





# Physics opportunities at (future) e+e- machines



Dr Sarah Williams, University of Cambridge

### An alternative title



# "A golden ticket for future discoveries...?"

- Not starring: Gene Wilder or Timothee Chalamet
- Potentially starring: some of us?





## Introduction

Disclaimer: I am NOT going to go through all of the physics opportunities in detail have altered this talk significantly based on discussions from this week

 Pushing the intensity and energy frontiers represent two complementary routes for probing new physics.

#### What's a discovery in particle physics

- Discovering new particles (indirectly or directly)

#### - Detecting for the first time a new fundamental process

S. Gori

- In the next ~ 20 minutes I hope to convince you that a circular e<sup>+</sup>e<sup>-</sup> machine could do both of these. As a snapshot...
  - Possible evidence for electron/strange yukawa? (lets challenge ourselves further here...?)
  - Direct discovery of ~ low-mass (very) weakly coupled BSM.
  - Indirect discoveries up to ~50-100 TeV.



Please ask lots of questions, either after the talk, during coffee, or via email (sarah.louise.williams@cern.ch)

## What should come after the HL-LHC?



JNIVERSITY OF CAMBRIDGE Dr Sarah Williams: Future circular e+e- machines

## **Timescales in particle physics**

#### 1984: LHC proposed 1995: LHC approved 2012: Higgs discovery



11. SUMMARY AND CONCLUSIONS

...are long...

A theoretical consensus is emerging that new phenomena will be discovered at or below 1 TeV. There is no consensus about the nature of these phenomena but it is interesting that many of the ideas which have been suggested can be tested in experiments at an LHC. Although many, if not all, of these ideas will doubtless have been discarded, disproved or established by the time an LHC is built, this demonstrates the potential virtues of such a machine.

#### 22 years later in 2006...

#### The European strategy for particle physics

Particle physics stands on the threshold of a new and exciting era of discovery. The next generation of experiments will explore new domains and probe the deep structure of space-time. They will measure the properties of the elementary constituents of matter and their interactions with unprecedented accuracy, and they will uncover new phenomena such as the Higgs boson or new forms of matter. Long-standing puzzles such as the origin of mass, the matter-antimatter asymmetry of the Universe and the mysterious dark matter and energy that permeate the cosmos will soon benefit from the insights that new measurements will bring. Together, the results will have a profound impact on the way we see our Universe; *European particle physics should thoroughly exploit its current exciting and diverse research programme. It should position itself to stand ready to address the challenges that will emerge from exploration of the new frontier, and it should participate fully in an increasingly global adventure.* 

Vol. I

http://council-strategygroup.web.cern.ch/council-strategygroup/

## To put this in context...?

1984



My parents

I have only been involved in a small part of the LHC journey... **1995** SW- aged 7



**2012** Queuing for the Higgs seminar





## What this means for us...?

## If we want to avoid a (long) gap in data-taking- decisions on the next collider must happen soon...

#### 2020 European strategy update

"An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy"

This talk will focus on one of the options for a future e+e-Higgs (+ EW/top) factory

#### Snowmass 2021

"The EF supports a fast start for the construction of an e+e Higgs Factory (linear or circular), and a significant R&D program for multi-TeV colliders (hadron/muon)"





## $e^+e^-$ colliders: circular or linear?

#### **Circular colliders**

- Multi-pass at IP
- Modest accelerating gradients
- Limited by synchrotron radiation
- No beam polarization
- Potential to re-use tunnel for hadron collisions.

#### **Linear colliders**

- Single pass at IP
- Maximum accelerating gradients
- No synchrotron radiation
- Can exploit (longitudinal) beam polarization
- Staged approach to higher energies (energy~length)



Left: FCC-ee (CERN) Below: CEPC (China)

Right: ILC (Japan) Below: CLIC (CERN)



## **CEPC vs FCC: similarities**

#### https://home.cern/science/accele rators/future-circular-collider

Lots of similarities between CEPC and FCC-ee:

- 1. Similar circumference.
- 2. Separate beams for e+ and e-
- 3. Superconducting RF technology for particle acceleration, with energy booster and top-up injection.
- 4. Similar luminosity and energy for Higgs/ Z-pole/ WW and top\* threshold runs...

 $t\bar{t}$  run currently optional for CEPC based on TDR.

JNIVERSITY OF

CEPC: 100km Higgs/EW factory in China (could be followed by SppC pp collider)



~90 km Higgs/EW factory at CERN (...to be followed by FCC-hh)



Dr Sarah Williams: Future circular e+e- machines

### Physics opportunities at circular e+e- colliders

Whilst I have tried to document some of the differences between CEPC and FCC in the backup for reference, the physics cases and opportunities are VERY similar...

- 1. Push the intensity frontier at multiple energies enabling ultra-precise measurements of EW/Higgs/top parameters of SM.
- 2. Unique BSM sensitivity to low-mass feebly interacting particles.
- 3. Unique flavour opportunities due to tera-Z datasets.
- Opportunity to reuse tunnel to push energy frontier through ~100 TeV pp collisions and benefit from synergies between ee/ep and pp collisions (I won't be able to discuss- ask me about after).

#### I will now expand on these points using FCC as a case study...

## **Case study: integrated FCC programme**

**Comprehensive long-term programme maximises physics** opportunities at the intensity and energy frontier:

- 1. FCC-ee (Z, W, H,  $t\bar{t}$ ) as high-luminosity Higgs, EW + top factory.
- FCC-hh (~ 100 TeV) to maximise reach at the energy frontier, with pp, AA and e-h options (FCC-eh).



## Integrated FCC programme

#### Taken from slides by F. Gianotti at FCC week.

|                           | √s                                       | L /IP (cm <sup>-2</sup> s <sup>-1</sup> )     | Int L/IP/y (ab <sup>-1</sup> ) | Comments                                                             |
|---------------------------|------------------------------------------|-----------------------------------------------|--------------------------------|----------------------------------------------------------------------|
| e⁺e⁻<br>FCC-ee            | ~90 GeV Z<br>160 WW<br>240 H<br>~365 top | 182 x 10 <sup>34</sup><br>19.4<br>7.3<br>1.33 | 22<br>2.3<br>0.9<br>0.16       | 2-4 experiments<br>Total ~ 15 years of<br>operation                  |
| рр<br>FCC-hh              | 100 TeV                                  | 5-30 x 10 <sup>34</sup><br>30                 | 20-30                          | 2+2 experiments<br>Total ~ 25 years of<br>operation                  |
| PbPb<br>FCC-hh            | √s <sub>NN</sub> = 39TeV                 | 3 x 10 <sup>29</sup>                          | 100 nb <sup>-1</sup> /run      | 1 run = 1 month<br>operation                                         |
| <mark>ep</mark><br>Fcc-eh | 3.5 TeV                                  | 1.5 10 <sup>34</sup>                          | 2 ab <sup>-1</sup>             | 60 GeV e- from ERL<br>Concurrent operation<br>with pp for ~ 20 years |
| e-Pb<br>Fcc-eh            | $\sqrt{s_{eN}}$ = 2.2 TeV                | 0.5 10 <sup>34</sup>                          | 1 fb <sup>-1</sup>             | 60 GeV e- from ERL<br>Concurrent operation<br>with PbPb              |

#### FCC-eh:

- Energy-frontier ep collision & providential imate supermicroscope to fully resolve hadron structure and empower physics potential of hadron colliders.
- Ver<sup>10</sup> precise measurements of Higgs/top and EW parameters in synergy with ee and hh
   1

#### FCC-ee:

- Ultra-precise measurements of EW/ Higgs + top sectors of SM -> indirect sensitivity to BSM.
- Unique flavour opportunities
- Direct sensitivity to feebly interacting particles (LLPs)

#### FCC-hh:

- High-statistics for rare Higgs decays and 5% ♀\* → jj measurement of Higgs self
  - $Z'_{TC2} \rightarrow t\bar{t}$
- Unprecedented direct  $Z'_{SSM} \rightarrow t\bar{t}$

sensitivity to BSM.

interaction.

 $G_{RS} \rightarrow W^+W^-$ 

 $Z'_{SSM} \rightarrow l^+ l^-$ 

## Physics landscape for circular e+e- machines

Schematics from <u>slides</u> by M. Selvaggi at FCC week

#### Physics landscape



- Broad landscape of
  physics opportunities, from
  precise measurements of
  Higgs/Top/EW parameters
  of SM, to unique flavour
  opportunities at tera-Z run,
  and direct+indirect BSM
  sensitivity.
- Significant effort ongoing to study detector concepts across range of physics analyses (including unconventional signatures from LLPs/FIPs).



and PF

Dr Sarah Williams: Future circular e+e- machines

## **Targeting ultimate precision**

Plot + table taken from <u>slides</u> by M. Selvaggi at ZPW2024



15 (20?) years of operations

- Unprecedented luminosity at multiple centre of mass energies will enable ultra-precise measurements of Higgs (and EW and top) sectors of the SM...
- Rather than listing them... I thought we would play a game...

## e<sup>+</sup>e<sup>-</sup> numbers game

In the spirit of Roger Freedman's talk- lets do some active learning!

Put these numbers in ascending order (and guess if you can's

- 1. # Z bosons/hour at FCC-ee (Z-pole)
- 2. # Higgs bosons/day at FCC-ee (Zh pole)
- 3. # Z bosons produced at LEP
- 4. # Crème eggs produced by Birmingham Cadbury's factor, day
- 5. # Higgs bosons produced by the LHC in 2017.

#### In the interest of time- try guessing the highest and lowest...



Put these numbers in ascending order (and guess if you can/ want to...?)

- 1. # Z bosons/hour at FCC-ee (Z-pole) => 360 million (5)
- 2. # Higgs bosons/day at FCC-ee (Zh pole) => 2000 (1)
- 3. # Z bosons produced at LEP => 18 million (4)
- 4. # Crème eggs produced by Birmingham Cadbury's factory per day
   => 1.5 million (2)
- 5. # Higgs bosons produced by the LHC in 2017 => 3 million (3)

## **Case study- Higgs physics**

Plots taken from vol. 1 of FCC CDR: https://fcc-cdr.web.cern.ch/



- Large rates, clean experimental environment (no UE, Pileup, triggerless) with no QCD background will open up a new era of Higgs precision physics.
- Opportunities to remove model-dependence from measurements and reach sub-percent level for post couplings.

## **Higgs recoil mass method**

 $e^+$  Higgsstrahlung Z (ZH) Z $e^-$  H

- Precise C.O.M knowledge\* enables:
  - Z to be tagged (through leptons).
  - Construct recoil mass associated with Higgs  $m_{\text{recoil}}^2 = s - 2\sqrt{s}E_{ll} + m_{ll}^2$
  - Event counting gives precise Zh production cross-section measurement.
    - Absolute + model independent measurement of  $g_Z$  coupling.



#### \*Achieved through resonant depolarization (unique to circular I+I- colliders)

## Why do we need tera-Z?

- Significantly higher statistics at Z-pole (~ 5×10<sup>12</sup> Z-bosons) generates ultimate precision for EWPO, and best sensitivity for BSM searches (i.e. HNLs).
- Unprecedented flavour opportunities- 10x more bb/cc pairs than final Belle-II statistics.

| Particle production $(10^9)$ | $B^0 \ / \ \overline{B}^0$ | $B^+$ / $B^-$ | $B^0_s \ / \ \overline{B}^0_s$ | $\Lambda_b \; / \; \overline{\Lambda}_b$ | $c\overline{c}$ | $	au^-/	au^+$ |
|------------------------------|----------------------------|---------------|--------------------------------|------------------------------------------|-----------------|---------------|
| Belle II                     | 27.5                       | 27.5          | n/a                            | n/a                                      | 65              | 45            |
| FCC-ee                       | 300                        | 300           | 80                             | 80                                       | 600             | 150           |

| Quantity                                | current    | 1LC250   | ILC-GigaL | rcc-ee            |
|-----------------------------------------|------------|----------|-----------|-------------------|
| $\Delta \alpha(m_Z)^{-1} (\times 10^3)$ | 17.8*      | 17.8*    |           | 3.8(1.2)          |
| $\Delta m_W ~({ m MeV})$                | 12*        | 0.5(2.4) |           | 0.25~(0.3)        |
| $\Delta m_Z ~({ m MeV})$                | 2.1*       | 0.7(0.2) | 0.2       | 0.004~(0.1)       |
| $\Delta m_H ~({ m MeV})$                | 170*       | 14       |           | 2.5(2)            |
| $\Delta\Gamma_W~({ m MeV})$             | 42*        | 2        |           | 1.2 (0.3)         |
| $\Delta\Gamma_Z$ (MeV)                  | 2.3*       | 1.5(0.2) | 0.12      | $0.004 \ (0.025)$ |
| $\Delta A_e~(	imes 10^5)$               | 190*       | 14(4.5)  | 1.5(8)    | 0.7(2)            |
| $\Delta A_{\mu} \; (	imes 10^5)$        | $1500^{*}$ | 82(4.5)  | 3(8)      | 2.3(2.2)          |
| $\Delta A_{	au}~(	imes 10^5)$           | 400*       | 86(4.5)  | 3(8)      | 0.5(20)           |
| $\Delta A_b~(	imes 10^5)$               | 2000*      | 53 (35)  | 9(50)     | 2.4(21)           |
| $\Delta A_c \ (\times 10^5)$            | 2700*      | 140 (25) | 20 (37)   | 20 (15)           |

aumont II COLO II C Cime 7

0 ....



 Exciting physics potential with boosted b/τ, and opportunities to probe LFV/LFU in τ decays.

#### For flavour, see <u>slides</u> by Jernej. F. Kamenik at London FCC week

ECC as

## **Direct and indirect BSM searches**

Taken from FCC Snowmass submission

- 1. Indirectly discover new particles coupling to the Higgs or EW bosons up to scales of  $\Lambda \approx 7$  and 50 TeV.
- 2. Perform tests of SUSY at the loop level in regions not accessible at the LHC.
- 3. Study heavy flavour/tau physics in rare decays inaccessible at the LHC.
- 4. Perform searches with best collider sensitivity to dark matter, sterile neutrinos and ALPs up to masses  $\approx$  90 GeV.

#### Image credit: FCC CDR



Projected  $2\sigma$  indirect reach from Higgs couplings on stops.

## **Long-lived particles**



LLPs that are semi-stable or decay in the sub-detectors are predicted in a variety of BSM models:

- Heavy Neutral Leptons (HNLs)
- RPV SUSY
- ALPs
- Dark sector models

The range of unconventional signatures and rich phenomenology means that understanding the impact of detector design/performance on the sensitivity of future experiments is key!

### LLPs in e+e- colliders

Interested? There are more details in the backup ...

- Targeting precision measurements of EWK/Higgs/top sector of SM.
- Unique sensitivity to LLPs coupling to Z or Higgs.
  - No trigger requirements.
  - Excellent vertex reconstruction and impact parameter resolution can target low LLP lifetimes (this can drive hardware choices).
  - Projections often assume background-free searches (should check these assumptions).



# Conclusion: Opportunities and challenges associated with circular e<sup>+</sup>e<sup>-</sup> machines

# Paradigm shift in precision/sensitivity to

- EWK+ QCD
- Higgs
- Flavour
- BSM

(... in combination with energy frontier pp/ep collisions)



Subject to overcoming...



# Suite of challenges we need to overcome to get there:

- Theory
- Technological (detector development+ design, accelerators, computing).
- Sociological.
- Political.

## In my opinion- this is achievable and definitely worth it...

## Thanks for a fruitful week of discussions!

R PHYSICS

#### Circular e+ecolliders are cool! What do you think?



AS

Dr Sarah Williams: Future circular e+e- machines

## A possible look to the future

|                                                                                            | FCC-ee physics run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                 |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                            | 2047 – 2047<br>2046 – 2046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                 |
| Start accelerator commissioning                                                            | 2045 - 2045<br>2044 - 2044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Start detector commissioning                                                                                                    |
| End of HL-LHC operation                                                                    | 2043 - 2043<br>2042 - 2042<br>2041 - 2041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start detector installation                                                                                                     |
| Start accelerator installation                                                             | 2040 -     - 2040       2039 -     - 2039       2038 -     - 2038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                 |
| Start accelerator component production                                                     | 2037 –         –         2037           2036 –         –         2036           2035 –         –         2035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Start detector component production                                                                                             |
| Ground broaking and start civil ongineering                                                | 2034 – 2034 – 2034 – 2033 – 2033 – 2033 – 2033 – 2032 – 2032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |
| Start engineering design                                                                   | 2031 – 2031 – 2031 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 20300 – 20300 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – 2030 – | Detector CDRs (>4) submitted to FC <sup>3</sup>                                                                                 |
| Completion of HL-LHC: more ATS personnel available<br>FCC Approval, R&D, start prototyping | 2029 - 2029 Co<br>2028 - 2028<br>2027 - 2028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ompletion of HL-LHC upgrade: more detector experts available<br>FC <sup>3</sup> formation, call for CDRs, collaboration forming |
| European Strategy Update<br>FCC Feasibility Study Report                                   | 2026 – 2026<br>2025 – 2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | European Strategy Update Detector EoI submission by the community                                                               |
|                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                 |
| FCC-ee Accelerator                                                                         | Key dates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FCC-ee Detectors                                                                                                                |



# Backup



### **CEPC vs FCC: timelines**

Schematics taken from slides from 2023 FCC and CEPC weeks.





- Based on current
  hopes/plans- FCCee
  would commence
  operation in mid/late
  2040s compared to mid
  2030s for CEPC.
- This is mainly driven by constraints on FCC from LHC operations => the times from construction to operation are similar.

## **CEPC vs FCC: location and costs**

(...which are linked on some level...)

 FCC location is (exactly) fixed (one highlight of the feasibility study) whilst of 6 considered sites for CEPC, 3 have been selected for further study.

FUTURE





 Quoted expected construction cost of CEPC ~ half that of FCC (variations in purchasing/labour costs)

## **CEPC vs FCC: other differences**

- #IPs: CEPC has 2, whilst FCC (as of the mid-term review of the feasibility study) has 4.
- Different baseline operating plan.



#### Integrated L Total $E_{\rm c.m.}$ L per IP Total no. of Particle Integrated L Years per year $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$ (GeV) events $(ab^{-1}, 2 \text{ IPs})$ $(ab^{-1}, 2 \text{ IPs})$ Η 240 8.3 2.2 10 21.6 $4.3 \times 10^{6}$ Ζ 91 192\* 50 2 100 $4.1 \times 10^{12}$ W 160 26.7 6.9 1 6.9 $2.1 \times 10^{8}$ tt\*\* 360 0.8 0.2 5 1.0 $0.6 \times 10^{6}$

#### Table 3.2: CEPC operation plan (@ 50 MW)

\* Detector solenoid field is 2 Tesla during Z operation.

\*\*  $t\bar{t}$  operation is optional.

#### FCC with 4 IPs (not fixed, additional opportunities e.g. 125 GeV)

| Working point                                        | Z, years 1-2    | Z, later       | WW, years 1-2     | WW, later | ZH                                                                            | $t\overline{t}$                                      |                                                                              |
|------------------------------------------------------|-----------------|----------------|-------------------|-----------|-------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|
| $\sqrt{s} \; (\text{GeV})$                           | 88, 91,         | 94             | 157, 1            | 63        | 240                                                                           | 340 - 350                                            | 365                                                                          |
| Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$ | 70              | 140            | 10                | 20        | 5.0                                                                           | 0.75                                                 | 1.20                                                                         |
| Lumi/year $(ab^{-1})$                                | 34              | 68             | 4.8               | 9.6       | 2.4                                                                           | 0.36                                                 | 0.58                                                                         |
| Run time (year)                                      | 2               | 2              | 2                 | -         | 3                                                                             | 1                                                    | 4                                                                            |
| Number of events                                     | $6 \times 10^1$ | <sup>2</sup> Z | $2.4 \times 10^8$ | WW        | $1.45 \times 10^{6} \text{ ZH}$<br>+<br>$45 \text{k WW} \rightarrow \text{H}$ | $1.9 \times 10 +330 \text{k} +80 \text{k} \text{WW}$ | $\begin{array}{c} D^6  t \overline{t} \\ Z H \\ V \rightarrow H \end{array}$ |

 Power consumption ~ similar but carbon footprint currently higher for CEPC due to China's (current) prevalent use of coal as an energy source.

## Status of FCC feasibility study: mid-term review

FUTURE CIRCULAR COLLIDER For more details see slides by S. Williams at CEPC workshop.

- Mid-term review just completed (approval by council soon).
- Key updates:





## Synergies in FCC programme- FCC-eh

#### Taken from <u>slides</u> by J. D"Hondt at FCC week

#### Taken from updated CDR



- Empower FCC-hh with precision input on hadron structure and strong coupling (to permille accuracy) during parallel running.
- Complementary measurements of Higgs couplings (CC+NC DIS x-sections, no pile-up, clean)- see slides by U. Klein <u>here</u>
- Plus... complementary BSM prospects (LLPs, LFV, not-too-heavy scalars, GeVscale bosons)

## FCC-ee physics runs ordered by energy

#### Image credit: Christophe Grojean



## FCC-ee and -hh synergies - BSM

|c<sub>rr/</sub>/f | [TeV

See slides by G. Salam at FCC

0.10

0.05

**ω** 0.00



m**&Gu**rement

#### FCC-ee and -hh synergies - BSM searches More details in FCC TDR and ESU submissions here



Cover full mass range for discovery of WIMP dark matter candidates

Substantial discovery reach for heavy resonances

In summary- exciting possibilities to discover/characterize NP that could be indirectly predicted through precision measurements at FCC-ee

### **Summary of FCC-ee beam parameters**

#### Taken from <u>slides</u> by F. Gianotti at FCC week.

| Parameter                                                              | Ζ                                                          | ww                                                       | H (ZH)                           | ttbar                                   |
|------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|----------------------------------|-----------------------------------------|
| beam energy [GeV]                                                      | 45                                                         | 80                                                       | 120                              | 182.5                                   |
| beam current [mA]                                                      | 1280                                                       | 135                                                      | 26.7                             | 5.0                                     |
| number bunches/beam                                                    | 10000                                                      | 880                                                      | 248                              | 36                                      |
| bunch intensity [10 <sup>11</sup> ]                                    | 2.43                                                       | 2.91                                                     | 2.04                             | 2.64                                    |
| SR energy loss / turn [GeV]                                            | 0.0391                                                     | 0.37                                                     | 1.869                            | 10.0                                    |
| total RF voltage 400/800 MHz [GV]                                      | 0.120/0                                                    | 1.0/0                                                    | 2.08/0                           | 4.0/7.25                                |
| long. damping time [turns]                                             | 1170                                                       | 216                                                      | 64.5                             | 18.5                                    |
| horizontal beta* [m]                                                   | 0.1                                                        | 0.2                                                      | 0.3                              | 1                                       |
| vertical beta* [mm]                                                    | 0.8                                                        | 1                                                        | 1                                | 1.6                                     |
| horizontal geometric emittance [nm]                                    | 0.71                                                       | 2.17                                                     | 0.64                             | 1.49                                    |
| vertical geom. emittance [pm]                                          | 1.42                                                       | 4.34                                                     | 1.29                             | 2.98                                    |
| horizontal rms IP spot size [μm]                                       | 8                                                          | 21                                                       | 14                               | 39                                      |
| vertical rms IP spot size [nm]                                         | 34                                                         | 66                                                       | 36                               | 69                                      |
| luminosity per IP [10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ] | 182                                                        | 19.4                                                     | 7.3                              | 1.33                                    |
| total integrated luminosity / year [ab <sup>-1</sup> /yr] 4 IPs        | 87                                                         | 9.3                                                      | 3.5                              | 0.65                                    |
| beam lifetime (rad Bhabha + BS+lattice)                                | 8                                                          | 18                                                       | 6                                | 10                                      |
|                                                                        | 4 years<br>5 x 10 <sup>12</sup> Z<br>LEP x 10 <sup>5</sup> | 2 years<br>> 10 <sup>8</sup> WW<br>LEP x 10 <sup>4</sup> | 3 years<br>2 x 10 <sup>6</sup> H | 5 years<br>2 x 10 <sup>6</sup> tt pairs |

Dr Sarah Williams: Future circular e+e- machines

Currently assessing technical feasibility of changing operation sequence (e.g. starting at ZH energy)

□ x 10-50 improvements on all EW observables

up to x 10 improvement on Higgs coupling (model-indep.) measurements over HL-LHC

**Δ** x10 Belle II statistics for b, c, τ

FUTURE CIRCULAR

□ indirect discovery potential up to ~ 70 TeV

UNIVERSITY OF

□ direct discovery potential for feebly-interacting particles over 5-100 GeV mass range

Up to 4 interaction points  $\rightarrow$  robustness, statistics, possibility of specialised detectors to maximise physics output

35

# FCCee EWK precision – targets and challenges

#### See <u>slides</u> by Christoph Paus at ZPW2024

| Observables                                                                  | Present value      | FCC-ee stat. | FCC-ee<br>current syst. | FCC-ee<br>ultimate syst. | Theory input (not exhaustive)                                                              |
|------------------------------------------------------------------------------|--------------------|--------------|-------------------------|--------------------------|--------------------------------------------------------------------------------------------|
| m <sub>z</sub> (keV)                                                         | 91187500 ± 2100    | 4            | 100                     | 10?                      | Lineshape QED unfolding<br>Relation to measured quantities                                 |
| $\Gamma_{\sf Z}$ (keV)                                                       | 2495500 ± 2300 [*] | 4            | 25                      | 5?                       | Lineshape QED unfolding<br>Relation to measured quantities                                 |
| $\sigma^{0}_{had}(pb)$                                                       | 41480.2 ± 32.5 [*] | 0.04         | 4                       | 0.8                      | Bhabha cross section to 0.01%<br>$e^+e^- \rightarrow \gamma\gamma$ cross section to 0.002% |
| $N_{\nu}(\times 10^3)$ from $\sigma_{\text{had}}$                            | 2996.3 ± 7.4       | 0.007        | 1                       | 0.2                      | Lineshape QED unfolding $(\Gamma_{ m vv}/\!\!/\Gamma_{\ell\ell})_{ m SM}$                  |
| $R_\ell$ (×10 <sup>3</sup> )                                                 | 20766.6 ± 24.7     | 0.04         | 1                       | 0.2 ?                    | Lepton angular distribution<br>(QED ISR/FSR/IFI, EW corrections)                           |
| $\alpha_{\text{s}}(\text{m}_{\text{Z}})(\times 10^4)$ from $\text{R}_{\ell}$ | 1196 ± 30          | 0.1          | 1.5                     | 0.4?                     | Higher order QCD corrections for $\Gamma_{\rm had}$                                        |
| $R_{b}(\times 10^{6})$                                                       | 216290 ± 660       | 0.3          | ?                       | < 60 ?                   | QCD (gluon radiation, gluon splitting,<br>fragmentation, decays,)                          |

Challenges (and opportunities) in theory and on the experimental side (energy calibration/luminosity measurement) to reach ultimate precision...

## **FCC-ee top opportunities**

## See snowmass energy frontier report

- $t\bar{t}$  threshold scan will enable most precise measurements of top-quark mass and width.
- Precise measurements of top quark EW couplings provide essential input to precise extraction of top yukawa at FCC-hh.

| Parameter                                                      | HL-LHC | ILC 500 | FCC-ee | FCC-hh |
|----------------------------------------------------------------|--------|---------|--------|--------|
| $\sqrt{s}  [\text{TeV}]$                                       | 14     | 0.5     | 0.36   | 100    |
| Yukawa coupling $y_t$ (%)                                      | 3.4    | 2.8     | 3.1    | 1.0    |
| Top mass $m_t$ (%)                                             | 0.10   | 0.031   | 0.025  | _      |
| Left-handed top-W coupling $C^3_{\phi Q}$ (TeV <sup>-2</sup> ) | 0.08   | 0.02    | 0.006  | —      |
| Right-handed top-W coupling $C_{tW}$ (TeV <sup>-2</sup> )      | 0.3    | 0.003   | 0.007  | _      |
| Right-handed top-Z coupling $C_{tZ}$ (TeV <sup>-2</sup> )      | 1      | 0.004   | 0.008  | -      |
| Top-Higgs coupling $C_{\phi t}$ (TeV <sup>-2</sup> )           | 3      | 0.1     | 0.6    |        |
| Four-top coupling $c_{tt}$ (TeV <sup>-2</sup> )                | 0.6    | 0.06    | _      | 0.024  |
| · · · · · · · · · · · · · · · · · · ·                          |        | -       | 5      |        |



 Searches for FCNC interactions above threshold can also provide strong probe of BSM.



- Order of magnitude improvement in Higgs couplings.
- Factor of 10-50 improvement in EW precision observables (indirect sensitivity up to ~ 70 TeV)
- Direct sensitive refersive to the Electrowerk measurements and of the improvem used in this fix, and that the flavour observables have not been considered.
   100 TeV pphe contistion style data and the flavour observables have not been considered.
   Higg self
   Contistion style and the flavour observables have not been considered.

## Synergies between e<sup>+</sup>e<sup>-</sup> and pp collisions - Higgs measurements https://fcc-cdr.web.cem.c

- High intensity e<sup>+</sup>e<sup>-</sup> colliders can provide a model independent measurement of g<sub>HZZ</sub> through measuring σ<sub>ZH</sub>. This provide standard candle to normalize the measurement of other Higgs couplings.
- Can also measure ttZ couplings through *ee* → *tt̄*. This gives a second standard candle used to extract g<sub>ttH</sub> and g<sub>HHH</sub> at subsequent hadron machines.
- High-energy pp collisions provide the statistics to access rarer Higgs decays (H → μμ, H → Zγ) and HH events to give precise ultimate tests of the EWPT (~ 20 million at FCC-hh).





## **Higgs coupling measurements**

Taken from briefing book for 2020 ESU- improvements on Higgs coupling measurements in "kappa" framework:

- Red= linear e+e- collider colliders.
- Blue= circular e+e- machines.
- Orange= integrated FCC programme.



## **Costs of future projects**

#### Technical Challenges in Energy-Frontier Colliders proposed

|          |            | Ref.              | E<br>(CM)<br>[TeV]        | Lumino<br>sity<br>[1E34] | AC-<br>Power<br>[MW] | <sup>Cost-estimate</sup><br>Value*<br>[Billion] | B<br>TTI   | E:<br>[MV/m]<br>(GHz)  | Major Challenges in Technology                                                                                                        |
|----------|------------|-------------------|---------------------------|--------------------------|----------------------|-------------------------------------------------|------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| С        | FCC-<br>hh | CDR               | ~ 100                     | < 30                     | 580                  | 24 or<br>+17 (aft. ee)<br>[BCHF]                | ~ 16       |                        | High-field SC magnet (SCM)<br>- <u>Nb3Sn</u> : Jc and Mechanical stress<br>Energy management                                          |
| C<br>hh  | SPPC       | (to be<br>filled) | 75 –<br>120               | TBD                      | TBD                  | TBD                                             | 12 -<br>24 |                        | High-field SCM<br>- <u>IBS</u> : Jcc and mech. stress<br>Energy management                                                            |
| С        | FCC-<br>ee | CDR               | 0.18 -<br>0.37            | 460 –<br>31              | 260 –<br>350         | 10.5 +1.1<br>(BCHF)                             |            | 10 - 20<br>(0.4 - 0.8) | High-Q SRF cavity at < GHz, Nb Thin-film<br>Coating<br>Synchrotron Radiation constraint<br>Energy efficiency (RF efficiency)          |
| 60<br>60 | CEPC       | CDR               | 0.046 -<br>0.24<br>(0.37) | 32~<br>5                 | 150 –<br>270         | 5<br>[B\$]                                      |            | 20 – (40)<br>(0.65)    | High-Q SRF cavity at < GHz, LG Nb-bulk/Thin-<br>film<br>Synchrotron Radiation constraint<br>High-precision Low-field magnet           |
| L        | ILC        | TDR<br>update     | 0.25<br>( -1)             | 1.35<br>(- 4.9)          | 129<br>(- 300)       | 4.8- 5.3<br>(for 0.25 TeV)<br>[BILCU]           |            | 31.5 - (45)<br>(1.3)   | High-G and high-Q SRF cavity at GHz, Nb-bulk<br>Higher-G for future upgrade<br>Nano-beam stability, e+ source, beam dump              |
| ee<br>ee | CLIC       | CDR               | 0.38<br>(- 3)             | 1.5<br>(- 6)             | 160<br>(- 580)       | 5.9<br>(for 0.38 TeV)<br>[BCHF]                 |            | 72 – 100<br>(12)       | Large-scale production of Acc. Structure<br>Two-beam acceleration in a prototype scale<br>Precise alignment and stabilization. timing |
|          | A. Yamamot | o, 190513b        |                           |                          |                      | *Cost estimates                                 | are comr   | nonly for "Valu        | e" (material) only.                                                                                                                   |



## FCC costings- planned updates

#### Taken from slides by M. Benedikt at FCC week



#### **CRP members:**

Carlos Alejaldre (F4E), Austin Ball (CERN, ret.), Umberto Dosselli (INFN), Vincent Gorgues (CEA), <u>Norbert Holtkamp, chair (Stanford U.), Christa Laurila (VTV), Ursula Weyrich (DKFZ), Jim Yeck (BNL),</u> Thomas Zurbuchen (ETH Zürich)

## **Comparing future colliders**

#### See report from the Snowmass '21 Implementation task force

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pea                                                                      | rs vs.                                                                                 | Apple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           | MANGO                                                                                                                |                                                                                                                                     | PEAR                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 1 sma<br>84 calor<br>148 gran<br>¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nall<br>kries<br>arms                                                    |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 small<br>77 calories<br>149 grams<br>४४                                                                                                                                                                                                 | 6                                                                                                                    |                                                                                                                                     |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          | MACRONUTRI                                                                             | ENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                     | -                                                                                         |
| 23a<br>0.2a 0.<br>0.5a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9%<br>0.3%<br>1%                                                         | Carbohydrater<br>Total Fat<br>Protein                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2% 8%<br>0.39 0.4%<br>0.49 %                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                     |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | VI                                                                       | TAMINS AND MI                                                                          | NERALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                           | 1082 IU                                                                                                              | Vitamin A                                                                                                                           | 25 IU                                                                                     |
| 4.6g <b>1</b><br>6.4mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9%                                                                       | Dietary Fiber<br>Vitamin C                                                             | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.6p 14%<br>6.9mp 9%                                                                                                                                                                                                                      |                                                                                                                      |                                                                                                                                     | 2002501                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | * only significan                                                        | t nutrients or significant differ                                                      | inces are highlighted above,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                           | 36.4 mg                                                                                                              | Vitamin C                                                                                                                           | 4.3 mg                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          | in usia morri usioregov, usiy v                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                     |                                                                                           |
| supersage.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          | an dahar monin dukum govi, dany vi                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                           | 0.9 mg                                                                                                               | Vitamin E                                                                                                                           | 0.12 mg                                                                                   |
| oupersage.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pea                                                                      | <b>rs</b> vs.                                                                          | Peach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           | 0.9 mg<br>43 µg                                                                                                      | Vitamin E<br>Folate, total                                                                                                          | 0.12 mg<br>7 µg                                                                           |
| supersage.com<br>I sm:<br>84 calor<br>148 grat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pea<br>nall<br>ries                                                      | rs vs.                                                                                 | Peach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1 smali</b><br>62 calories<br>147 grams                                                                                                                                                                                                | 0.9 mg<br>43 µg<br>168 mg                                                                                            | Vitamin E<br>Folate, total<br>Potassium                                                                                             | 0.12 mg<br>7 μg<br>116 mg                                                                 |
| bupersage.com<br><b>1 sm</b> :<br>84 calor<br>148 grat<br>¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pea<br>nall<br>rriss                                                     | rs vs.                                                                                 | Peach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 small<br>62 calories<br>147 grams<br>¥¥                                                                                                                                                                                                 | 0.9 mg<br>43 µg<br>168 mg<br>13.66 g                                                                                 | Vitamin E<br>Folate, total<br>Potassium<br>Sugars                                                                                   | 0.12 mg<br>7 µg<br>116 mg<br>9.75 g                                                       |
| supersaga.com<br>Ism<br>84 calor<br>148 gran<br>¥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pea<br>nall<br>ves<br>sms                                                | rs vs.                                                                                 | Peach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>1 smali</b><br>62 calories<br>147 grams<br>¥¥                                                                                                                                                                                          | 0.9 mg<br>43 µg<br>168 mg<br>13.66 g                                                                                 | Vitamin E<br>Folate, total<br>Potassium<br>Sugars<br>Fiber                                                                          | 0.12 mg<br>7 µg<br>116 mg<br>9.75 g<br>3.1 g                                              |
| supersage.com<br>I sm<br>84 calor<br>148 grav<br>₹                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pea<br>nall<br>vies<br>vrv<br>9%                                         | rs vs.                                                                                 | Peach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 small<br>62 calories<br>147 grams<br>▼♥<br>59 68.                                                                                                                                                                                       | 0.9 mg<br>43 µg<br>168 mg<br>13.66 g<br>1.6 g                                                                        | Vitamin E<br>Folate, total<br>Potassium<br>Sugars<br>Fiber                                                                          | 0.12 mg<br>7 µg<br>116 mg<br>9.75 g<br>3.1 g                                              |
| upersage.com<br>1 sm.<br>84 calor<br>148 gras<br>148 gras<br>148 gras<br>148 gras<br>148 gras<br>148 gras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pea<br>Aall<br>YYY<br>96<br>35<br>76                                     | I'S VS.<br>MACRONUTRII<br>Carbohydrae<br>Protein                                       | Peach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 smali<br>62 catoles<br>142 grams<br>▼▼<br>15, en,<br>0-4, n,<br>15, an,                                                                                                                                                                 | 0.9 mg<br>43 µg<br>168 mg<br>1366 g<br>146 g                                                                         | Vitamin E<br>Folate, total<br>Potassium<br>Sugars<br>Fiber                                                                          | 0.12 mg<br>7 µз<br>116 mg<br>9.75 g<br>3.1 g                                              |
| Supersage.com<br><b>1 sm</b><br>B4 calor<br>148 gras<br><b>2</b><br>0<br>2<br>0<br>5<br>0<br>5<br>0<br>5<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pea<br>nall<br>YY<br>9%<br>2%<br>2%<br>2%                                | IS VS.                                                                                 | Peach<br>Peach<br>of the second se | 1 small<br>62 celories<br>1√2 granns<br>▼▼<br>56 e8.<br>64 19.<br>13. 28.                                                                                                                                                                 | 0.9 mg<br>43 µg<br>168 mg<br>13.66 g<br>1.6 g                                                                        | Vitamin E<br>Folate, total<br>Potassium<br>Sugars<br>Fiber                                                                          | 0.12 mg<br>7 μg<br>114 mg<br>9.75 g<br>3.1 g                                              |
| 239<br>239<br>239<br>254<br>254<br>254<br>254<br>254<br>254<br>254<br>254<br>255<br>254<br>255<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pea<br>all<br>aff<br>aff<br>aff<br>aff<br>aff<br>aff<br>aff<br>aff<br>af | MACRONUTRII<br>MACRONUTRII<br>MACRONUTRII<br>Total Flav<br>Total Flav<br>TAMINS AND MI | Peach<br>Peach<br>I<br>NERALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 small<br>€2 calories<br>bef grams<br>∀∀<br>∀¥<br>20 05<br>22 95                                                                                                                                                                         | 0.9 mg<br>43 µg<br>168 mg<br>13.66 g<br>1.6 g<br>The nutrient name is d                                              | Vitamin E<br>Folate, total<br>Potassium<br>Sugars<br>Fiber<br>Isplayed in the color of the<br>Vvinner'.                             | 0.12 mg<br>7 µg<br>116 mg<br>9.75 g<br>3.1 g                                              |
| пиратлада.com<br>1 <b>с пл</b><br>В 6 сајот<br>148 дтан<br>148 д | Pea<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>and<br>an | IS VS.                                                                                 | Peach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 small           62 calories           42/2 oranis           Vor grams           V           55         66           644         18           13         38           225         96           224         98           12way         95 | 0.9 mg<br>43 µg<br>168 mg<br>1366 g<br>1.6 g<br>The nutrient name is d<br>The amount s<br>The infographic alms to di | Vitamin E<br>Folate, total<br>Potassium<br>Sugars<br>Fiber<br>splayed in the color of the<br>'vinner'.<br>re specified per 100 gram | 0.12 mg<br>7 µg<br>116 mg<br>9.75 g<br>3.1 g<br>e food we considered a<br>of the product. |

(Also consider whether the people making the comparison might prefer apples or pears)

#### ... is hard! Its important to define your comparison metrics carefully and consider the errors involved!

- See <u>slides</u> by L. Nevay at IOP-HEPP 2023
- Some claim that "FCC-ee is, by very large factors, the least disruptive in terms of environmental impact" (arXiv:2208.10466).
- For discussion of the potential of HTS to make FCC-ee more sustainable see these <u>slides</u>.

Personal recommendation: go through the numbers, look at the whole picture (physics goals, upgrades, operation time etc) and critique the numbers for yourselves!

#### **FCC-ee accelerators**

- FCC
- Separate rings for electrons and Number of arc cells positrons and full-energy top-up booster Arc cell length ring in same tunnel. sss@IP (PA, PD, PG, PJ) 1400 m
- Max 50MW<sup>s</sup>SyffChfotfoff<sup>n</sup>radiation<sup>m</sup>per collider ring<sup>zimuth</sup> <sup>PA</sup> <sup>(f</sup>ūff<sup>a</sup>st)<sup>(f</sup>perating range. Arc length 9 616.586 m
- Asymmetrie day out limits photomson synchrotro retrieved a synchrotro retrieved at the synchrored at the synchrored at the synchrotro retrieved at the synchr
- Crab waist technique to optimize luminosity.

4 possible experimental sites at PA, PD, PG and PJ with RF stations at PH, PL and injection/extraction and collimation in PB/PF straights.



## **FCC-ee SRF system**

#### Schematic taken from slides by F. Zimmerman at US Snowmass townhall



**\$5500** 

500

RF for collider and booster in separate sections (collider in PH & 800 MHz, booster in ML- 800 MHz only) with fully separated technical infrastructure (cryogenics)

UNIVERSITY OF CAMBRIDGE Dr Sarah Williams: Future circular e+e- machines

## **FCC-ee beam optics**

Two new projects backed by CHART aim to explore use of HTS to improve energy efficiency. See CERN courier article here

#### Maximising energy efficiency is a major factor!



- Focussing and defocusing by ~3000 quadrupoles and ~ 6000 sextupoles.
- Designs being considered to reduce power consumption (single-cells vs supercells).

#### interaction region





arc

## **New FCC-ee injector layout**

#### Taken from slides by M. Benedikt at FCC week



UNIVERSITY OF CAMBRIDGE Dr Sarah Williams: Future circular e+e- machines

## FCC-ee LLP group: past and present

- Following a <u>Snowmass LOI</u>, an LLP white paper was recently published in <u>Front. Phys. 10:967881 (2022)</u> which included case studies with the official FCC analysis tools.
- These initial studies motivate further optimization of experimental conditions and analysis techniques for LLP signatures.
- Currently a very active community, with meetings on Thursdays 13:00 CERN time.

## Searches for long-lived particles at the future FCC-ee

C. B. Verhaaren<sup>1</sup>, J. Alimena<sup>2\*</sup>, M. Bauer<sup>3</sup>, P. Azzi<sup>4</sup>, R. Ruiz<sup>5</sup>, M. Neubert<sup>6.7</sup>, O. Mikulenko<sup>8</sup>, M. Ovchynnikov<sup>8</sup>, M. Drewes<sup>9</sup>, J. Klaric<sup>9</sup>, A. Blondel<sup>10</sup>, C. Rizzi<sup>10</sup>, A. Sfyrla<sup>10</sup>, T. Sharma<sup>10</sup>, S. Kulkarni<sup>11</sup>, A. Thamm<sup>12</sup>, A. Blondel<sup>13</sup>, R. Gonzalez Suarez<sup>14</sup> and L. Rygaard<sup>14</sup>

<sup>1</sup>Department of Physics and Astronomy, Brigham Young University, Provo, UT, United States, <sup>2</sup>Experimental Physics Department, CERN, Geneva, Switzerland, <sup>3</sup>Department of Physics, Durham University, Durham, United Kingdom, <sup>4</sup>INFN, Section of Padova, Padova, Italy, <sup>5</sup>Institute of Nuclear Physics, Polish Academy of Sciences, Kracow, Poland, <sup>6</sup>Johannes Gutenberg University, Mainz, Germany, <sup>7</sup>Cornell University, Ithaca, NY, United States, <sup>8</sup>Leiden University, Leiden, Netherlands, <sup>9</sup>Université Catholique de Louvain, Louvain-la-Neuve, Belgium, <sup>10</sup>University of Geneva, Geneva, Switzerland, <sup>11</sup>University of Graz, Graz, Austria, <sup>12</sup>The University of Melbourne, Parkville, VIC, Australia, <sup>13</sup>LPNHE, Université Paris-Sorbonne, Paris, France, <sup>14</sup>Uppsala University, Uppsala, Sweden

| Ongoi                                 | ng FCC-ee LLF                                                                              | P studies follow                                                                                                | Note: this table will soon be updated ollowing the mid-term review!                                                                                                                                                                       |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Physics<br>scenario                   | FCC-ee signature                                                                           | Studies for snowmass                                                                                            | Ongoing work                                                                                                                                                                                                                              |  |  |  |
| Heavy<br>neutral<br>leptons<br>(HNLs) | Displaced vertices<br>$ \int_{e^+} z_{\mu} \sqrt{\frac{z}{\nu_r}} \sqrt{\frac{z}{\nu_r}} $ | Generator validation<br>and detector-level<br>selection studies for<br>eevv. First look at<br>Dirac vs Majorana | <ul> <li>Update eevv studies for<br/>winter23 samples.</li> <li>First look at μμνν channel<br/>(prompt +LLP)</li> <li>First look at μνjj<br/>(prompt+LLP)</li> <li>First look at evjj including<br/>Dirac vs majorana (prompt)</li> </ul> |  |  |  |
| Axion-like<br>particles<br>(ALPs)     | Displaced<br>photon/lepton pair                                                            | Generator-level validation for $a \rightarrow \gamma \gamma$ at Z-pole run.                                     | No studies ongoing<br>-> Opportunities to get<br>involved :)                                                                                                                                                                              |  |  |  |
| Exotic Higgs<br>decays                | e.g. $\xrightarrow{z \\ x_{SM}} x_{SM}$                                                    | Theoretical<br>discussion and<br>motivation for<br>studies at ZH-pole                                           | <ul> <li>Reco-level studies (inc.<br/>vertexing) for h→ss→bbbb</li> </ul>                                                                                                                                                                 |  |  |  |

Dr Sarah Williams: Future circular e+e- machines

UNIVERSITY OF CAMBRIDGE

#### **FCC-ee LLP studies: recent highlights** Magdalena Vande Voorde, Giulia Ripellino

Nice <u>overview</u> by Juliette Alimena at EPS 2023

#### First simulation and sensitivity studies for Higgs decays to long-lived scalars



- Look at events with at least one scalar within acceptance region 4mm<r<2000mm- all except longest and shortest on RHS.
- Aim to develop event selection and perform early sensitivity study.

For further details see <u>presentation</u> by Magda at topical ECFA WG1-SRCH meeting

- Extend SM with additional scalar.
- Probe h→ss→bbbb in events with 2 displaced vertices, tagged by Z



### What about LEP3/TLEP?

For more information see: https://cds.cern.ch/record/1470982/files /ATS\_Note-2012\_062%20(2).pdf

## Proposal from ~ 2012 to put a Higgs factory inside the LHC tunnel, that could also be combined with proposals for LHeC

#### Some (fairly old) projections:

|                                                                           | ILC  | LEP3 (2) | LEP3 (4) | TLEP (2) | LHC (300) | HL-LHC |
|---------------------------------------------------------------------------|------|----------|----------|----------|-----------|--------|
| $\sigma_{\rm HZ}$                                                         | 3%   | 1.9%     | 1.3%     | 0.7%     | _         | -      |
| $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow {\rm b}\bar{\rm b})$ | 1%   | 0.8%     | 0.5%     | 0.2%     | -         | -      |
| $\sigma_{ m HZ} 	imes { m BR}({ m H} 	o 	au^+ 	au^-)$                     | 6%   | 3.0%     | 2.2%     | 1.3%     | -         | _      |
| $\sigma_{\rm HZ} \times {\rm BR}({\rm H} 	o {\rm W}^+ {\rm W}^-)$         | 8%   | 3.6%     | 2.5%     | 1.6%     | -         | -      |
| $\sigma_{\rm HZ} 	imes { m BR}({ m H} 	o \gamma \gamma)$                  | ?    | 9.5%     | 6.6%     | 4.2%     | -         | -      |
| $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow \mu^+ \mu^-)$        | -    | -        | 28%      | 17%      | -         | _      |
| $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow {\rm invisible})$    | ?    | 1%       | 0.7%     | 0.4%     | -         | _      |
| 8HZZ                                                                      | 1.5% | 0.9%     | 0.6%     | 0.3%     | 13%/5.7%  | 4.5%   |
| 8Hbb                                                                      | 1.6% | 1.0%     | 0.7%     | 0.4%     | 21%/14.5% | 11%    |
| $g_{ m H	au	au}$                                                          | 3%   | 2.0%     | 1.5%     | 0.6%     | 13%/8.5%  | 5.4%   |
| 8Hcc                                                                      | 4%   | ?        | ?        | 0.9%     | ?/?       | ?      |
| 8 HWW                                                                     | 4%   | 2.2%     | 1.5%     | 0.9%     | 11%/5.7%  | 4.5%   |
| $g_{\rm H\gamma\gamma}$                                                   | ?    | 4.9%     | 3.4%     | 2.2%     | ?/6.5%    | 5.4%   |
| <i>8</i> нµµ                                                              | -    | -        | 14%      | 9%       | ?         | ?      |
| 8Htt                                                                      | -    | -        | -        | _        | 14%       | 8%     |
| $m_{\rm H}~({\rm MeV}/c^2)$                                               | 50   | 37       | 26       | 11       | 100       | 100    |



#### https://arxiv.org/pdf/1208.1662.pdf