Linear colliders

The Future of High Energy Physics: A New Generation, A New Vision

Caterina Vernieri caterina@slac.stanford.edu

NATIONAL ACCELERATOR LABORATORY

e+e-: Linear vs. Circular

- Linear e+e- colliders: higher energies (~ TeV)
 - Can use **polarized** beams
 - Collisions in bunch trains (~0.5% duty cycle)
 - Trigger-less readout
 - Power pulsing → Significant power (& material) saving for detectors
 - One interaction point with two detectors alternating with push-pull
- Circular e+e- colliders: highest luminosity at Z/WW/Zh
 - Limited by synchrotron radiation above 350/400 GeV
 - Beam continues to circulate after collision
 - Detectors need active cooling (more material)
 - Multiple interaction points

Various proposals ...

250/500 GeV

380/1500/3000 GeV

250/550 GeV ... > TeV

A quick comparison of parameters

Collider	NLC	CLIC	ILC	C^3	C^3
CM Energy [GeV]	500	380	250(500)	250	550
Luminosity $[x10^{34}]$	0.6	1.5	1.35	1.3	2.4
Gradient [MeV/m]	37	72	31.5	70	120
Effective Gradient [MeV/m]	29	57	21	63	108
Length [km]	23.8	11.4	20.5(31)	8	8
Num. Bunches per Train	90	352	1312	133	75
Train Rep. Rate [Hz]	180	50	5	120	120
Bunch Spacing [ns]	1.4	0.5	369	5.26	3.5
Bunch Charge [nC]	1.36	0.83	3.2	1	1
Crossing Angle [rad]	0.020	0.0165	0.014	0.014	0.014
Site Power [MW]	121	168	125	$\sim \! 150$	$\sim \! 175$
Design Maturity	CDR	CDR	TDR	pre-CDR	pre-CDR

(Quick recap) Higgs at e+e-

SLAC Caterina Vernieri · Aspen Physics Center · March 28, 2024

The Energy Frontier 2021 Snowmass Re

- ZH is dominant at 250 GeV
- Above 500 GeV
 - Hvv dominates
 - ttH opens up
 - HH accessible with ZHH

)	p	0	r	L

(Quick recap) Higgs at e+e-

SLAC Caterina Vernieri · Aspen Physics Center · March 28, 2024

The Energy Frontier 2021 Snowmass Re

ZH is dominant at 250 GeV

- Above 500 GeV
 - Hvv dominates
 - ttH opens up
 - HH accessible with ZHH

)	p	0	rt

(Quick recap) Higgs at e+e-

One note on polarization

Polarization to compensate for luminosity

- 2 ab⁻¹ of polarized running is essentially equivalent to 5 ab⁻¹ of unpolarized running within SMEFT analysis
 - Electron polarization is essential for this
 - Positron polarization enhance signal cross section at very high energy
 - it also allows more cross-checks of systematic errors.

arXiv:2209.07510

ILC/C³

FCC

	2/ab-250	+4/ab-500	5/ab-250	+1.5/ab-3
coupling	pol.	pol.	unpol.	unpol.
hZZ	0.50	0.35	0.41	0.34
hWW	0.50	0.35	0.42	0.35
$\ $ h $b\bar{b}$	0.99	0.59	0.72	0.62
$\ h \tau \tau$	1.1	0.75	0.81	0.71
$\ hgg$	1.6	0.96	1.1	0.96
$\ hc\bar{c}$	1.8	1.2	1.2	1.1
$\ h\gamma\gamma$	1.1	1.0	1.0	1.0
$\ h\gamma Z$	9.1	6.6	9.5	8.1
$\ h \mu \mu$	4.0	3.8	3.8	3.7
$\ htt$	-	6.3	-	-
hhh	-	20	-	-
Γ_{tot}	2.3	1.6	1.6	1.4
Γ_{inv}	0.36	0.32	0.34	0.30
Γ_{other}	1.6	1.2	1.1	0.94

Precision and discovery potential

New physics can show up with different patterns of deviations from the SM values

Precision is complementary to direct searches at LHC Important to have access to higher energies in case we find a discrepancy at 250 GeV

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

arXiv:2209.07510 arXiv:1506.05992

7

The Higgs self-coupling

HL-LHC projections are conservative, as they have still to be updated since 2018

collider	Indirect- h	hh	com
HL-LHC [78]	100-200%	50%	5
ILC_{250}/C^3 -250 [51, 52]	49%	_	4
ILC_{500}/C^3 -550 [51, 52]	38%	20%	2
$CLIC_{380}$ [54]	50%	—	5
$CLIC_{1500}$ [54]	49%	36%	2
$CLIC_{3000}$ [54]	49%	9%	Q
FCC-ee~[55]	33%	—	3
FCC-ee (4 IPs) [55]	24%	—	2
FCC-hh [79]	-	3.4 - 7.8%	3.4-
$\mu(3 \text{ TeV})$ [64]	-	15-30%	15-
$\mu(10 { m TeV})[64]$	-	4%	4

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

arXiv:2209.07510

O(20%) precision on the Higgs self-coupling would allow to exclude/ demonstrate at 5σ models of electroweak baryogenesis

What is next for HH?

Evaluate dependency as a function of CM and further analysis improvements

A lot of room for improvement by advanced analysis techniques: flavor tagging, jet-clustering, kinematic fitting, matrix element method...

Review of ongoing studies for ZHH (talk, arXiv)

5	1	0

Top physics at e+e-

Unique opportunities for theoretically clean precision observables

- •
- at energies > 500 GeV

arXiv:2205.02140 arXiv:2209.07510

The measurement of the tt cross-section with a threshold scan can determine the top mass with 50 MeV uncertainty Global fits demonstrate e⁺e⁻ sensitivity of 10-100 times above HL-LHC for some operators top electroweak couplings

(Recap) Physics benchmarks

LC and CC have different & complementary energy reach and goals

• Set needs to resolve large secondary vertex decay lengths and collimated decays

• Measurement of the total ZH cross section with <1% uncertainty

• Measure Higgs boson mass to 0.01% accuracy and branching ratio to invisible particles using

• Requirements on: charged track momentum and impact parameters, jet resolutions.

• Precision measurement of electroweak parameters ($\sin^2\theta_W$, Z and W masses and widths, ...

• Z width extraction - Requires excellent control of acceptance

Constraints on Tracking, LumiCal and forward Calorimeters

Requirements for muon tracks from Z decays: angular resolution of 100 mrad to control

the beam energy spread; Stability of the track momentum scale (40 KeV/91 GeV \approx) 10⁻⁷ to

11

(Higgs) physics requirements for detectors

Precision challenges detector design

ZH process: Higgs recoil reconstructed from Z decays

- Drives requirement on charged track momentum and jet resolutions
- Drives need for high field magnets and high precision / low mass trackers

Higgs \rightarrow bb/cc decays: Flavor tagging at unprecedented level

• Drives requirement on charged track impact parameter resolution \rightarrow low mass trackers near IP <0.3% X₀ per layer (ideally 0.1% X₀)

arXiv:2003.01116

12

Current benchmarks and next steps

The goal of measuring Higgs properties with sub-% precision translates into ambitious requirements for detectors at e+e-

- Requirements mostly driven by (Higgs) specific benchmarks
- Technological advances can open new opportunities and additional physics benchmarks (i.e. H→ss) can add more stringent requirements

Physics goal	
hZZ sub-%	
	0
_	
$hbb/hc\overline{c}$	

Arxiv:2209.14111 Arxiv:2211.11084 DOE Basic Research Needs Study on Instrumentation

				Relevant $$	\sqrt{s} [GeV]	
Topic	Lead group	91	161	240 - 250	350 - 380	≥ 500
1 HtoSS	HTE			\checkmark	\checkmark	\checkmark
2 ZHang	HTE (GLOB)			\checkmark	\checkmark	\checkmark
3 Hself	GLOB			\checkmark	\checkmark	\checkmark

Detector	Requirement
Tracker	$\sigma_{p_T}/p_T = 0.2\%$ for $p_T < 100 \text{ GeV}$
	$\sigma_{p_T}/p_T^2 = 2 \cdot 10^{-5}/ \text{ GeV for } p_T > 100 \text{ GeV}$
Calorimeter	4% particle flow jet resolution
	EM cells 0.5×0.5 cm ² , HAD cells 1×1 cm ²
	EM $\sigma_E/E = 10\%/\sqrt{E} \oplus 1\%$
	shower timing resolution 10 ps
Tracker	$\sigma_{r\phi} = 5 \oplus 15(p\sin\theta^{\frac{3}{2}})^{-1}\mu\mathrm{m}$
	$5\mu m$ single hit resolution

Current benchmarks and next steps

The goal of measuring Higgs properties with sub-% precision translates into ambitious requirements for detectors at e+e-

- Requirements mostly driven by (Higgs) specific benchmarks
- Technological advances can open new opportunities and additional physics benchmarks (i.e. H→ss) can add more stringent requirements

Physics goal	
$h\rm ZZ~sub-\%$	
	0
$hb\overline{b}/hc\overline{c}$	
,	

Arxiv:2209.14111 Arxiv:2211.11084 DOE Basic Research Needs Study on Instrumentation

					Relevant $$	\sqrt{s} [GeV]	
Topi	c	Lead group	91	161	240 - 250	350 - 380	≥ 500
1	HtoSS	HTE			\checkmark	\checkmark	\checkmark
2	ZHang	HTE (GLOB)			\checkmark	\checkmark	\checkmark
3	Hself	GLOB			\checkmark	\checkmark	\checkmark

Focus topics for the ECFA study on Higgs / Top / EW factories <u>should</u> provide further detector design guidelines (2401.07564) by Spring 2025

SLAC Caterina Vernieri · Aspen Physics Center · March 28, 2024

Detector	Requirement
Tracker	$\sigma_{p_T}/p_T = 0.2\%$ for $p_T < 100 \text{ GeV}$
	$\sigma_{p_T}/p_T^2 = 2 \cdot 10^{-5}/ \text{ GeV for } p_T > 100 \text{ GeV}$
Calorimeter	4% particle flow jet resolution
	EM cells 0.5×0.5 cm ² , HAD cells 1×1 cm ²
	EM $\sigma_E/E = 10\%/\sqrt{E} \oplus 1\%$
	shower timing resolution 10 ps
Tracker	$\sigma_{r\phi} = 5 \oplus 15(p\sin\theta^{\frac{3}{2}})^{-1}\mu\mathrm{m}$
	$5\mu m$ single hit resolution

Importance of beam-beam background

- Beamstrahlung photons are radiated at the IP:
 - Incoherent pair production
 - Muon and Hadron photo-production
- Beamstrahlung widens the luminosity spectrum
 - Enables collisions at lower \sqrt{s} and softens initial state constraints \rightarrow important for physics observables (ZH)
 - Photoproduced jets affect clustering performance, JER, JES
 - High flux in vertex barrel and forward sub detectors
 - Increase in detector occupancy \rightarrow Impacts detector design
 - At low momentum incoherent pairs deflected by B field

$$p_T^{(\min)}[\text{MeV}] = 0.3 \cdot B[\text{T}] \cdot \frac{\rho}{2}[\text{mm}] \simeq$$

The effects of beam-beam interactions have to be careful simulated for physics and detector performance

Fraction of incoherent pairs produced from each process 1.0 0.8 V_{pairs} of Fraction 6 0.2 -BH CLIC-380 ILC-250 ILC-500 C³-250 C³-550 NLC Collidore outline **Region of closest** approach: r=12 mm for |z|<62 mm The 1st SiD vtx Convention detector laver r>0 for v>0 and proposed to be vice verse (for o² placed 2 mm visualization 10 MeV outside of that purposes) 10 (at r=14 mm) z [mm] -200 -100 100 200

1st vtx barrel layer

14

Current status of beam-background studies

O(ns) timing capabilities as an additional handle to suppress beam induced backgrounds

Time distribution of hits per unit time and area: $\sim 4.4 \cdot 10^{-3}$ hits/(ns·mm²) $\simeq 0.03$ hits/mm² /BX in the 1st layer of the vertex barrel SiD-like detector for ILC/C³ C³ time structure is compatible with ILC-like detector overall design and ongoing optimizations.

Parameter	Value
Time resolution	1 ns-rms
Spatial Resolution	7 µm
Expected charge from a MIP	500 – 800 e/h
Minimum Threshold	200 e-
Noise	< 30 e-rms
Power density	< 20 mW/cm ²
Maximum particle rate	1000 hits/cm ²

arXiv:2003.01116 Beam Format and Detector Design Requirements FCC Mid Term Report

- Very low duty cycle at LC (0.5% ILC, 0.08% C³) allows for trigger-less readout and power pulsing
 - Factor of 100 power saving for front-end analog power
- Impact of beam-induced background to be mitigated through MDI and detector design
- keep occupancy low same as for FCC-ee

ILC Trains at 5Hz, 1 train 1312 bunches Bunches are 369 ns apart

C³ Trains at 120Hz, 1 train 133 bunches Bunches are 5 ns apart

CLIC Trains at 50Hz, 1 train 312 bunches Bunches are 0.5 ns apart

• O(1-100) ns bunch identification capabilities (hit-time-stamping) can further suppress beam-backgrounds and

Different approaches to achieve *same* physics goals Many synergistic R&D directions, **a couple of highlights**

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

Yoke + Muon system

	HCAL FCAL
	Tracking system Vertex detector
_	vertex detector

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

Magnet and Calorimeters are generally driving the cost (>30% each) of the detector **Optimizations and cost reduction are possible with targeted R&D**

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

Detector Designs, a quick overview

- Detector designs at all colliders features very similar strategies, main difference is in the B field
 FCC@Z limits B field to 2 T to avoid a blow up of the vertical beam emittance
- SiD/CLD/CLICdet Compact all silicon tracking systems with highly segmented calorimeters optimized for PFA
 CLD compensates the lower B field (2 T) with a larger tracking radius
- ILD Larger detector with TPC tracker with PFA calorimeter
- IDEA Drift chamber with PID and dual readout calorimeter
- Allegro Drift chamber and silicon wrapper with timing information and noble gas calorimeter

Detector Designs, a quick overview

A tail of synergies and complementarity

	ILD	SID	CLICdet	IDEA	CLD	ALLEGRO
Vertex Inner Radius (cm)	1.6	1.4	3.1	1.2	1.2	1.2
Tracker technology	TPC+Silico	Silicon	Si	Si+Drift Chamber	Si	Si+Drift Chambe
Outer Tracker Radius (m)	1.77	1.22	1.5	2	3.3	2
ECal thickness	24 X ₀	26 X ₀	22 X ₀	Dual RO	22 X ₀	22 X ₀
HCal thickness	5.9 λ ₀	4.5 λ ₀	7.5 λ ₀	7 λ ₀	6.5 λ ₀	9.5 λ ₀
HCal Outer Radius (m)	3.3	2.5	3.25	4.5	3.5	4.5
Solenoid field (T)	3.5	5	4	2	2	2
Solenoid length (m)	7.9	6.1	8.3	6	7.4	6
Solenoid Radius (m)	3.4	2.6	3.5	2.1	4	2.7
Solenola Radius (m)	3.4	2.0	ა.ა	2.1	4	2.1

Timing? Ongoing R&D to exploit O(10ps) capabilities

BUT nowadays there are several technologies to achieve O(10) ps resolution

Detector Designs, a quick overview

a malamantarity A tail of synergⁱ

B-field and tracker radius optimization driven by: PFA performance, vertex detector occupancy, technical considerations

ALLEGRO
1.2
Si+Drift Chambe
2
22 X ₀
9.5 λ ₀
4.5
2
6
2.7

Sensors technology requirements for Vertex Detector

Several technologies are being studied to meet the physics performance

- Sensor's contribution to the total material budget is 15-30%
 - Services cables + cooling + support make up most of the detector mass 0.6
- Sensors will have to be less than 75 μ m thick with at least 3-5 μ m hit resolution (17-25 μ m pitch) and low power consumption
- Beam-background suppression
 - ILC/C³ evolve time stamping towards O(1-100) ns (bunch-tagging)
 - FCC, continuous r/o integrated over ~10µs with O(1) ns timing resolution for beam background suppression

Physics driven requirementsRunning constraints $\sigma < 3 \mu m$ $0.1\% X_0/layer$ Material budget $0.1\% X_0/layer$ r of the Inner most layer12-14 mmPhysics drivenPhysics driven<td

15-30% ost of the detector mas at least 3-5 μ m hit otion

) ns (bunch-tagging) O(1) ns timing

Sensor specifications

·····>	Small Pixel	~15µm
· · · · · · · · · · · · · · · · · · ·	Thinning to	50 µm
>	Low Power	20-50 mW/cm ²
und>	Fast Readout	$\sim 1-10 \ \mu s$
age≯	Radiation Tolerance	10 MRad, 10 ¹⁴ n _{eq} / /cm ²

ALICE: Bent MAPS for Run 4

Recent ultra-thin wafer-scale silicon technologies allow: Sensor thickness of 20-40 µm - 0.02-0.04% X₀ Sensors arranged with a perfectly cylindrical shape a sensors thinned to $\sim 30\mu m$ can be curved to a radius of 10-20mm (ALICE-PUBLIC-2018-013) Industrial stitching & curved CPS along goals of ALICE-ITS3, possibly with TJ 65 nm process

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

CERN-LHCC-2019-018

ALICE: Bent MAPS for Run 4

Recent ultra-thin wafer-scale silicon technologies allow: Sensor thickness of 20-40 µm - 0.02-0.04% X₀ Sensors arranged with a perfectly cylindrical shape a sensors thinned to $\sim 30\mu m$ can be curved to a radius of 10-20mm (ALICE-PUBLIC-2018-013) Industrial stitching & curved CPS along goals of ALICE-ITS3, possibly with TJ 65 nm process

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

CERN-LHCC-2019-018

Tracking detectors

A diverse set of options targeting unprecedented precision

- Full silicon detectors (SiD, CLID, CLICdet) aiming at 0.1-0.15% X₀ in the central region
 - MAPS (TJ 65 nm) being investigated
- - Pad (GEM or Micromegas) or pixelated (Gridpix) readout both achieve desired resolution

arXiv:1306.6329 arXiv:1912.04601 <u>e2019-900045-4</u> <u>CLICdet post CDR</u>

ILD features a **TPC**, which provides 3D track reconstruction exploiting timing of drift with low material budget

Particle ID

Combining different strategies for optimal PID performance across a wide p_T range

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

arXiv:2202.03285 arXiv:1912.04601 <u>e2019-900045-4</u> NIMA 1059 (2024)

Particle ID

Combining different strategies for optimal PID performance across a wide p_T range

- Timing (e.g. ECAL, HCAL or timing layer) for time-of-flight for momentum < 5 GeV
- dE/dx from silicon (< 5 GeV) and large gaseous tracking detectors (< 30 GeV) •
 - PID for momentum larger than few GeVs via ionisation loss measurement (dE/dx or dN/dx)
- Use $H \rightarrow$ ss to inform detector design, while monitoring other benchmarks' performance •
 - RICH could improve reconstruction of K^{+/-} at high momentum (10-30 GeV)

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

Outlook

Linear e⁺e⁻ collider offers many opportunities to search for new physics

- Above 500 GeV e⁺e⁻ collisions can provide unique sensitivity to
 - electroweak phase transitions
- of this work is more than 10 years old
 - There are new emerging technologies that can inform designs for detectors at future e+e-
- Several big questions to be further evaluated, *some examples*:
 - Silicon vs. gaseous (TPC) tracking
 - Does the Higgs factory detector need a dedicated device for strange quark identification?
- possibilities to sharpen up the requirements and optimize overall detector design.
- US Higgs factory community.
 - Important to take advantage of what it has been built and what it has been learned already

• top mass and couplings, deviations in **Higgs self-coupling** predicted by models with first-order

 new physics within kinematic reach of e⁺e⁻ collisions at 500-1000 GeV and escape LHC detection • ILC has developed two detector designs that have been studied in full simulation – ILD and SiD – but the bulk

Revisit physics goals: different emphasis on various detector requirements together with new technology

• The linear collider community has built many tools that should be shared in this interest of building a common

One word on Sustainability

Construction + operations CO₂ emissions per % sensitivity on couplings

- Polarization and high energy to account for physics reach Ο
- Construction CO_2 emissions \rightarrow minimize excavation and concrete with cut and cover approach Ο
- Main Linac Operations \rightarrow limit power, decarbonization of the grid and dedicated renewable sources Ο

Energy consumption and carbon footprint are estimated *per* unit of physics output

$$w = \frac{\left(\frac{\delta\kappa}{\kappa}\right)_{\text{HL-LHC}} - \left(\frac{\delta\kappa}{\kappa}\right)_{\text{HL-LHC+HF}}}{\left(\frac{\delta\kappa}{\kappa}\right)_{\text{HL-LHC+HF}}}$$

C .3	Scenario	RF System	Cryogenics	To
U		(MW)	(MW)	(M
	Baseline 250 GeV	40	60	1
	RF Source Efficiency Increased 15%	31	60	9
	RF Pulse Compression	28	42	7
	Double Flat Top	30	45	7
	Halve Bunch Spacing	34	45	7
	All Scenarios Combined	13	24	3

Current status of beam-background studies

Same tools and methodology between ILC & FCC within Key4HEP

- ILC physics studies are based on full simulation data and some have been recently repeated for C³
- CLD detailed studies @FCC show an overall occupancy of 2-3% in the vertex detector at the Z pole
 - assuming 10μ s integration time

 $occupancy = hits/mm^2/BX \cdot size_{sensor} \cdot size_{cluster} \cdot safety$

D. Ntounis (2023) G. Marchiori (2023) TDAQ@Annecy2024

• Time distribution of hits per unit time and area on 1st layer $\sim 4.4 \cdot 10^{-3}$ hits/(ns \cdot mm²) $\simeq 0.03$ hits/mm² /BX

Why 550 GeV?

A factor two in the top-yukawa coupling

arXiv:1908.11299 arXiv:1506.07830

	HL-LHC	C^3 /ILC 250 GeV	$-\mathrm{C}^3$ /ILC 500 Ge
	3 ab^{-1} in 10 yrs	2 ab^{-1} in 10 yrs	$+ 4 \text{ ab}^{-1} \text{ in } 10 \text{ y}$
ı	_	$\mathcal{P}_{e^+} = 30\%~(0\%)$	$\mathcal{P}_{e^+} = 30\% \ (0\%)$
	3.2	0.38(0.40)	0.20(0.21)
	2.9	0.38(0.40)	0.20(0.20)
	4.9	$0.80 \ (0.85)$	0.43(0.44)
	_	1.8(1.8)	1.1(1.1)
	2.3	1.6(1.7)	0.92(0.93)
	3.1	0.95(1.0)	$0.64 \ (0.65)$
	3.1	4.0(4.0)	3.8(3.8)
	3.3	1.1(1.1)	0.97(0.97)
	11.	8.9(8.9)	6.5(6.8)
	3.5	—	$3.0 (3.0)^*$
	50	49(49)	22(22)
	5	1.3(1.4)	0.70(0.70)

s-tagging, a new benchmark?

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

Tagging strange is a challenging but not impossible task for future detectors at e+e-, as demonstrated by SLD and DELPHI

As b,c, and s jets contain at least one strange hadron Strange quarks mostly hadronize to prompt kaons which carry a large fraction of the jet momentum

 $H \rightarrow$ ss requires strange tagging capability for $p_T > 10 \text{ GeV}$ Strange hadron reconstruction:

 K_{0S} → π⁺π⁻ (~70%) / π⁰π⁰ (~30%) $\Lambda^0 \rightarrow p\pi (\sim 65\%)$

Distinctive two-prong vertices topology

Jet flavour	Number of secondary vertices $(\text{excluding } V^0 s)$	Number of strange hadrons (e.g., K^{\pm} , $K^0_{L/S}$, and Λ^0)
Bottom	2	≥ 1
Charm	1	≥ 1
Strange	0	≥ 1
Light	0	0

s-tagging, a new benchmark?

Tagging strange is a challenging but not impossible task for future detectors at e+e-, as demonstrated by SLD and DELPHI

As b,c, and s jets contain at least one strange hadron Strange quarks mostly hadronize to prompt kaons which carry a large fraction of the jet momentum

H \rightarrow ss requires strange tagging capability for p_T > 10 GeV Strange hadron reconstruction:

K[±] PID

Important to evaluate simultaneously other Higgs benchmarks o-prong *i.e.* a dedicated particle ID device in front of the calorimeter could compromise pology other physics measurements

Jet flavour	Number of secondary vertices (excluding V^0 s)	Number of strange hadrons (e.g., K^{\pm} , $K^0_{L/S}$, and Λ^0)
Bottom	2	≥ 1
Charm	1	≥ 1
Strange	0	≥ 1
Light	0	0

Strange tagging

Momentum spectrum

2203.07535

Application: s-tagging

Use $H \rightarrow$ ss to inform detector design, while monitoring other benchmarks' performance

- Neutral Hadron energy resolution

- dE/dx and dN/dx: evaluate PID performance for H-strange coupling • Timing resolution to be further investigated but less critical for s-tagging • RHIC for improved reconstruction of $K^{+/-}$ at high momentum (< 30 GeV)

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

arXiv:2203.07535 . Gouskos @FCC week

s-tagging in the past

SLD at SLC (e+e- at the Z) measured asymmetry in $Z \rightarrow s\bar{s}$

PRL 85 (2000), 5059 SLAC-R-520 PRD (1999) 59 52001

A Cherenkov Ring Imaging Detector combined with a drift chamber and vertex detector

- CRID only available for K^{\pm} with $p_{T} > 9$ GeV with a • selection efficiency (purity) of 48% (91.5%)
- $K_{\rm S}$ efficiency (purity) of 24% (90.7 %) •

Constraints on s-coupling

Compatible results for both FCC and ILC like analyses

- ILD combined limit of $\kappa_s < 6.74$ at 95% CL with 900/fb at 250 GeV (i.e. half dataset)
 - No PID worsen the results by 8%
- FCC for Z(vv) only sets a limit of $\kappa_s < 1.3$ at 95% CL with 5/ab at 250 GeV and 2 IPs • No PID to PID with $dN/dx \rightarrow at$ fixed mistag, efficiency doubles

SLAC

arXiv:2203.07535 L. Gouskos @FCC week

Goals of the HSelf focus studies

An example pertinent to detector optimization:

Double-Higgs observables at CM > 500 GeV:

- Evaluate how various algorithms can improve substantially di-Higgs cross section measurements
 - A 5% relative improvement in the b-tagging efficiency (at the same background rejection rate) could lead to an 11% relative improvement in the self-coupling precision
- Evaluate sensitivity as a function of center-of-mass energy
 - As a function of jet clustering, flavor tagging and kinematic reconstruction performance

Join ECFA-WHF-FT-Hself@cern.ch email list self-subscription CERN e-group

Talk at the ECFA workshop 2023 Ongoing work: 2311.16774

Self-coupling at e+e- with single Higgs

The self-coupling could be determined also through single Higgs processes

- Relative enhancement of the $e+e- \rightarrow ZH$ cross-section and the $H \rightarrow W+W-$ partial width
- Need multiple Q² to identify the effects due to the self-coupling

New observables? Top-quark uncertainties? Which is the optimal energy scan?

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

arXiv:1312.3322 arXiv:1910.00012

Studying HH at e⁺e⁻

- Both the bbbb and bbWW final states are considered with Z to leptons/neutrino/quarks ٠
- ٠ process can be observed at this stage with a significance of 5.9σ
 - mass distribution in the vvHH process.

arXiv:1910.00012

• For ILC analyses with an expected luminosity of 4/ab at 500 GeV, the combination of the various channels yield a precision of 16.8% on the HH total cross section which corresponds to an uncertainty of 27% on κ_{λ} coupling. For **CLIC studies** at 1.4 TeV, evidence for vvHH production is found with a significance of 3.6σ , and the ZHH

The ambiguity in the interpretation of the total cross-section results is resolved by measuring the HH invariant

Monolithic Active Pixel Sensors - MAPS

A suitable technology for high precision tracker and high granularity calorimetry

- Monolithic technologies can yield to higher granularity, thinner, intelligent detectors at lower overall cost
- Significantly lower material budget: sensors and readout electronics are integrated on the same chip
 - Eliminate the need for bump bonding : thinned to less to 50μ m Ο
 - Smaller pixel size, not limited by bump bonding ($<25\mu$ m) Ο
 - Lower costs : implemented in standard commercial CMOS processes Ο technologies with small feature size (65-110 nm)
- Either reduce power consumption or add more features Ο Target big sensors (up to wafer size) through use of "stitching" (step-andrepeat of reticles) to reduce further the overall material budget

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

Current sensor optimization in TJ180/TJ65 nm process Effort to identify US foundry on going

Snowmass White Paper <u>2203.07626</u> Common US R&D initiative for future Higgs Factories <u>2306.13567</u>

Time resolution vs. power

O(ns) time resolution for beam-background suppression requires dedicated optimizations

Current designs that can achieve ns or sub-ns time resolutions compensate with higher power consumption

• Target power consumption is less than 20 mW/cm²

Chip name	Experiment	Subsystem	Technology	Pixel pitch [µm]	Time resolution [ns]	Power Density [mW/cm ²
ALPIDE	ALICE-ITS2	Vtx, Trk	Tower 180 nm	28	< 2000	5
Mosaic	ALICE-ITS3	Vtx	Tower 65 nm	25x100	100-2000	<40
FastPix	HL-LHC		Tower 180 nm	10 - 20	0.122 – 0.135	>1500
DPTS	ALICE-ITS3		Tower 65 nm	15	6.3	112
NAPA	SiD	Trk, Calo	Tower 65 nm	25x100	<1	< 20
Cactus	FCC/EIC	Timing	LF 150 nm	1000	0.1-0.5	145
MiniCactus	FCC/EIC	Timing	LF 150 nm	1000	0.088	300
Monolith	FCC/Idea	Trk	IHP SiGe 130 nm	100	0.077 – 0.02	40 - 2700
Malta	LHC,	Trk	Tower 180 nm	36	25	> 100
Arcadia	FCC/Idea	Trk	LF 110 nm	25	-	30

Dedicated ongoing effort to target O(ns) resolution with MAPS (slides) First prototype (Napa-p1) produced in TJ 65 nm process 5x5 mm², 25 µm pitch

Particle Flow Calorimeters

Build on studies by CALICE: development and study of finely segmented and imaging calorimeters

- Particle-flow algorithm (PFA) leverages excellent momentum resolution from tracker to measure charged hadron contribution to allow a precise reconstruction of each particle within the jet
- CALICE R&D inspired CMS high granularity solution HGCAL Common test beams with the AHCAL prototype homogeneous crystal ECAL + scintillating glass HCAL
 - - Integrated engineering prototypes already tested to address system level issue
- **R&D line**: MAPS (see Alice FoCAL) and (ns-ps) timing information (ex: LGADs)
- ALLEGRO concept for FCC-ee built around highly granular noble-liquid (Ar, Kr) ECAL with Pb or W absorbers

SLAC Caterina Vernieri · Aspen Physics Center · March 28, 2024

ECAL 3%/√E HCAL 30%/√E

MAPS for ECal, SiD example

Fine granularity allows for identification of two showers down to the mm scale of separation

- SiD detector configuration with $25 \times 100 \ \mu m^2$ pixel in the calorimeter at ILC
 - Changing analog to binary digital has no energy resolution degradation
- The design of the digital MAPS applied to the ECal exceeds the physics performance as specified in the ILC TDR
- The 5T magnetic field degrades the resolution by a few per cent due to the impact on the lower energy electrons and positrons in a shower
- Future planned studies include the reconstruction of showers and π^0 within jets, and their impact on jet energy resolution

arXiv:2110.09965

GEANT4 simulations of Transverse distribution of two 10 GeV showers separated by one cm

Dual Readout calorimetry

Correct HCAL event-by-event through measurement of EM fraction with dual readout calorimeter

- **Dual readout Calorimetry**, e.g. DREAM (FCC-ee) improvement of the energy resolution of hadronic calorimeters for single hadrons:
 - Cherenkov light for relativistic (EM) component
 - Scintillation light for non-relativistic (hadronic)
 - EM prototype built and tested on beams (DESY/CERN) to understand construction issues + integration with SiPMs
 - Hadronic-size module funded and under construction
- **IDEA**: DR crystals inside solenoid + DR fibers outside
 - ECAL ~3%/ \sqrt{E} , HCAL ~29%/ \sqrt{E}
 - Sensible improvement in jet resolution using dual-readout information combined with a particle flow approach \rightarrow 3-4% for jet energies above 50 GeV

arXiv:2008.00338 JINST 15 (2020) P11005 G. Polesello (2023)

Timing layer(s)

Timing is being explored as additional information from the calorimeter and a dedicated layer

- from prompt components
- A timing layer as part of the tracking system or between tracker and E⁽¹⁾ (TOF) system
 - physics reach needs to be further studied
- Very attractive option for timing in Si wrapper region of IDEA/Allegro
 - O(10) ps needed for PID with TOF
 - Some "fast" devices prototyped by <u>Arcadia & US groups</u> based on
 - 35 ps time resolution so far

• A timing layer with O(ns) resolution into the HCAL could allow beneficial identification of slow shower components

performance of 10 ps in SiD

More physics/detector simulation studies needed to refine the case for timing layers

Solenoid

- SiD/ILD High field 5/4 T for BR² 5/4 layers of "CMS" conductor + more structural aluminum
 - Stored energy ~1.5 (2.3) GJ SiD (ILD)
- IDEA, ultra light 2 T solenoid with a vacuum vessel (25 mm Al) with honeycomb structure X0 = 0.04 to reduce material
- **Critical R&D area** Al-stabilized technology needs to be resumed
 - No industrial production available, as of today
- Backup solutions:
 - CICC (Cable-in-conduit conductor) approach may also be a solution - requires different magnet system design
 - HTS: New types of conductor being investigated to allow higher temperature operations > 10K (lower cost)

KEK-CERN leading R&D. But need to push for R&D in labs together with industry to keep the timelines of future projects!

A. Yamamoto (2023) JINST 18 T06013 (2023) K. Buesser (2023)

A big, reliable, stable - and very thin - solenoid magnet to provide the field for charged track pt measurement

Run Plans

ILC and FCC

<u>1710.07621</u> FCC Mid Term Report

Luminosity Spectra

Caterina Vernieri · Aspen Physics Center · March 28, 2024 SLAC

Incoherent Pair Production

Incoherently produced pair particles are typically low-energetic and boosted in the forward direction.

Assuming a common per-bunchtrain readout scheme, the expected number of such pair particles produced per bunch train is $\langle N_{\rm incoh} \rangle \cdot n_h$.

The energy and momentum spectra are shown assuming this normalization.

> Coherent pairs/pairs from trident cascade are negligible for HFs at sub-TeV energies!

arXiv:2403.07093

Power Consumption and Sustainability

Snowmass

Temperature (K)

Beam Loading (%) Gradient (MeV/m) Flat Top Pulse Lengtl (μs) Cryogenic Load (MW

Main Linac Electrica Load (MW) Site Power (MW)

Compatibility with Renewables Cryogenic Fluid Energy Storage

Intermittent and variable power production from renewables mediated with commercial scale energy storage and power production

	77
	45
	70
h	0.7
/)	9
	100
	~150

250 GeV CoM - Luminosity - 1.3x10³⁴

Parameter	Units	
Reliquification Plant Cost	M\$/MW	
Single Beam Power (125 GeV linac)	MW	
Total Beam Power	MW	
Total RF Power	MW	
Heat Load at Cryogenic	MW	
Temperature		
Electrical Power for RF	MW	
Electrical Power For	MW	
Cryo-Cooler		
Accelerator Complex	MW	
Power		
Site Power	MW	

