=it
https://arxiv.org/abs/2307.01929
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Combining different strategies for optimal PID performance across a wide pT range

Particle ID
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arXiv:2202.03285
arXiv:1912.04601
e2019-900045-4

NIMA 1059 (2024)

• Timing (e.g. ECAL, HCAL or timing layer) for time-of-flight for momentum < 5 GeV
• dE/dx from silicon (< 5 GeV) and large gaseous tracking detectors (< 30 GeV)

• PID for momentum larger than few GeVs via ionisation loss measurement (dE/dx or dN/dx)
• Use H → ss to inform detector design, while monitoring other benchmarks’ performance

• RICH could improve reconstruction of K+/- at high momentum (10-30 GeV)

- - dE/dx
—   dN/dx

 IDEA

https://arxiv.org/pdf/2202.03285.pdf
https://arxiv.org/abs/1912.04601
https://cds.cern.ch/record/2651299?ln=it
https://arxiv.org/abs/2307.01929
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Linear e+e- collider offers many opportunities to search for new physics 

Outlook

• Above 500 GeV e+e- collisions can provide unique sensitivity to
• top mass and couplings, deviations in Higgs self-coupling predicted by models with first-order 

electroweak phase transitions
• new physics within kinematic reach of e+e- collisions at 500-1000 GeV and escape LHC detection

• ILC has developed two detector designs that have been studied in full simulation – ILD and SiD — but the bulk 
of this work is more than 10 years old
• There are new emerging technologies that can inform designs for detectors at future e+e- 

• Several big questions to be further evaluated, some examples:
• Silicon vs. gaseous (TPC) tracking
• Does the Higgs factory detector need a dedicated device for strange quark identification?

• Revisit physics goals: different emphasis on various detector requirements together with new technology 
possibilities to sharpen up the requirements and optimize overall detector design.  

• The linear collider community has built many tools that should be shared in this interest of building a common 
US Higgs factory community. 
• Important to take advantage of what it has been built and what it has been learned already

25
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One word on Sustainability

○ Polarization and high energy to account for physics reach
○ Construction CO2 emissions → minimize excavation and concrete with cut and cover approach
○ Main Linac Operations  → limit power, decarbonization of the grid and dedicated renewable sources

26

PRX Energy 2 047001 

Energy consumption and carbon footprint are estimated per 
unit of physics output  

Construction + operations CO2 emissions per % sensitivity on couplings

C3

https://journals.aps.org/prxenergy/abstract/10.1103/PRXEnergy.2.047001


thank you!
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Same tools and methodology between ILC & FCC within Key4HEP

Current status of beam-background studies 

• ILC physics studies are based on full simulation data and some have been recently repeated for C3

• Time distribution of hits per unit time and area on 1st layer ∼ 4.4⋅10−3 hits/(ns⋅mm2) ≃ 0.03 hits/mm2 /BX 
• CLD detailed studies @FCC show an overall occupancy of 2-3% in the vertex detector at the Z pole

• assuming 10µs integration time

28

C3

CLD
Background hits from incoherent pair

G. Marchiori (2023)
TDAQ@Annecy2024

D. Ntounis (2023)

Occupancy in readout window (10µs)

https://indico.cern.ch/event/1264807/contributions/5344221/attachments/2655841/4599495/2023_05_03%20-%20Constraints%20from%20accelerators%20to%20future%20ee%20factory%20experiments.pdf
https://indico.cern.ch/event/1307378/timetable/?view=standard#b-541444-parallel-3-detectors
https://agenda.infn.it/event/34841/contributions/207749/


Caterina Vernieri ・ Aspen Physics Center・ March 28, 2024 

Why 550 GeV?

A factor two in the top-yukawa 
coupling

29

arXiv:1908.11299
arXiv:1506.07830

https://arxiv.org/pdf/1506.07830.pdf
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Tagging strange is a challenging but not impossible task for future detectors at e+e-, as demonstrated by SLD and DELPHI 

s-tagging, a new benchmark?

30

• As b,c, and s jets contain at least one strange hadron
• Strange quarks mostly hadronize to prompt kaons which 

carry a large fraction of the jet momentum 
• H →ss requires strange tagging capability for pT > 10 GeV

• Strange hadron reconstruction:
• K± PID
• K0L  PF (neutral)
• K0S → π+π- (~70%) / π0π0 (~30%)
• Λ0→ pπ- (~65%)

u, d 

c b

s

K

K K

Distinctive two-prong 
vertices topology

PRL 85 (2000), 5059
SLAC-R-520

arXiv:2101.04119
arXiv:2203.07535

https://arxiv.org/abs/2101.04119
https://arxiv.org/abs/2203.07535
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PRL 85 (2000), 5059
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arXiv:2101.04119
arXiv:2203.07535

Important to evaluate simultaneously other Higgs benchmarks 
i.e. a dedicated particle ID device in front of the calorimeter could compromise 

other physics measurements

https://arxiv.org/abs/2101.04119
https://arxiv.org/abs/2203.07535
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Momentum spectrum

Strange tagging

31

2203.07535

https://arxiv.org/pdf/2203.07535.pdf
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Use H → ss to inform detector design, while monitoring other benchmarks’ performance

Application: s-tagging

• Neutral Hadron energy resolution 
• dE/dx and dN/dx: evaluate PID performance for H-strange coupling 
• Timing resolution to be further investigated but less critical for s-tagging
• RHIC for improved reconstruction of K+/- at high momentum (< 30 GeV)

32

L. Gouskos @FCC week
arXiv:2203.07535

Compact RHIC

https://indico.cern.ch/event/1202105/contributions/5396831/attachments/2661284/4610390/lg_fccee_higgscouplings.pdf
https://arxiv.org/pdf/2203.07535.pdf
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SLD at SLC (e+e- at the Z ) measured asymmetry in 𝑍 → 𝑠𝑠 ̅

s-tagging in the past

33

A Cherenkov Ring Imaging Detector combined with a drift 
chamber and vertex detector

• CRID only available for K± with pT > 9 GeV with a 
selection efficiency (purity) of 48% (91.5%)

• K0S efficiency (purity) of 24% (90.7 %)

PRL 85 (2000), 5059
SLAC-R-520

PRD (1999) 59 52001

B = 0.6 T

• Λ0

‣ K0s

https://arxiv.org/pdf/hep-ex/9805029.pdf
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Compatible results for both FCC and ILC like analyses

Constraints on s-coupling

• ILD combined limit of κs < 6.74 at 95% CL with 900/fb at 250 GeV (i.e. half dataset)
• No PID worsen the results by 8%

• FCC for Z(vv) only sets a limit of κs < 1.3 at 95% CL with 5/ab at 250 GeV and 2 IPs
• No PID to PID with dN/dx → at fixed mistag, efficiency doubles

34

arXiv:2203.07535

BR (H → ss) = 2 x10-4

L. Gouskos @FCC week

https://arxiv.org/pdf/2203.07535.pdf
https://indico.cern.ch/event/1202105/contributions/5396831/attachments/2661284/4610390/lg_fccee_higgscouplings.pdf
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An example pertinent to detector optimization:

Goals of the HSelf focus studies

Double-Higgs observables at CM > 500 GeV: 
• Evaluate how various algorithms can improve substantially 

di-Higgs cross section measurements
• A 5% relative improvement in the b-tagging efficiency (at 

the same background rejection rate) could lead to an 11% 
relative improvement in the self-coupling precision

• Evaluate sensitivity as a function of center-of-mass energy
• As a function of jet clustering, flavor tagging and 

kinematic reconstruction performance
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Join ECFA-WHF-FT-Hself@cern.ch email list 
self-subscription CERN e-group

Talk at the ECFA workshop 2023
Ongoing work: 2311.16774

http://a%20http://simba3.web.cern.ch/simba3/%20SelfSubscription.aspx?groupName=ecfa-whf-ft-hself
https://agenda.infn.it/event/34841/contributions/203974/attachments/111323/158797/Hself_ECFA_20231011.pdf
https://arxiv.org/abs/2311.16774
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Self-coupling at e+e- with single Higgs
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The self-coupling could be determined also through 
single Higgs processes 

• Relative enhancement of the e+e− → ZH 
cross-section and the H→W+W− partial width 

• Need multiple Q2 to identify the effects due to 
the self-coupling 

arXiv:1312.3322
arXiv:1910.00012

New observables? Top-quark uncertainties? Which is the optimal energy scan?

https://arxiv.org/pdf/1312.3322.pdf


Caterina Vernieri ・ Aspen Physics Center・ March 28, 2024 

Studying HH at e+e-
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• Both the bbb̄b ̄and bbW̄W final states are considered with Z to leptons/neutrino/quarks
• For ILC analyses with an expected luminosity of 4/ab at 500 GeV, the combination of the various channels yield a 

precision of 16.8% on the HH total cross section which corresponds to an uncertainty of 27% on κλ coupling.
• For CLIC studies at 1.4 TeV, evidence for vvHH production is found with a significance of 3.6𝞼, and the ZHH 

process can be observed at this stage with a significance of 5.9𝞼
• The ambiguity in the interpretation of the total cross-section results is resolved by measuring the HH invariant 

mass distribution in the vvHH process.

ILC

arXiv:1910.00012
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A suitable technology for high precision tracker and high granularity calorimetry

Monolithic Active Pixel Sensors - MAPS 

● Monolithic technologies can yield to higher granularity, thinner, intelligent 
detectors at lower overall cost 

● Significantly lower material budget: sensors and readout electronics are 
integrated on the same chip 
○ Eliminate the need for bump bonding : thinned to less to 50µm
○ Smaller pixel size, not limited by bump bonding (<25µm)
○ Lower costs : implemented in standard commercial CMOS processes 

technologies with small feature size (65-110 nm) 
○ Either reduce power consumption or add more features

● Target big sensors (up to wafer size) through use of “stitching” (step-and-
repeat of reticles) to reduce further the overall material budget
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Current sensor optimization in 
TJ180/TJ65 nm process

Effort to identify US foundry on going

Snowmass White Paper 2203.07626
Common US R&D initiative for future 

Higgs Factories 2306.13567

M
. W

in
te

r, 
20

24

https://arxiv.org/abs/2203.07626
https://arxiv.org/abs/2306.13567
https://indico.cern.ch/event/1389303/contributions/5845781/attachments/2817133/4918544/FCCee-CMOS-11mar24-talk-MWinter.pdf
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O(ns) time resolution for beam-background suppression requires dedicated optimizations 

Time resolution vs. power
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Chip name Experiment Subsystem Technology Pixel pitch [µm] Time resolution [ns] Power Density [mW/cm2]

ALPIDE ALICE-ITS2 Vtx, Trk Tower 180 nm 28 < 2000 5
Mosaic ALICE-ITS3 Vtx Tower 65 nm 25x100 100-2000 <40
FastPix HL-LHC Tower 180 nm 10 - 20 0.122 – 0.135 >1500
DPTS ALICE-ITS3 Tower 65 nm 15 6.3 112
NAPA SiD Trk, Calo Tower 65 nm  25x100 <1 < 20

Cactus FCC/EIC Timing LF 150 nm 1000 0.1-0.5 145
MiniCactus FCC/EIC Timing LF 150 nm 1000 0.088 300
Monolith FCC/Idea Trk IHP SiGe 130 nm 100 0.077 – 0.02 40 - 2700
Malta LHC, .. Trk Tower 180 nm 36 25 > 100
Arcadia FCC/Idea Trk LF 110 nm 25 - 30

Current designs that can achieve ns or sub-ns time resolutions compensate with higher power consumption
• Target power consumption is less than 20 mW/cm2

Dedicated ongoing effort to target O(ns) resolution with MAPS (slides)
First prototype (Napa-p1) produced in TJ 65 nm process 5x5 mm2, 25 μm pitch

https://agenda.infn.it/event/34841/contributions/207304/attachments/111466/159070/Maps-ECFA-2023.pdf
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Build on studies by CALICE: development and study of finely segmented and imaging calorimeters

Particle Flow Calorimeters

• Particle-flow algorithm (PFA) leverages excellent momentum resolution from tracker to measure charged hadron 
contribution to allow a precise reconstruction of each particle within the jet 

• CALICE R&D inspired CMS high granularity solution HGCAL - Common test beams with the AHCAL prototype
• homogeneous crystal ECAL + scintillating glass HCAL

• Integrated engineering prototypes already tested to address system level issue 
• R&D line: MAPS (see Alice FoCAL) and (ns-ps) timing information (ex: LGADs) 
• ALLEGRO concept for FCC-ee built around highly granular noble-liquid (Ar, Kr) ECAL with Pb or W absorbers
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photon

µneutral 
hadron

Charged 
hadrons  

65% in a jet

25% in a jet

10% in a jet
ECAL  3%/√E
HCAL 30%/√E

CALICE

https://twiki.cern.ch/twiki/bin/view/CALICE/WebHome


MAPS for ECal, SiD example

● SiD detector configuration with 25x100 µm2 pixel in the 
calorimeter at ILC
● Changing analog to binary digital has no energy resolution 

degradation
● The design of the digital MAPS applied to the ECal exceeds 

the physics performance as specified in the ILC TDR
● The 5T magnetic field degrades the resolution by a few per cent 

due to the impact on the lower energy electrons and positrons in 
a shower

● Future planned studies include the reconstruction of showers 
and π0 within jets, and their impact on jet energy resolution
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Fine granularity allows for identification of two showers down to the mm scale of separation

arXiv:2110.09965

GEANT4 simulations of Transverse distribution of two 
10 GeV showers separated by one cm

https://arxiv.org/pdf/2110.09965.pdf
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Correct HCAL event-by-event through measurement of EM fraction with dual readout calorimeter

Dual Readout calorimetry
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arXiv:2008.00338
JINST 15 (2020) P11005

G. Polesello (2023)

• Dual readout Calorimetry, e.g. DREAM (FCC-ee) 
improvement of the energy resolution of hadronic calorimeters 
for single hadrons:
• Cherenkov light for relativistic (EM) component
• Scintillation light for non-relativistic (hadronic)
• EM prototype built and tested on beams (DESY/CERN) to 

understand construction issues + integration with SiPMs
• Hadronic-size module funded and under construction

• IDEA: DR crystals inside solenoid + DR fibers outside
• ECAL ~3%/√E, HCAL ~29%/√E
• Sensible improvement in jet resolution using dual-readout 

information combined with a particle flow approach → 
3-4% for jet energies above 50 GeV

https://arxiv.org/pdf/2008.00338.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/15/11/P11005
https://agenda.infn.it/event/34841/contributions/207299/attachments/111387/158929/polesello_paestum.pdf
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Timing is being explored as additional information from the calorimeter and a dedicated layer

Timing layer(s)

• A timing layer with O(ns) resolution into the HCAL could allow beneficial identification of slow shower components 
from prompt components

• A timing layer as part of the tracking system or between tracker and ECAL could serve as a powerful Time-of-Flight 
(TOF) system
• physics reach needs to be further studied

• Very attractive option for timing in Si wrapper region of IDEA/Allegro
• O(10) ps needed for PID with TOF
• Some “fast” devices prototyped by Arcadia & US groups based on resistive LGAD technology

• 35 ps time resolution so far
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arXiv:2110.09965

Mass resolution for a TOF system with a 
performance of 10 ps in SiD

More physics/detector simulation studies needed 
to refine the case for timing layers

https://agenda.infn.it/event/34841/contributions/208326/attachments/111412/158979/20231012_SiDetectorsForIDEA.pdf
https://indico.slac.stanford.edu/event/8288/contributions/7492/attachments/3709/10079/CPAD2023_ACLGAD.pdf
https://arxiv.org/pdf/2110.09965.pdf
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A big, reliable, stable - and very thin - solenoid magnet to provide the field for charged track pT measurement

Solenoid
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• SiD/ILD - High field – 5/4 T for BR2 - 5/4 layers of “CMS” 
conductor + more structural aluminum 
• Stored energy ~1.5 (2.3) GJ SiD (ILD) 

• IDEA, ultra light 2 T solenoid with a vacuum vessel (25 mm Al) 
with honeycomb structure X0 = 0.04 to reduce material

• Critical R&D area – Al-stabilized technology needs to be 
resumed
• No industrial production available, as of today

• Backup solutions:
• CICC (Cable-in-conduit conductor) approach may also be a 

solution - requires different magnet system design
• HTS: New types of conductor being investigated to allow 

higher temperature operations > 10K (lower cost) 

KEK-CERN leading R&D. But need to push for R&D in labs together with 
industry to keep the timelines of future projects! 

A. Yamamoto (2023)
JINST 18 T06013 (2023)

K. Buesser (2023)

https://indico.cern.ch/event/1324236/contributions/5595340/attachments/2728236/4741935/MuC-SC-Det-Mag-Technology-ay-231005a.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/18/06/T06013
https://indico.slac.stanford.edu/event/7467/contributions/5974/attachments/2835/7931/230517_Magnet_WS_Summary.pdf
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ILC and FCC

Run Plans
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FCC

1710.07621
FCC Mid Term Report

https://arxiv.org/abs/1710.07621
https://new-cds.cern.ch/records/zh1gz-52t41
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Luminosity Spectra
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General requirement: achieve 
>60% of luminosity in the top 
1% of CM

arXiv:2403.07093 

https://arxiv.org/abs/2403.07093
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Incoherent Pair Production
Incoherently produced pair particles 

are typically low-energetic and 
boosted in the forward direction.

Assuming a common per-bunch-
train readout scheme, the 
expected number of such pair 
particles produced per bunch train 
is .

The energy and momentum spectra 
are shown assuming this 
normalization.

⟨Nincoh⟩ ⋅ nb
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pz

pT

Coherent pairs/pairs from 
trident cascade are negligible 
for HFs at sub-TeV energies!

arXiv:2403.07093 

https://arxiv.org/abs/2403.07093
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Snowmass

Power Consumption and Sustainability
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250 GeV CoM - Luminosity - 1.3x1034 

Parameter Units Value
Reliquification Plant Cost M$/MW 18
Single Beam Power (125 

GeV linac)
MW 2

Total Beam Power MW 4
Total RF Power MW 18

Heat Load at Cryogenic 
Temperature

MW 9

Electrical Power for RF MW 40
Electrical Power For 

Cryo-Cooler
MW 60

Accelerator Complex 
Power

MW ~50

Site Power MW ~150

Temperature (K) 77
Beam Loading (%) 45
Gradient (MeV/m) 70

Flat Top Pulse Length 
(𝜇s) 

0.7

Cryogenic Load (MW) 9
Main Linac Electrical 

Load (MW)
100

Site Power (MW) ~150

Highview Power

Compatibility with Renewables 
Cryogenic Fluid Energy Storage

Intermittent and variable 
power  production from 
renewables mediated with 
commercial scale energy 
storage and power 
production


